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A Non Linear Model for Surface Conduction 

Zie Yeo, Franqois Buret, Laurent Krahenbuhl, Philippe Auriol 

Centre de Genie Electrique de Lyon - UPRESA CNRS 5005 - ECL, BP 163,69131 Ecully Cedex (France) 

Abstract - A non linear conducting layer, at the surface of an 
insulating material, is modeled by a surface with a conductivity 
which depends on the tangential field at the interface. The 
model, formulated for 2D and axial symmetric problems, was 
embedded in a field computation software based on boundary 
elements method. The non linear equations on the conducting 
surface are discretised with one dimensional finite elements. The 
results agree with the solution of the differential equation which 
governs the potential in a simplified configuration. 

Index terms - Boundary Integral Equation Method (BIEM), 
electrostatics, surface conduction, finite elements method (FEM), 
non linear, thin layer. 

I. INTRODUCTION 

In some electrical apparatuses, the presence of a 
conducting zone modifies the potential distribution. This 
situation is met, for example, in the pollution of insulators or 
in electrical bushings [ 1, 21. In these cases, the conducting 
zone has a thin thickness and its discretization with standard 
methods may lead to numerical problems [3]. In order to 
avoid these difficulties, surface models are formulated [4-61. 
In these studies, the conducting layer is characterized by a 
constant conductivity and, therefore, has a linear behavior. In 
this paper, we propose an extension of this model to non 
linear conducting zone for 2D and axisymmetric problems. 

11. SURFACE MODEL 

In the conductive zone, with current density J,, the 
conservation of current is expressed as : 

div(J + aD I at) = 0 (1) 
D : electric induction [C.m-2] 
t : time [SI 

As the layer has a thin thickness h, we introduce the surface 
current density J, as : 

J, = J,.h ["I (2) 
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Dnl and Dn2 are the electric normal induction at each side 
of the conducting interface. We define the surface charge 
density : 

ps = Dn1 +Dn2 [c/m2l (3) 

This allows to rewrite (1) as : 

div,J, +ap,  / a t  = 0 (4) 

The surface current is related to the potential by : 

J, = -o,.gradV ["I (5 )  

In the case of anti-corona coating (electrical bushings), we 
have experimentally characterized the conductivity of the 
layer : it has been found to vary as an exponential function of 
the modulus of the tangential field ([ 11, Fig. 1) : 

CT, = oo.exp(a.E,) [SI ( 6 )  

where oo and a are positive constants. It must be emphasized 
that it is a very strong non linearity. 

1 Surf. conductivity I O O [ s ] )  Ct [m/v 

I I 

........... c2 I 10-~ I 0 

c3 I 4,46.10-' I 

.o Tangential field (kV/m) 150 

Fig. 1 : Example of linear and non-linear surface conductivities 
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Fig. 2 : BIE formulation for a dielectric area of contour L. 

111. RESOLUTION 

A. Dielectric domains. Apart from the conducting zone, 
the distribution of potential obeys Laplace's equation ; we 
write the solution in the dielectric areas and in the air under 
its integral form, using the classical boundary integra1 
equations method (BIEM [3]) : 

aG 
cL(P).V(P> = f (  V p -  G,?).dl an (7) 

L an 
where GP is the Green function and cL(P) is proportional to 
the solid angle from P to L (Fig. 2). The interface condition 
between to dielectric regions is given by (3), without surface 
charge density : 

The unknowns taken into account with this formulation are 
the potential and its two normal derivatives on the 
boundaries. The corresponding equations are 2 boundary 
integral equations (7) - one for each side of the interface - and 
the interface equation (8). 

B. Conducting intelface. In the case of a conducting 
interface, we keep the previous equations and unknowns, but 
the surface charge density (3) intervenes as an additional 
unknown. The corresponding equation is the conservation of 
the surface current (4) : 

div,(o,gradV)=dp,/at (9) 
which is a 1D differential equation if the geometry is 2D or 
axisymmetric. The finite element method is well suited to 
solve it (with the boundary mesh used for the BIE), also if os 
depends on the local field (non linear problem) : 

0 2 0  problems : 

axisymmetric problems : 

6 relaxation coefficient 

Fig 3 Flow chart for the non linear resolution 

The time derivative is replaced according to the Euler 

(12) 

and the time behavior is described with a step by step method. 
Equations (7) to (1 1) are discretized with quadratic finite 

elements and we get a linear system (time t): 

implicit method : 

dp,/dt = [p,(t+At)- p,(t)]/ At 

A,.X, = B, (13) 

where X, is the unknown vector constituted by the potential 
V, the normal derivative av ian  and the charge density at the 
next time step ps(t+At). 

Some coefficients of the matrix A depend on the 
conductivity. Then, in the non linear case, A depends on the 
solution : so the problem (at a given time step) is solved using 
a substitution method, with relaxation (Flow chart on Fig. 3). 

Iv. "EST PROBLEM 

The test problem is defined in Fig. 4. Given that the 
thickness a of the dielectric is much less than the length L of 
the device, the problem is in reality a 1-D problem, and the 
potential is the solution of [SI : 

Eav a av 
a at ax ax 

(G~.-) = 0 (2Dproblem) 

E av a av 
-r---(Gs.r-) = 0 (axisym. problem) (15) 
a at ar a r  

V = U sin(ot)  
L = 200 mm; a = 5 mm; & = 4  E,, 

Conducting surface 

Fig 4 Definition of the test problem 

If the conductivity is constant, and if the source potential is harmonic, a 
simple complex representation is used. 

where w is the weighting function. 
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Fig. 5 (a) : Companson analytic/numeric in the 2D case 

V. VALIDATION 

To test the 2D and axisymmetric BIEM/FEM step by step 
solutions, we considered successively the linear case, then the 
non-linear case. 

A. Linear case. In the linear case, the harmonic 
permanent responses for the test problem of Fig. 4 can be 
analytically expressed : 

V(x) = U.cosh[k( l+j)(L-x)]/cosh[k(l+j)L] 

V(r) = AtJo(W + A2Yo(h) 
with : k2 = o d 2 a o  in20 (16) 

with k2 = j o s h 0  in axisym. ( 17) 

and we can compare them with the numerical results of 
BEM2D, for the conductivities C1 and C2. The analytic and 
numerical results cannot be distinguished (Fig. 5).  

The axisymmetric model was also tested in comparison 
with the 3D results obtained with the software Phi3d [4]. 
Figure 6 presents for example the variation of the electric 
potential (modulus) along the pollution layer on the surface of 
an insulator : the results are in good agreement. 

In the non linear case, there is no 
analytic solution available for the test problem: we have to 
compare with the numerical solution of (14) or (15) obtained 
using a ID FEM step by step method (((FEMID >>). An 
example of time evolutions (potential, current surface 
density) is shown on Fig. 7. 

B. Non linear case. 

10000 x 

(30 BIE Method) s (") 
7000. I I I I 

20 40 60 80 100 

Fig. 6 : Comparison with 3D numerical results in the axisymmetric case. 
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Fig. 7 : Non linear case : comparison 1D12D. 
Example of evolutions in respect of time (non linear 2D case, x=270mm). 

2 or 3 iterutionshtep; 500 steps/period: > 10 hours CPU ( H P  720) 

The FEMlD and BEM2D solutions are in agreement. A 
distortion of potential and current shapes appears, due to the 
non linearity. 



2620 

VI. UTILITY OF CONDUCTING COATING 

Conducting layers are intentionally put on the insulation of 
Cu-bars, on the stator end region of some HV rotating 
machines, to improve the insulation behavior by preventing 
corona effects. We can easily understand the influence of the 
layer with the help of Fig. 8 : the sketch shows how the layer 
pushes the equipotential lines back, and thus reduces the 
electric field. We have also computed and plotted the values 
of the tangential field at the interface (configuration of Fig. 4) 
without and with the layer: the interest of the conducting 
coating clearly appears. 

Figure 9 compares the behaviors of linear (constant 

low and high voltages, respectively. For the non linear 
coating, the higher the field gets, the higher the conductivity 
becomes: the tangential field does not increase proportionally 
to the source voltage. At lOkV, the non linearity reduces the 
maximum field by a factor 4. 

conductivity C1) and non linear (conductivity C3) layers, for 30 000 

- 5 20 000 

Q E,,, > 20 kV/m 
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% 
F CONCLUSION 

We have presented a method, which allows to compute the 
electric potential and field in 2D insulating structures, in 
presence of thin layers with a field dependent conductivity. 
The numerical validation was successfully carried out. Reduction of the maximum electrical stress. 

However, the cost of the step by step procedure used to solve 
this time dependent and badly non linear problem is very 

improve it. 
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Fig. 8 : Interest of the conductive layer : 
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