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Genetic Algorithms for Optimization in Electromagnetics 
I. Fundamentals 

B. Sareni, L. Krahenbuhl, A. Nicolas 
CEGELY - UPRESA CNRS 5005 - Ecole Centrale de Lyon 

BP 163 - 69131 Ecully Cedex - France. 

Abstract-Niching methods extend genetic algorithms and 
permit the investigation of multiple optimal solutions in the 
search space. In this paper, we review and discuss various 
strategies of niching for optimization in electromagnetics. 
Traditional mathematical problems and an electromagnetic 
benchmark are solved using niching genetic algorithms to show 
their interest in real world optimization. 

Index terms-Genetic algorithms, niching methods, sharing, 
crowding, clearing, shape optimization, magnetizer. 

I INTRODUCTION 

Real world optimization problems often present multiple 
optima in the feasible domain. In particular, it has been 
shown that electromagnetic problems are frequently 
multimodal [ 11-[3]. In this context, global optimization 
techniques such as evolution strategies [ 11, genetic algorithms 
[2][4] or simulated annealing [ 1][3] have been successfully 
applied to find a global optimum. However, in case of shape 
or structural optimization, it could be advantageous to 
identify multiple optimal profiles by locating global as well as 
local optima. For that purpose, niching methods extend 
genetic algorithms by promoting the formation of stable 
subpopulations in the neighborhood of optimal solutions [5]. 

Section I1 presents an overview of niching methods and 
discusses advantages and drawbacks of each of them when 
they are applied to real optimization problems. Section 111 
investigates the role of the distance criterion which allows the 
formation of niches. Section IV presents a comparison of the 
efficiency of the studied multimodal GAS for standard 
mathematical test functions. Section V proposes the 
application of the niching GAS on an electromagnetic 
benchmark similar to that reported in [4]. 

I1 NICHING GENETIC ALGORITHMS 

Genetic Algorithms (GAS) are stochastic optimization 
methods based on the mechanics of natural evolution and 

individuals, each representing a feasible solution in the search 
space. A fitness score (namely the objective function) 
measures the adaptation of individuals in their environment. 
For each individual, the set of parameters are coded into a 
finite-length character string (chromosome). The convergence 
of the population to a global optimum of the space is obtained 
by applying sequentially three genetic operators: selection, 
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natural genetics [2][4]-[8] They work with a population of 

crossover and mutation. However, €or simple genetic 
algorithms, all the individuals in the population converge to a 
single solution representing the global solution of the 
problem. Niching methods have been developed to minimize 
the effect of genetic drift resulting from the selection operator 
in the traditional GA in order to allow the parallel 
investigation of many solutions in the population. In natural 
ecosystems, animals compete and survive in many ways (by 
grazing and hunting for example) and different species evolve 
to fill each role. A niche can be viewed as an organism task 
which permits species to survive in their environment. 
Species are defined as a collection of similar organisms with 
similar features. For each niche, the physical resources are 
finite and must be shared among the population of that niche. 
By analogy, in multimodal GAS, niching methods tend to 
achieve a natural emergence of niches and species in the 
search space. A niche is commonly referred to as an optimum 
of the domain, the fitness representing the resources of that 
niche. Species can be defined as similar individuals in terms 
of similarity metrics. An important number of niching GAS 
have been reported in the literature for example [5]-[9]. 

A. Fitness Sharing 

Fitness sharing modifies the search landscape by reducing 
the payoff in densely-populated regions. It derates each 
population element’s fitness by an amount nearly equal to the 
number of similar individuals in the population. Typically, the 
shared fitness f ,  of an individual i with fitness f, is simply: 

i fd ,  <os 
otherwise 

with sh(d,.)= 

where N denotes the population size and d, represents the 
distance between the individual i and the individual j .  The, 
sharing function (sh) measures the similarity level between 
two population elements accord lng  to a threshold of 
dissimilarity 0, (also the distance cutoff or the niche radius). 
a is a constant parameter which regulates the shape of the 
sharing function (typically ~ 1 ) .  The effect of this scheme is 
to encourage search in unexplored regions. 

B. Crowding Methods 

Crowding techniques insert new elements into the 
population by replacing similar elements. We report two 
interesting crowding schemes. 
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1) Deterministic crowding (DC): Mahfoud improved 
standard crowding of De Jong by introducing competition 
between children and Farents of identical niches [5] .  After 
crossover and eventually mutation, each child replaces the 
nearest parent if he has an higher fitness. Thus, DC results in 
two sets of tournaments' (parent 1 against child 1 and parent 
2 against child 2) or (pxent 1 against child 2 and parent 2 
against child 1). The set of tournaments that yields the closest 
competitions is held. 

2 )  Restricted Tourn& ment Selection (RTS): RTS adapts 
tournament selection for multimodal optimization [6]. RTS 
initially selects two elements from the population to undergo 
crossover and mutation. After recombination, a random 
sample of w individuals is taken from the population. 
Following this way, each offspring competes with the closest 
sample element. The winners are inserted into the population. 
This procedure is N/2 tirnes repeated per generation. 

C. Clearing 

Clearing is a recent promising multimodal method which 
has been successfully applied to difficult mathematical 
problems [7] .  It is very similar to sharing but uses the concept 
of limited resources in the environment. Instead of sharing 
resources between all individuals of a same niche as in the 
fitness sharing scheme, clearing attributes them only to the 
best members of the niche. In practice, the capacity k of a 
niche specifies the maximum number of elements that this 
niche can accept. Thus, (clearing preserves the fitness of the k 
best individuals (dominant individuals) of the niche and resets 
the fitness of the others that belong to the same subpopulation 
(dominated individuals). As in the sharing method, 
individuals belong to the same niche (or subpopulation) if 
their distance in the search space is less than a dissimilarity 
threshold os (clearing radius). Clearing can be coupled with 
elitism strategies to preserve the best elements of the niches 
during the generations. 

D. Other niching methoa's 

To give a complete description of niching GAS, we also 
mention Sequential Niching, Ecological GAS reported in [5] 
and Immune Systems which have been already applied to 
solve electromagnetic optimization problems [9]. 

111. DISTANCE CRITERION 

All niching GAS must differentiate similar individuals from 
dissimilar ones. The similarity metric can be based on either 
genotype or phenotype similarity. Genotypic similarity is 
directly linked to bit string representation (binary GAS) and is 
commonly referred to as the Hamming distance. Phenotypic 
similarity is related to real parameters of the search space. 
This can be the Metropolis or Euclidean distances for 
mathematical problems since all parameters have the same 
dimension. For real problems, we must use a normalized 

characterize the similarity level between an individual x1 and 
an individual x2 in the domain, 

(3) 
i max - 4 rmn 

d ( x l ,  x2) = max 

where n is the number of parameters (also the space 
dimension), xli and xZi  denote the ith parameter of the 
individual x1 and x2 respectively, ximin and ximx being the 
extreme values of the ith parameter. As it can be seen in (3), 
this distance represents the maximum deviation of normalized 
parameters taken in all directions of the space. 

Niching GAS can be classed into two different groups: 
- T h e  first one involves GAS characterized by an explicit 
neighborhood since they need an explicit distance cutoff to 
set the dissimilarity threshold (clearing and sharing for 
example). In that case, we need a priori to know how far the 
optima are. However, for real optimization problems, we have 
generally no information about the search space and the 
distribution of the optima until we begin the search. This can 
be an important drawback and cause these methods to fail if 
the minimum distance between two optima is not correctly 
estimated. 
- T h e  second one consists of techniques for which the 
neighborhood is implicit (crowding schemes). In that case, 
the algorithm requires no information about the search space 
and can be easily applied to various problems without the 
previous restrictions. 

IV. MATHEMATICAL TESTS 

A. Test functions 

We consider five multimodal functions of different 
difficulty [5] displayed in Fig. 1. 

B. Performance criteria for  niching GAS tests 

I )  The Maximum peak ratio: It is the sum of the fitness of 
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Fig. 1 .  Test functions (a) M3 uniform sine (b) M4 nonuniform sine 
We propose the distance to (c) M5 Modified Himmelbau's function (d) M6 Modified Foxholes function 
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the local optima identified by the niching technique divided 
by the sum of the fitness of the actual optima in the search 
space [9]. An optimum is considered to be detected if it is 
within a niche radius of the real optimum and if its fitness 
value is at least 80 % of the real optimum. When an optimum 
is not identified, the local optimum value is set to zero. 
Thence, the maximum value for the maximum peak ratio is 1 
corresponding to a perfect detection of all optima. 

2) The effective number of maintained peaks: W e  also 
consider the effective number of optima maintained at the end 
of the search according to the previous definitions. 

3) The chi-square like pevormance statistic: It measures the 
deviation between the population distribution and an ideal 
proportionally populated distribution (see [9] for more 
details). It characterizes the ability of the niching technique to 
proportionally populate the niches of the search space. The 
smaller the measure, the better the method. An ideal 
distribution is of value 0. 

4)  The number of fitness function evaluations: In many real 
applications such as electromagnetic design, the compu- 
tational cost of objective functions can be high. Therefore, we 
are interested in assessing the efficiency of niching methods 
at limited number of function evaluations. Experiments are 
investigated for 900 fitness function evaluations (30 
individuals, 30 generations). 

C. Test results 

We first examine the efficiency of the niching GAS on 
functions M3 and M4. Table I shows statistics relative to 
these problems on an average of ten runs. 

TABLE I 
NICHING GAS COMPARED - STATISTICS FOR THE FUNCTIONS A43444 

with RTS with the maximum window size (w=N). The 
maximum peak ratio and the effective number of maintained 
peaks were respectively 0.874 and 21.9. 

TABLE I1 
NICHING GAS COMPARED - STATISTICS FOR THE FUNCTIONS M5-M6 

Niching GA M5 M6 
NbPeaks Maximum Nb Peaks Maximum 

maintained Peak Ratio maintained Peak Ratio 
Sharing us=O 05 4 0 986 15 5 0 607 
Cleanng us=O 05 4 0 995 16 4 0 655 

DC 4 0 992 8 0  0 322 
RTS (w=30%N) 4 1 000 7 9  0 318 

V. ULER’S BENCHMARK 

Niching experiments were also carried out on an 
electromagnetic benchmark similar to that reported in [4]. 
The magnetizer geometry has been modified to depend on 
three parameters only. The pole shape consists of a circular 
arc centered at the point 0 of coordinates (0,x,) and joining 
the point P of coordinates ( x 2 ,  xg ) (see Fig. 2). 

Outer shield 
~ ,UL,=1000 

75 - 

65 - 
60 - 
55 - 

Niching Nb Peaks Maximum Mean End 
GA maintained Peak Ratio Chi-square Chi-square 

F3 F4 F3 F4 F3 F4 F3 F4 
Sharingo,=O 1 4 8  4 8  0935 0941 2957 3461 1789 2281 
CleanngQ=O 1 5 0  4 8  0990 0933 1045 2397 0.129 1477 

DC 5 0  4 0999 0768 3 537 5263 3 155 5264 
RTS 4 8  5 0958 0.998 2743 3698 3763 2924 

Clearing surpassed all other niching GAS by combining a 
very low chi-square-like deviation with a good detection of 
the peaks. Crowding schemes were unable to maintain low 
chi-square-like deviations during the generations but 
preserved peaks thanks to elitism inherent to these techniques. 
Sharing worked well on these easy problems but presented 
difficulty to perfectly detect the optima. 

Table I1 displays statistics relative to the functions M5-M6. 
All niching GAS performed well on the modified 
Himmelbau’s function but were unable to maintain all optima 
of the modified Scheckel’s foxholes function because of the 
small population size. Results indicate that it is necessary to 
have more than one individual per optimum to maintain all 
optima. Niching GAS with explicit neighborhood surpassed 
DC and RTS with small window size w. However, it should 
be noted that the best result for this problem was obtained 
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Fig 2 Geometry of the magnetizer 

Table I11 shows the range of the design variables used in 
this magnetizer problem. An additional constraint imposes a 
minimum distance of 55 mm between the point P and the 
point 0 to prevent the interception of the pole with the 
material to be magnetized. 

TABLE 111 
DESIGN VARIABLES RANGES 

Design vanable Minimum value Maximum value 
-5 mm 25 mm x1 
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Unlike the optimization objective in [4], we want to obtain 
an uniform magnetic flux density on the chord AB. Moreover, 
we specify no normative value for the magnetic flux density. 
In this resulting inverse problem, specifically designed to 
multimodal optimization, the value of the induction is 
voluntarily not prescribed so as to allow multiple optimal 
solutions. The objective function to be minimized can be 
expressed by (9) 

I, f n \2 I n  
(9) 

where B, is the magnetic flux density at the point i ,  n=50 
being the number of discretized points on the chord AB. 

The optimization problem is coupled with a FEM code and 
solved using the niching GAS presented in the previous 
sections. We apply the death penalty method when the 
geometric constraint is violated [ 101 by rejecting the 
unfeasible individuals from the population. 

Table IV shows a comparison of the niching GAS on the 
modified Uler's benchmark. A simple GA converged to a 
single configuration giving an uniform induction level on the 
chord AB of value 0.208 T. The investigated niching GAS 
were able to maintain more than one solution. Best results 
were obtained with crowding schemes. Sharing performed 
poorly reflecting its difficulty to stabilize its population 
around the optimal solutions. In fact, sharing detected an 
important number of quasi uniform induction levels but these 
solutions were worse than those found by the other GAS and 
below the quality criteria cf,,<O.O3). Clearing was obviously 
better by identifying multiple close optimal solutions with a 
small niching radius and a few distinct ones with higher 
niche radii. 

TABLE IV 
EFFICIENCY OF THE NICHING GA ON THE ULER'S BENCHMARK 

Nb of optimal Induction levels Average 
Optimization process solutions detected (range) objective 

(f, e0 03) function 
~ ~ ~~ 

simple GA 1 0.208 T 0.002 
Clearing (oq=O. 1 k=l) 14 [0.098 T-0.427 TI 0.014 
Clearing (oq=0.4 k=l) 4 [0.125 T-0.442 TI 0.009 

DC 20 [0.117 T-0.563TI 0.01 1 
Sharing (ov=O.l) 4 [0.103 T-0.150 T] 0.024 

RTS 20 [0.122 T-0.596TI 0.008 

Fig. 3 shows examples of uniform induction - levels 
detected with a run of RTS compared to that obtained with a 
simple GA and that corresponding to a non-optimized 
configuration. 

VI. CONCLUSIONS 

Niching methods are r o h s t  optimization techniques which 
allow multiple solutions in multimodal domains to be found. 
They can be easily coupled with GAS with only a small 
increase of the computational time resulting from the 
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Fig 3 Examples of uniform induction levels detected by a run of Restncted 
Toumament Selection (RTS) Optimal solutions are compared with that 
obtained with a simple GA and a non-optimized configuration 

computation of the distances between individuals. 
Nevertheless, this drawback is minor in relation to the 
advantages of these methods. The benefit of the detection of 
distinct optimal solutions is particularly interesting for shape 
optimization problems and inverse problems for which the 
uniqueness of the solution is not fulfilled [ 111. 
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