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Abstract-In this paper, we present a new approach for 
automatic design of electrodes. The investigated method consists 
in identifying an optimal shape from an optimal equipotential 
resulting from a system of point charges. The electric field and 
potential are computed using the point charge simulation 
method. Niching genetic algorithms and constrained 
optimization techniques are applied to the electrode benchmark 
in order to find multiple optimal profiles. 

Index terms-Genetic algorithms, niching, shape optimization, 
constrained optimization, penalty techniques, electrodes, charge 
simulation method. 

I. INTRODUCTION 

In [l], we have outlined the interest of Niching Genetic 
Algorithms for optimization in Electromagnetics. Niching 
methods extend Genetic Algorithms (GAS) by promoting the 
formation of stable subpopulations in the neighborhood of 
local and global optima. In this paper, we present a process 
for automatic design of electrodes using the Charge 
Simulation Method (CSM) [2][3] coupled with niching and 
constrained optimization techniques. Our approach is 
radically different from those developed elsewhere. In effect, 
shape optimal design is generally carried out by directly 
parametrizing the shape of devices [3][4]. The proposed 
method consists in identifying an optimal shape from an 
optimal equipotential line resulting from a system of point 
charges. The study explores the efficiency of many niching 
GAS when applied to the proposed electrode benchmark : in 
this paper, the technological problems will not be discussed. 

11. ELECTRODES DESIGN 

A. Principle 

We consider a 2D-electrode device as displayed in Fig. 1. 

defined by an internal and an external boundary. For reason 
of simplicity (remember that we only want to determine an 
optimal electrode shape), we consider a mathematically 
equivalent problem. Consequently, we use normalized rather 
than physical dimensions for the potential, the field, the 
charges and the lengths. The electric potential results from 
four point charges lying on the y-axis at an ordinate between 
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The electrode shape must satksfy a given template (valid ares) 
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Fig 1 Electrode template 

4.5 and 16. Each charge can take any value bounded by qmn 

The system is considered to be symmetrical in relation to 
the x-axis and y-axis. Therefore, we must take into account 
four identical charges with symmetrical coordinates in 
relation to the x-axis for the computation of the electric 
potential. We can express it at one point of coordinates x and 
y as follows, 

and 9max  

where q1 denotes the value of the charge i, 

7 = d ( x ,  - x)' + (y, - y)2 is the distance between that point 
and the corresponding charge. In the following, we simplify 
the analysis by neglecting the constant factor -1 I27-c~ in the 
computation of the potential and field values 

Finding an optimal electrode shape conslsts of 
determining the equipotential of value Vob,, being between the 
internal and external boundaries and with minimum electric 
field on it. 

To fulfill the geometric constraints (electrode surface 
between the internal and external boundaries), the following 
inequations must be satisfied: 
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ext where V,,, and V z x  represent the minimum potential value 
on the external boundary and the maximum potential value on 
the internal boundary respectively. It should be noted that a 
dual relation which also leads to a fulfillment of the 
constraints can be obtained by inverting the indexes ext and 
int. 

The minimum and maximum possible values for each 
charge were set to q,,, =-1 and q,, = 1 respectively. 
Following this way, we search for an optimal equipotential 
(i.e. with minimum field on it) having for value VobJ = 1. 

B. Shape optimization qf the electrode 

The optimization process that we employ can be described 

1) Parameters optimization: Niching GAS optimize the set 
of parameters at each generation i.e. the characteristics of the 
charges (position and value). 

2 )  Computation of the potential on the template 
boundaries: Before computing the objective function, namely 
the maximum electric field on the equipotential Vobj = 1, we 
must verify if geometric constraints are fulfilled. For that 
purpose, the internal and external boundaries are discretized 
into 15 and 25 points respectively. The potential is computed 
at each point and the extremum values of the potential on the 
boundaries are returned. 

3 )  Constraints fu@llment: First investigations were made 
by taking two constraints relative to (2). This procedure was 
not efficient (see section I11 for more details). Therefore, we 
choose to use a normalization process to increase the feasible 
domain and reduce the number of constraints. In effect, we 
remark that a sufficient condition to have an equipotential of 
any value FObj inside the template is simply: 

as follows: 

(3) 

4)  Potential normalization: When (2)  is reduced to (3), we 

obtain the equivalent charge values giving a corresponding 

equipotential of Vobl = 1 by multiplying the intensity of all 

charges by the term 11 \cbl where Fob] is a value lying in the 

range v:, 5 fobl I v,":,. ~ 1 1  of the possible values for fob, 

can be defined by (4), 

fob] = V,Zx + a ( V g  - VZx ) (4) 

where a E [0,1] is called the normalization factor. We explore 
three different normalization techniques to set the 
normalization factor: 

The normalization factor is independently optimized by a 
one-dimensional optimization method (optimized norma- 
lization). We apply the golden section method [6]. 

The normalization factor is set to 1 (external norma- 
lization). This procedure is based on the assumption that 
optimal profiles must touch the external boundary of the 
template to present a minimal electric field on their surface. 

5)  Equipotential scanning: One point of the equipotential 
vobl is detected along the x-axis from the point of coordinates 
(3,16) using the Newton-Raphson method [6]. The other 
points are sequentially found with the following Hill- 
Climbing procedure. The first point identified is placed at the 
center of a grid which can move in eight directions of the 
space according to two different pattern moves (diagonal and 
lateral moves). Fig. 2 presents two examples of pattern 
moves. 

From a gradient corresponding to the last direction of the 
move (initially we impose the negative direction along the y- 
axis) the potential is computed at a limited number of points 
among the eight possible. We limit this number according to 
the gradient to five points for a diagonal move and three 
points for a lateral move (see Fig. 2). This was necessary to 
prevent reexploring points identified before. Following this 
way, the point that yields a minimum slope of potential with 
the center of the grid is retained as the new center. The 
scanning is stopped when the center of the grid intercepts the 
y-axis. 

6 )  Maximum electric field The electric field value is 
computed at each point of the equipotential detected by the 
previous procedure. The maximum value is returned and 
normalized by the term 1 I Fob] according to the normalization 
factor defined in (4). The fitness function is defined as 
follows to express the problem into a form of maximization 
for the niching GAS, 

f a  =1/U+EItlax) ( 5 )  
where E,,, is the maximum normalized electric field value 
on the equipotential. 
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( 4  (b) The normalization factor is taken as an additional 
parameter and is optimized by the niching GA (GA- 
normalization). Fig. 2. Equipotential scanning (a) lateral move (b) diagonal move 
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7) Penalization process 

When the constraints are violated, we cannot compute the 
objective function since it has no meaning to evaluate the 
electric field on an equipotential lying outside the template. 
On the other hand, the equipotential corresponding to an 
unfeasible solution can take any shape outside the template, 
making its identification more difficult. For this reason, there 
is no possible link between the feasible and unfeasible 
domains. We investigate two penalty techniques to compute 
the fitness function for unfeasible solutions: 
* We reject unfeasible individuals from the population by 
resetting their fitness (death penalty technique). This 
procedure is one of the most popular in evolutionary 
computing but it suffers from significant drawbacks. In effect, 
if no feasible solution is found in the initial population, there 
is no way to improve individuals and help them to reach the 
feasible domain. 

Individuals are penalized by a quantity almost 
proportional to the violation of the constraints (exterior 
penalty technique). We use the following penalty term for the 
fitness function: 

f G A  = 1 /  [ l + w ,  +w2 281j (6) 

where w1 and w2 are fixed penalty parameters, g ,  represents a 
violated constraint, m being the number of violated 
constraints. wl must be sufficiently large to prevent 
convergence on the external boundary of the feasible domain 
but not too high to avoid great discontinuity between feasible 
and unfeasible domains. This value has to be close to the 
worst feasible solution to ensure sufficient penalization. 

r=l 

111. RESULTS 

Four niching methods reviewed in [ 1][7] were 
alternatively applied to solve the electrode benchmark. The 
population size of the GAS was N = 100, the number of 
generations being tm,,=200. All parameters were coded in a 
30 bit number with standard binary encoding. The crossover 
probability and the mutation rate were set to 1.0 and 0.001 
respectively. Four runs were made with random populations 
to take into account the stochastic nature of the GAS. An 
average statistic was taken from the final population for the 
performance criteria: number of optimal profiles, best profile, 
and normalization factor. 

A. Niching GAS compared. 

Table I shows statistics obtained for the studied GAS with 
GA-normalization and death penalty method. A standard 
elitist GA converged to a single solution of the space but the 
four successive runs converged to four different solutions of 
quasi identical fitness reflecting the multimodality of the 
landscape (or the presence of a large, relatively flat area in it). 
Sharing was unable to find any optimal solutions resulting 
from a lack of elitism inherent to this method and probably an 
inappropriate niche radius and population size - sharing 

generally requires high population sizes to reach equilibrium 
[6] .  The objective function seems to be a large plateau with a 
low gradient and one should probably improve the results by 
using fitness scaling to increase differentiation of optimal 
solutions. Clearing was more robust than sharing finding an 
important number of closed optimal solutions with a small 
niche radius (CT~=O.OS) and a few (but more distinct) ones with 
higher niche radii (oS=0.2 or q,=0.4). Restricted Tournament 
Selection performed well by maintaining a higher number of 
distinct optimal profiles. Deterministic Crowding only 
detected an average of 2.25 optima in four runs 

TABLE I 

ELECTRODE BENCHMARK 
COMPARISON OF DIFFERENT NICHING GENETIC ALGORITHMS ON THE 

Best 
solution 
(Emax) 

Number of 

(Emax<O 06) 
GA optimizahon o p t ”  profiles 

elihst GA(no niching) 1 0 OS64 
0 0 0672 
0 0 0668 
0 0 0746 

60 50 0 0561 
16 25 0 0568 
1 5 0  0 0559 

DC 2 25 0 0569 
RTS 18 50 0 OS67 

Sharing ( ~ = 0  05) 
Sharing (o,=0.2) 
Sharing (os=O 4) 

Cleanng (os=O 05) 
Cleanng (oS=O 2) 
Cleanng (os=O 4) 

B. Normalization methods compared. 

W e  present in Table I1 statistics obtained for Restricted 
Tournament Selection coupled with death penalty method 
and the normalization techniques introduced in section 11. 

TABLE II 
COMPARISON OF THE NORMALIZATION TECHNIQUES FOR RTS 

Average normalization Number of Best 
Normalization factor for optimal o p t ”  profiles solution 

(Emax<O 06) (Emax) 
GA 0 663 18 50 0 0567 

optimized’ 0 994 9 00 0 0563 
external 1 (fixed) 11 50 0 0561 

profiles 

Results are quite similar for the 3 schemes investigated 
External normalization was the most efficient method since 
optimal solutions are located on the boundary of the domain 
corresponding to a normalization factor of value 1 0 This is 

normalization factor of 0.994 for optimal solutions This last 
method is the most general and theoretically the best of the 
three ones. However, it requires more CPU time because of 
one equipotential scanning per division in the golden section 
method. GA normalization yielded a higher number of 
optimal profiles by maintaining solutions with normalization 
factor of any value. Nevertheless, these solutions were worse 

proved by optimized normalization which always leads to a 

’ For optimized normalization, the normalization factor was determined after 
9 iterahons of the golden section method. 



than those found by the previous methods. We point out that 
without normalization (i.e. when using fixed constraints 
relative to (2)) and dealFh penalty method no feasible solution 
was found in 20000 fitness function evaluations for all GAS. 
In fact, 6 819 500 fitness function evaluations were necessary 
to evaluate 10 feasible solutions with random search. 

C. Penalty methods conzpared. 

Table I11 shows statistics obtained for different niching 
GAS with external normalization. Exterior penalty method 
was computed using wl=O.l (which corresponds to the worst 
value of the objective function in the feasible domain found 
with random search) and w2=100. 

TABLE 111 
COMPARISON OF THE PENALTY TECHNIQUES FOR DIFFERENT NICHING GAS 

Number of Best 
optimal profiles solution 

(Emax<O 06) (Emax) 

Optimization Penalty Explorahon 
scheme techn, que rate' 

I~ I 

RTS death 8.20% 11.50 0.0561 
RTS exterior 19.26% 33.75 0.0561 
DC death 2.97% 2.50 0.0571 
DC exterior 19.43% 17.50 0.0563 

Clearing (0,=0.2) death 64.96% 17.00 0.0564 
Clearing (0,=0.2) exterior 64.46% 14.00 0.0563 

For all GAS, only a few feasible solutions were evaluated 
in the first generations. With death penalty method, crowding 
methods such as De terministic Crowding or Restricted 
Tournament Selection were unable to improve the major part 
of the population located outside the feasible domain yielding 
a small exploration raie. Clearing rapidly converged and 
stabilized its population in the feasible domain due to the 
selection operator similar to that used in standard GAS. This 
explains the high exploration rate noted for that GA. The 
Exterior penalty method considerably improved the 
exploration rate and the quality of results for crowding 
schemes. It should be also noted that the exploration rate of a 
random search is extremely poor (about 0.8%) whereas that 
of a standard GA with death penalty method is about 93% 
(remind that a standard GA rapidly converges to a single 
region of the feasible domain). We conclude this section by 
presenting in Fig. 3 examples of optimal profiles found and 
associated electric field stress on their contour in Fig. 4. 

IV. CONCLUSION 

This paper describes an original approach for automatic 
design of electrode shapes. The procedure, based on the CSM 
coupled with niching GAS, allows to find multiple optimal 
profiles with reduction of the maximum field stress. The 
paper also investigates normalization schemes and penalty 
methods to improve the efficiency of niching GAS. In the 
future, we will extend our method to three dimensional 
systems with more complex templates and charges with 
' We define the exploration rate as the ratio of the number of computed 
feasible solutions to the total rumber of fitness function evaluations. 
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Fig. 3. Examples of profiles with the corresponding electric field distribution 
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Fig. 4. Electric field stress on the countours 

additional degrees of freedom. A comparison of the 
efficiency of our approach will be carried out with other 
traditional shape optimization methods. 
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