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Abstract 

We propose an application of the principle of virtual work of mechanics to random 

dynamics of mechanical systems. The total virtual work of the interacting forces and inertial 

forces on every particle of the system is calculated by considering the motion of each particle. 

Then according to the principle of Lagrange-d’Alembert for dynamical equilibrium, the 

vanishing virtual work gives rise to the thermodynamic equilibrium state with maximization 

of thermodynamic entropy with suitable constraints. This approach establishes a close 

relationship between the maximum entropy approach for statistical mechanics and a 

fundamental principle of mechanics, and constitutes an attempt to give the maximum entropy 

approach, considered by many as only an inference principle based on the subjectivity of 

probability and entropy, the status of fundamental physics law. 
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1) Introduction 

The principle of maximum entropy (maxent) is widely used in the statistical sciences and 

engineering as a powerful tool and fundamental rule. The maxent approach in statistical 

mechanics can be traced back to the works of Boltzmann and Gibbs[3] and finally be given 

the status of principle thanks to the work of Jaynes[4] who used it with Boltzmann-Gibbs-

Shannon (BGS) entropy (see below) to derive the canonical probability distribution for 

statistical mechanics in a simple manner. However, in spite of its success and popularity, 

maxent has always been at the center of scientific and philosophical discussions and has 

raised many questions and controversies[4][5][6]. A central question is why a thermodynamic 

system chooses the equilibrium microstates such that the BGS entropy gets to maximum. As a 

basic assumption of scientific theory, maxent is not directly or indirectly related to 

observation and undoubted facts. In the literature, maxent is postulated as such or justified 

either a priori by the second laws with additional hypothesis such as the entropy functional 

(Boltzmann or Shannon entropy)[6], or a posteriori by the correctness of the probability 

distributions derived from it[4]. In statistical inference theory, it was often justified by 

intuitive arguments based on the subjectivity of probability[4] or by relating it to other 

principles such as the consistency requirement and the principle of insufficient reason of 

Laplace, which have been the object of considerable criticisms[5].  

Another important question about maxent is whether or not the BGS entropy is unique as 

the measure of uncertainty or disorder that can be maximized in order to determine 

probability distributions. This was already an question raised 40 years ago by the scientists 

who tried to generalize the Shannon entropy by mathematical considerations [9][10]. 

Nowadays, the answer to this question becomes much more urgent and waited due to the 

controversy and debate surrounding the development of the statistical theories using maxent 

with different entropy functionals [11].  

In the present work, we try to contribute to the debate around maxent by an attempt to 

derive maxent from a well known fundamental principle of classical mechanics, the virtual 

work principle or Lagrange-d’Alembert principle (LAP) [1][2] without additional hypotheses 

to LAP and about entropy property. LAP is widely used in physical sciences as well as in 

mechanical engineering. It is a basic principle capable of yielding all the basic laws of statics 

and of dynamics of mechanical systems. It is in addition a simple, clearly defined, easily 

understandable and palpable law of physics. It is hoped that this derivation is scientifically 
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and pedagogically beneficial for the understanding of maxent and of the relevant questions 

and controversies around it. In this work, the term entropy, denoted by S, is used in the sense 

of the second law of thermodynamics for equilibrium system. 

The paper is organized as follows. In the first section, we recall the principle of virtual 

work before applying it to equilibrium thermodynamic system to derive maxent for the 

thermodynamic entropy of equilibrium state. Then we will briefly mention a previous result in 

order to show that other maximizable entropy functionals different from the BGS forms are 

possible even for equilibrium system.  

2) Principle of virtual work 

The variational calculus in mechanics has a long history which may be traced back to 

Galilei and other physicists of his time who studied the equilibrium problem of statics with 

LAP (or virtual displacement1). LAP gets unified and concise mathematical forms thanks to 

Lagrange[1] and d’Alembert[2] and is considered as a most basic principle of mechanics from 

which all the fundamental laws of statics and dynamics can be understood thoroughly.   

LAP says that the total work done by all forces acting on a system in static equilibrium is 

zero on all possible virtual displacements which are consistent with the constraints of the 

system. Let us suppose a simple case of a system of N points of mass in equilibrium under the 

action of N forces Fi (i=1,2,…N) with Fi on the point i, and imagine virtual displacement of 

each point ir
vδ  for the point i. According to viwop, the virtual work Wδ  of all the forces Fi on 

all ir
vδ  cancels itself for static equilibrium, i.e.  

0
1

=⋅∑=
=

i
N

i
i rFW vv δδ       (1) 

This principle for statics was extended to dynamical equilibrium by d’Alembert[2] in the LAP 

by adding the initial force iiam v− on each point: 

0)(
1

=⋅−∑=
=

iii
N

i
i ramFW vvv

δδ       (2) 

                                                 
1 In mechanics, the virtual displacement of a system is a kind of imaginary infinitesimal displacement with no 
time passage and no influence on the forces. It should be perpendicular to the constraint forces. 
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where mi is the mass of the poin i and iav  its acceleration. From this principle, we can not only 

derive Newtonian equation of dynamics, but also other fundamental principles such as least 

action principle.  

3) Why maximum thermodynamic entropy ? 

We suppose that the mechanics laws are usable not only for mechanical system containing 

small number of particles in regular motion, but also for large number of particles in random 

and stochastic motion for which one has to use statistical approach introducing probability 

distribution of mechanical states. Let us first consider a canonical ensemble with equilibrium 

systems, each composed of N particles in random motion with vi
v  the velocity of the particle i. 

It will be shown that the result for canonical ensemble can be easily extended to 

microcanonical ensemble and grand-canonical ensemble. Without loss of generality, let us 

look at a system without macroscopic motion, i.e., 0
1

=∑
=

N

i
ivv .  

We imagine that the system in thermodynamic equilibrium leaves the equilibrium state by 

a reversible infinitesimal virtual process.  Let Fi
v  be the force on a particle i of the system at 

that moment. Fi
v  includes all the interacting forces particles-particles and particles-walls of 

the container. During the virtual process, each particle with acceleration ir&&
v  has a virtual 

displacement r i
vδ . The total virtual work on this displacement is given by 

ii
N

i
i rrmFW v&&vv

δδ ⋅−∑=
=

)(
1

      (3) 

Although the sum of the accelerations of all the particles vanishes, i.e., 0
1

=∑
=

N

i
irm &&v , the 

acceleration ir&&
v  on each particle can be nonzero. So in general 0

1
≠⋅∑

=
i

N

i
i rrm v&&v δ . As a matter of 

fact, we have kiiiiii ermrrmrrm δδδδ ==⋅=⋅ )
2
1( 2&v&v&vv&&v  where eki is the kinetic energy of the 

particle. On the other hand, we suppose these are no dissipative forces in the system or on the 

particles. It means that the energy of the system will not change if the system is completely 

closed and isolated. Let epi be the potential energy of a particle i subjet to the force Fi
v , we 

should have pii eF −∇=
v  and 
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pi
N

i
ii

N

i
ii

N

i
i ererF ∑−=⋅∑ ∇−=⋅∑

=== 111
δδδ vvv       (4) 

So finally it follows that 

∑−=∑ +−=
==

N

i
i

N

i
kipi eeeW

11
)( δδδδ .       (5) 

where eiδ  is a virtual variation of the total energy eee kipii +=  of the particle i.  

At this stage, no statistics has been done. The particles are treated as if they had a regular 

dynamics. As a matter of fact, for a canonical system, the random dynamics can leads the N 

particles to different microstates j with different energy Ej and probability pj (j=1,2 … w). A 

microstate j is a distribution of the N particles over the one particle states k with energy εk 

where k varies from, say, 1 to g. For classical discernable particles, g can be very large and k 

undergoes continuous variation from 1 to g. We can imagine N identical particles distributed 

over the g states. A microstate j is a combination of g numbers nk of particles over the g states, 

i.e., j={n1, n2, … ng, }. For a given j with probability pj, the virtual energy variation jEδ  due 

to the virtual work Wδ  can be given by δεδ k
g

k
kj nE ∑=

=1
 since a work does not affect the 

population. Finally, the sum ∑
=

N

i
ie

1
δ  of the energy variation of each particle can be written as 

the statistical average (over different microstates j) of the energy change jEδ  of the system 

due to the virtual displacements, i.e.  

EEpeW j
w

j
j

N

i
i δδδδ −=∑−=∑−=

== 11
. 

     (6) 

This is a well known relationship in statistical mechanics. Here we have derived it from the 

microscopic consideration of virtual work on each particle of the system. A simple calculation 

shows that ∑−∑=∑
===

w

j
j jj

w

j
jj

w

j
j pEEpEp

111
δδδ  which means  

QEWE δδδδ −=−= .      (7) 

where ∑=
=

w

j
jj EpE

1
 is the total average energy with a virtual change Eδ  and ∑=

=

w

j
j jpEQ

1
δδ  is 

a virtual heat transfer. This is an expression of the first law of thermodynamics in the virtual 
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sense for canonical ensemble. If we consider a reversible virtual process, we have 
β
δδ SQ =  

where Sδ  is the infinitesimal virtual change of the thermodynamic entropy and β  the inverse 

absolute temperature according to the second law of thermodynamics.  

Now let us use LAP in Eq.(2), it follows that 

0=−= ESW δ
β
δδ . 

     (8) 

Then we should add the constraint due to the normalization 1
0

=∑
=

w

j
jp  into the variational 

expression with a Lagrange multiplier α , the viwop in Eq.(8) becomes  

0)(
00

=∑−∑+
==

EppS j
w

j
j

w

j
j βαδ  

     (9) 

which is the variational calculus of maxent applied to thermodynamic entropy for canonical 

ensemble. Note that at this stage the entropy functional S(pj) is not yet determined. Note that 

in Eq.(9), the average energy as a constraint for the maximization of entropy S is a natural 

consequence of LAP, in contrast to the introduction of this constraint in the inference theory 

or inferential statistical mechanics[4] by the argument that an averaged value of an observable 

quantity represents a factual information to be put into the maximization of information in 

order to derive unbiased probability distribution[5]. 

For microcanonical ensemble, the system is completely closed and isolated with constant 

energy so that 0=Eδ . When the virtual displacements occur, the total virtual work would be 

transformed into virtual heat such that Eq.(7) becomes 0=− QW δδ . According to LAP 

0=Wδ , Eq.(9) reads 

0)(
0

=∑+
=

w

j
jpS αδ  

     (10) 

which necessarily leads to uniform probability distribution over the different microstates j, 

i.e., pj =1/w whatever is the form of the entropy S. Note that here the uniform distribution over 

the microstates is not an a priori assumption, but a consequence of LAP.  

For grand-canonical ensemble, according to the first law NWQE μδδδδ +−= , Eq.(7) 

should be NQEE μδδδδ −−= , where μ is the chemical potential and N the average particle 
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number of the system given by ∑=
=

w

j
jj NpN

1
 with Nj the particle number of the microstate j. 

According to LAP, we have 

0)(
000

=∑+∑−∑+
===

NpEppS j
w

j
jj

w

j
j

w

j
j βμβαδ  

     (11) 

which is the usual calculus of maxent for grand-canonical ensemble. 

The conclusion of this section is that, at thermodynamic equilibrium, the maxent under 

suitable constraints is a consequence of the equilibrium condition LAP of mechanical systems 

subject to random motion. From the above discussion, one notices that maxent can be written 

in a concise form such as 

0=Eδ .      (12) 

We stress that in the above derivation, the only essential assumptions or fundamental 

physical hypotheses used before the LAP are the first and second laws of thermodynamics for 

equilibrium system and reversible process. Hence the three derived expressions of maxent 

from Eg.(9) to (11) for the three statistical ensembles are in principle valid for all systems for 

which the first and second laws are valid, whatsoever is the form of the entropy S. The 

maximizable entropy form is an issue we will briefly discuss below.  

4) Maximizable entropy functionals 
In general, the entropy functionals are given either as a first hypothesis or from physical 

or mathematical considerations about the entropy property. The standard approach in 

statistical mechanics is to use maxent for given entropy in order to derive the probability 

distribution. As a matter of fact, in the standard textbook, the only entropy form widely used 

in BGS is the Shannon entropy. This is in addition a claim of uniqueness of the Shannon 

entropy as maximizable entropy to be used in maxent[4]. Of course this uniqueness claim 

becomes questionable when other entropy forms are used with maxent for systems in 

equilibrium or out of equilibrium.  

In order to contribute to this discussion and to see the possible entropy forms, we will 

inverse the reasoning of maxent which is to yield probability distributions by maximizing 

entropy. Here we will derive the entropy forms from known probability distribution by a 

definition of entropy implying maxent. This is possible thanks to the Eq.(7) which is nothing 

but  
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)( EES δδβδ −= .      (13) 

This is just the definition of thermodynamic entropy for reversible process of canonical 

system. Obviously, this definition entails maxent if 0=Eδ . But before application of LAP or 

0=Eδ , let us write Eq.(13) as follows 

pES j

w

j
jδβδ ∑=

=1
 

     (14) 

which will enable us to derive the entropy form directly from probability distribution.  

It is well known that ep E
j

jβ−∝  is a well known and confirmed distribution of 

thermostatistics for canonical ensemble. This distribution can be directly derived from the 

Maxwell velocity distribution of dilute gas if we suppose additivity of energy for the particles 

in the gas. As shown in many textbook, if ep E
j

jβ−∝ , it is easy to derive the Gibbs-Shannon 

entropy using Eq.(14) (with Boltzmann constant kB=1): 

ppS j

w

j
j ln

1
∑−=
=

 
     (15) 

whose optimization by 0=Eδ  obviously gives ep E
j

jβ−∝ . 

Another possible probability distribution for canonical system in thermodynamic 

equilibrium is [ ]aj
a

j Ea
Z

p
1

11 β−=  derived for finite system in equilibrium with finite heat 

bath where 
23

2

2 −
=

N
a  and N2 is the particle number of the heat bath[7]. It was proved[8] 

that the entropy defined by Eq.(13) is the Tsallis one ∑
−

−
−=

−∑
−=

+

j

q
jjj

a
j

q q
pp

a

p
S

1

11

 where 

q=1+a and 1=∑
j

jp . Obviously, when N2 is very large (a thermodynamic limit), a tends to 0 

or q tends to 1. In this case, Sq becomes the Shannon one and the probability distribution 

becomes exponential. The maxent applied to Sq naturally gives [ ]aj
a

j Ea
Z

p
1

11 β−= . This 
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means that the Shannon entropy form as maximizable one is non unique and subject to the 

condition such as additivity and thermodynamic limit in this investigation.  

As a mathematical study, we have tried to see other maximizable entropy forms with other 

probability distributions[8]. In this case, the entropy, as a generic measure of probabilistic 

uncertainty (not only the thermodynamic entropy), is defined by )( xxS δδβδ −=  where x is a 

random variable of a probability distribution p (xj) and β  is a generic parameter. We have 

obtained the maximizable entropies 
γ

γ

γ 11

111

−

−∑
=

−

j
jp

S  for the distribution x
Z

p jj
γ−=

1  (Zipf 

law or large xj Lévy flight), and ∑ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−
−

+
−=

−+

j

jj pp
S

κκκ

κκ

κ 112
1

11

 for ( ) κ
κκ

1
221 xxp jj ++=  for 

the κ-statistics[12]. 

5) Concluding remarks 
This work shows that the maximum entropy principle has a close connection with the 

fundamental principle of classical mechanics, the principle of virtual work, i.e., for a 

mechanical system to be in thermodynamics equilibrium with maximum entropy, the total 

virtual work of all the forces on all the elements (particles) of the system should vanish. 

Indeed, if one admits that thermodynamic entropy is a measure of dynamical disorder and 

randomness, it is natural to say that this disorder must get to maximum in order that all the 

random forces act on each degree of freedom of the motion in such a way that over any 

possible (virtual) displacement, the work of all the forces is zero. In other words, this 

vanishing work can be obtained if and only if the randomness of the forces is at maximum 

over all degree of freedom allowed by the constraints to get stable equilibrium state.  

To our opinion, the present result is helpful not only for the understanding of maxent 

derived from a more basic and well understood mechanical principle, it also shows that 

entropy in physics is not necessarily a subjective quantity reaching maximum for correct 

inference, and that maximum entropy is a law of physics but not merely an inference 

principle.  
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After finishing this paper, the author became aware of the works of Plastino and 

Curado[13] on the equivalence between the particular thermodynamic relation ES βδδ =  and 

maxent in the derivation of probability distribution. They consider the particular 

thermodynamic process affecting only the microstate population in order to find a different 

way from maxent to derive probability. The work part is not considered in their work. Their 

analysis is pertinent and consequential. The present work provides a substantial support of 

their reasoning from a basic principle of mechanics.   
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