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Equilibrium set investigation using bicausality

Eric BIDEAUX∗,1, Wilfrid MARQUIS-Favre∗ and Serge SCAVARDA∗

SUMMARY

The introduction of the bicausality concept in the bond graph language has allowed new analytical method-
ologies, for instance in the context of model inversion, mechatronic system sizing and control. The bi-
causality concept is here applied for solving the equilibrium state of a mechatronic system. We propose
a new method, which permits to determine the size of the equilibrium set and the algebraic system to be
solved. The proposed method is applied to linear systems in a first step, and a generalization is also given
for some non linear system. Several examples are included in order to explain the method.

Keywords: Bond Graph, bicausality, equilibrium, sizing, design, inverse problem..

1. INTRODUCTION

Since the introduction of the bond graph principles, the interest of bond graph was
shown as the basis of complex and pluridisciplinary system modelling [1]. Research
was also carried out to develop a system analysis using the graphic support of bond
graph and the concept of causality. The causal loops order studied by Van Dixhorn
[2] shed light on the equation organisation in models. Karnopp [3], Breedveld [4],
Dauphin-tanguy [5] and Cornet [6] introduced several procedures based on causal
assignment to determine system dynamic properties and to assist the control law
synthesis. Recently, the bicausality concept introduced implicitly by Cornet and
Lorenz [7] and more formally by Gawthrop [8, 9], has initiated a new philosophy
in regards to a bond graph model. The essential concept of bicausality is that the
causal stroke can be split into two bicausal half-strokes; this concept has established
new rules for causal assignment and made a new range of problems accessible.
This principle has been successfully applied in design or sizing problems by Fotsu
Ngwompo [10, 11] and in control synthesis by Gawthrop [12, 13]. Causality has to be
regarded as a graphical principle to check the physical validity and the mathematical
complexity of a given problem. The concept of bicausality also permits the searching
of what information is required to solve a problem and which mathematical properties
are needed to keep a physical meaning for the solution. A major contribution of the
1Address correspondance to: Eric Bideaux, Laboratoire dAutomatique Industrielle, INSA de Lyon, 25 Av-
enue J. Capelle, F-69621, Villeurbanne Cedex, Email : eric.bideaux@insa-lyon.fr
∗Laboratoire dAutomatique Industrielle, Institut National des Sciences Appliques de Lyon, France.
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bicausality concept is that it settles reliable means to study inverse problems.
Bicausal half strokes indicate the fixed or known variables of the bond and therefore
determine the way to solve the modeled problem. This approach is also consistent for
normal causality where it is still possible to split the causal stroke in one effort and
one flow half causal stroke. All these aspects, including the bicausality assignment
and the bicausal elements are part of the bond graph modeling package MS1 (Lorenz
Simulation) [14, 15, 16], which is developed in close cooperation with the authors for
all aspects related to bicausality.
In this paper, the bicausality concepts are used to solve the problem of the existence
and the determination of the equilibrium set of a system using a bond graph model. If
we consider a system defined by its state model (1), where x is the state vector and
u the input vector, the resolution of the equilibrium consists in solving the algebraic
system (2).

dx
dt

= f(x, u) with x ∈ Rn and u ∈ Rm (1)

E = {(xe, ue), f(xe, ue) = 0} (2)

Using the bond graph representation of a system, P. Breedveld [17] has proposed a
procedure to determine the equilibrium state. At steady state, the energy stored in
each storage element is constant, that is to say the values of the energy variables are
constant and the values of their derivatives are zero. On the bond graph, the efforts
(respectively the flow) of the I-elements (respectively the C-elements) have then to be
zero, and P. Breedveld proposes to replace the I-elements by null effort sources and
the C-elements by null flow sources.
There are three limitations using this approach. First, the condition of use of this
procedure is that all the storage elements in the bond graph in integral causality have
to be in integral causality. This means that there is no static dependency between
energy storage. Second, after replacing the storage elements by the corresponding
sources, a causal conflict may appear and the proposed procedure is no more valid.
Finally, if the causality assignment is possible, all the inputs values have to be known
in order to determine the steady state. It means that the values of all sources and
modulation signals have to be fixed, although it is rarely the case in practice.
Due to these important limitations, the purpose of this paper is to complete the pro-
cedure proposed by P. Breedveld and to show the advantages of using the bicausality
for the resolution of the equilibrium set.
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2. NATURE OF THE STEADY STATE PROBLEM

As previously introduced, the P. Breedveld’s procedure proposes to replace all the
I-elements by null effort sources and the C-elements by null flow sources. At this step
if there is no causal conflict and if all the inputs (sources and modulation signals) are
known, it is possible to determine the output values (detectors) at steady state.
First of all, we can remark that this procedure leads to a single solution, if it exists,
corresponding to calculation of the steady state values of the energy storage elements
being given the input values. But usually, it is interesting to find the dimension of the
solution because it shows how many state variables and input variables have to be
fixed in order to determine an equilibrium point. The set of known variables or more
generally the variables, for which values can be fixed, are strongly depending on the
problem that has to be solved. However the problem may be to determine the steady
state from given input values, it is also very common in control or design context
to search the value of a source or an input, which allows a specific steady state to
be reached. In this last case, the problem can be interpreted as an inverse problem
[18, 19].
Let us consider a time invariant linear system represented by its state equation
(3). In this case, the equilibrium set is defined by equation (4). An equilibrium
point is then a solution of a linear algebraic system, which unknowns are(xe, ue).
From linear algebra analysis, the dimensionq of the solution is defined by equation
(5). Therefore, the values ofq variables in a subset have to be fixed in order to
completely define a specific equilibrium point. It is generally not possible to choose
any setEobj and the right decision has to be done in order to find the equilibrium state.

dx
dt

= A · x + B · u with x ∈ Rn and u ∈ Rm (3)

E = {(xe, ue), A · xe + B · ue = 0} (4)

q = (n + m)− rank(A
...B) (5)

Although the rank of[A
...B] is generally not calculated, one may remark that this

rank is always greater or equal to the rank of the state matrix A (Eq.6). This
interesting property shows that dynamic dependencies in the system may lead
to a greater dimension of the equilibrium set (Eq.7), and also that the input loca-
tion may only decrease this dimension by decoupling the equations of the state matrix.

rank(A
...B) ≥ rank(A) (6)
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Fig. 1. Schema of a mass-spring system

q ≤ (n + m)− rank(A) (7)

Our purpose is here to study the equilibrium problem using bond graph modeling.
The previous remarks show that an important aspect of this problem is to determine
the dynamically dependent state or energy variable in the system [20]. We will show
that this can be graphically achieved using causality and bicausality. As this problem
has to be put in a general context of system control, this work includes also models
with bond graph and signal subsystems.
According to P. Breedveld’s procedure assumptions, a single equilibrium point does
not exist if there is a causal conflict when changing storage elements into their cor-
responding zero source. In fact, these causal conflicts show that there are dynamic
dependent storage elements in the system, and therefore the dimension of equilib-
rium set is greater or equal to the number of inputs in the system. An infinity of
equilibrium points exists and the solution is a space, whose directions is a subset of
Eobj ⊂ (x ∪ u). As the rank of the system state matrix is determined from the num-
ber of storage elements staying in integral causality on the bond graph in derivative
causality [20], we can conclude that the existence of an equilibrium point can be de-
termined by solely applying derivative causality to the bond graph without changing
any elements. If any storage element stays in integral causality in the bond graph in
derivative causality, there is a dynamic dependency and the rank of the model state
matrix is no more equal to its order. This last case is not developed in this work, how-
ever the consequences are shortly examined (section 5).
Example:
The mass-spring system (Fig.1) shows a simple case in which it is not possible to
conclude using the P. Breedveld’s procedure (Fig. 3). The dimension and the order of
the model are 5, as there are the 5 storage elements in integral causality in the bond
graph in integral causality. The rank of the system state matrix is only 4, as there is one
storage element staying in integral causality in the bond graph in derivative causality
(Fig. 2). Using equation (7), we can conclude that the dimension of the equilibrium
set is less or equal to one.
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Fig. 3. P. Breedveld’s procedure

3. USING BICAUSALITY TO INTRODUCE CONSTRAINTS

Bicausality allows splitting the causal stroke in two parts, each one being related to
either flow or effort power variable. Using this facility, it is possible to define 3 types
of sources and 3 types of detector:

r SeDf : Effort source - flow detector (equivalent to classical effort source)r SfDe : Flow source - effort detector (equivalent to classical flow source)r SeSf : Effort and flow sourcer DeSf0 : Effort detector - zero flow source (equivalent to the classical effort detector)r DfSe0 : Flow detector - zero effort source (equivalent to the classical flow detector)r DeDf : Effort and flow detector

Apart from the double source and detector, which constitute new elements, the other
ones are equivalent to a classical bond graph elements with a slight distinction, which
consists in giving a meaning to all the power variables on the bond. From a mathe-
matical point of view, all the detected variables correspond to all the variables, which
have to be evaluated; they are the outputs or unknowns of the mathematical problem.
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Respectively, all the source variables represent all the variables, which have to be im-
posed; they constitute the inputs or known values of the mathematical problem.
According to the previous remark, these elements can be efficiently used to clarify the
procedure enabling the research of the equilibrium set. Whereas the P. Breedveld’s
procedure was only determining the equilibrium point being given the source element
values, bicausality permits to use any variable in the setEobj as input of the problem.
If the dimension of the equilibrium set is greater or equal to one, double source el-
ements can be used to force specific steady states for one or more energy variables,
instead of imposing input or source values. An I-element will then be replace by a
double source, where first, the effort is set to zero in order to impose the steady state
condition to the element and second, the flow has the value corresponding to the de-
sired steady state. The C-elements may be replaced similarly but in this case the flow
of the double source element is set to zero, and the effort has the value corresponding
to the desired steady state.
The use of bicausality concept and inverse problem methodology will enable right sets
of variables to be chosen. Section 6 will detail this procedure.

4. CONTROL VARIABLES

For control purposes, some auxiliary signal integration may be required. They have
to be carefully defined at the modeling stage as they may introduce dependency with
energy storage elements. We assume in the rest of the paper that these auxiliary
integrations definep independent equations. The auxiliary signal integrations have to
be connected to either junctions, or detectors, or other signals in the bond graph. In
the state model, they introduce thenp equations (8):

d
dt

xi = f(x, u) with i ∈ {1, . . . , p} (8)

(
d
dt

xi

)

e

= f(xe, ue) = 0 (9)

Steady state condition imposes relation (9), which may be introduced in the bond
graph by splitting the integrators and by introducing the relation corresponding to
steady state at input and output of the integration. In order to impose these conditions
on the bond graph, we propose first, to replace the integrator input by a zero signal
source and also to reverse the corresponding signal bond, and second, to replace the
integrator output by a signal source corresponding to the steady state value. If the
integrator input is directly connected to a detector or a junction, zero double sources
have to be used. There are two reasons for this replacement. In the one hand, one
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of the power variables of the zero double source element has to impose the steady
state condition similarly to energy storage elements do. In the other hand, it is also
necessary to force the other power variable to zero because this new source is not a
physical energy source but a constraint, and also because this variable has no meaning
and should not have an effect on the system steady state equations.
Another consequence of the use of a double source is that one of the power sources
has to be changed into a double detector DeDf in order to keep the dimension of the
input vector and then the dimension of the equilibrium set. The choice of the source
to change into a double detector will be discussed in section 6.
When all the integrators have been replaced to introduce the steady state conditions,
each remaining algebraic relation in the signal part must be considered (9). For each
relation, one of the variables has to be chosen as a new output of the relation, whereas
the other ones will stay inputs. This choice must be done according to the problem to
be solved and also according to the bond graph obtained at the end of the steady state
procedure. In some non linear cases, the algebraic equation (9) is implicitly defined
and a more complex procedure would be required to obtain explicit equations.
Example:
The previous schema (Fig.4) is illustrating the proportional position control of a
pendulum actuated by a DC-motor. On the physical part of the bond graph (Fig.5), it
can be determined that the rank of the system state matrix is 2 as there is no storage
element in integral causality in the bond graph in derivative causality. Including the
signal part, there are 3 equations (2 energy state variable + 1 signal integration) and 4
variables(i, ω, θ, θ0) corresponding to 3 state variables and one input signal variable.
A single equilibrium point can be calculated when one of these variables is given. In
other words, the equilibrium set dimension is one.
First, the integrator input is replaced by a zero double source as it is directly connected
to a 1-junction. The procedure is correctly introducing the fact that the equilibrium
is corresponding to a constant angular position, which also implies a zero angular
velocity. The consequence is that bicausality can no more be used to force a specific
value for the energy variable related to the I-element (p2) at steady state as a conflict
of causality would occur.
The integrator output is then replaced by a signal source corresponding to the
equilibrium angular positionθe. In order to solve the algebraic relation (10), two of
the related variables(Ue, θ0e, θe) have to be supplied.

Ue −Kp(θ0e − θe) = 0 (10)

One of the energy sources has now to be replaced by a double detector to keep
the dimension of the input vector. If the source corresponding toUe is chosen, it
becomes a DeDf. Assuming thatθe is known, the remaining energy storage elements
can be replaced by the corresponding zero source-detector: the I-elements(p1, p2)
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:J

:R

:k

-mgℓ sin(θθθθ)θθθθθθθθ0000 + -
∫Kp

:L :J

:R

:k

-mgℓ sin(θθθθ)θθθθθθθθ0000 + -
∫KpKp

:L

Fig. 5. Bond graph in integral causality

:R

:k

θθθθeθθθθ0000e
+

1/Kp

+ θθθθe

: (0,0)

ωωωωeie

Ue

: Cre

(Ue, ie)

- mgℓ sin(θθθθe)
:R

:k

θθθθeθθθθ0000e
+

1/Kp

+ θθθθe

: (0,0)

ωωωωeie

Ue

: Cre

(Ue, ie)

- mgℓ sin(θθθθe)

Fig. 6. Determining the equilibrium point being givenθe

are changed into DfSe0. The implicit relation (10) becomes an explicit relation and
θ0e can be computed using equation (11). The obtained bond graph (Fig.6) permits
to compute the angular velocityωe and the currentie at steady state according to
equation (12).

θ0e = Ue/Kp + θe (11)





Ue −Kp(θ0e − θe) = 0
ie = mg`/k · sin(θe)
θ0e = Rmg`/kKp · sin(θe) + θe

(12)
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In this previous example, several calculation schemes could have been developed.
Using the same procedure,(ie, θe, ωe) can be computed knowing the control input
θ0e; this is corresponding to a control problem. Moreover, instead of propagating the
bicausality towards the effort sourceU , the other effort sourceCr may also be used. In
fact, any variables in the subset(ie, θe, θ0e) can be chosen as the known variable and
used to compute the other ones. Remarks that the steady state value forωe is fixed to
zero (as obviously expected) because of the zero double source. The procedure is then
consistent as it not possible to freely set its value. Trying to force a specific equilibrium
state forωe will require this element to be replaced by a double source element, and
consequently will lead to a causal conflict as two bicausal bonds will be imposed to
the same junction.

5. DEPENDENT ENERGY VARIABLES

Dependency between energy variable may occur and have to be carefully examined
when a specific steady state is searched.

Statically dependent energy variable :During the modeling stage, dependent energy
variables may be defined in the system and they are associated to storage elements
in derivative causality on the bond graph in integral causality [20]. The cause of the
derivative causality may be related to an energy source imposing the co-energy vari-
able behavior but more generally, it is corresponding to a dependency between energy
variables. A zero order causal loop will indicate the dependent variables and is usu-
ally possible to choose any of the energy variables of the causal loop as the dependent
variable.
One possibility is then to simplify the bond graph by modifying its structure and de-
termining the equivalent energy storages. However, the previous solution is not abso-
lutely necessary and especially when the steady state is researched. At steady state,
any dependent energy storage introduces a null power in the system because its power
variable is computed from the derivative of the chosen independent energy variable.
A dependent I-element (respectively dependent C-element) is then replaced by a zero
effort source - flow detector DfSe0 (respectively a zero flow sources - effort detector
DeSf0). An important remark is that these dependent elements should not be used as
steady state constraints and be replaced by double sources because of the dependency
to another energy variable.

Causal conflict in the equilibrium bond graph :When the bond graph in derivative
causality presentsnD storage elements, which stay in integral causality, the rank of the
model state matrix is no more equal to its ordern = nI [20]. This case corresponds
to causal conflict in the P. Breedveld’s procedure. These conflicts may occur due to
causal paths with sources or other storage elements. From a mathematical point of
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view, it corresponds to the existence ofnD null eigenvalues. It indicates that there
arenI dynamically independent variables, and that the model order isnI . It is then
necessary to suppressnD equations in order to obtain a full rank model.
When the causal conflicts occur due a causal path with a source element, it can result
in a non-equilibrium case if the equilibrium condition of the storage element can not
be verified The values of the considered sources have to be either equal to zero or set
to zero through modulation or modulated elements as transformer or gyrator. However
the dynamic dependency is broken by the source location, and the rank of the matrix

[A
...B] is greater than the rank of the state matrixA.

Some storage elements may stay in integral causality due to dependency with other
storage elements and not from source location. It indicates that these elements have
independent initial conditions but that there is an algebraic relationship between the
states (energy variables) of the elements. It implies that the steady state will be related
to the initial conditions of the concerned storage elements, that is the initially stored
energy in the causal loop. In the contrary to the previous case, the dependency between

equations in the state matrix will remain and the rank of the matrix[A
...B] will not

increase. To determine the equilibrium, all the causal loops with other storage elements
have to be identified. Within these storage elements, only one can introduce the steady
state using the adequate source (Se for C-elements and Sf for I-elements); the other
ones are left in derivative causality. It is then possible to solve the equilibrium problem.

6. IMPOSING STEADY STATE CONDITION

The dimension of the equilibrium set indicates the number of variables to know in
order to define a specific equilibrium point. According to the problem to be solved,
the set of known variables may vary. The problem can be either to determine the
inputs to obtain specific values for the outputs, or to define the energetic state reached
by the system being given the inputs, or any combination of the previous case. This
approach is very close to a design problem as defined by R. Fotsu-Ngwompo et al
[18, 19]. In the general case, it is not possible to choose any subset of state variables
and inputs as known variables. Firstly, the number of variables to impose is limited
by the dimension of the equilibrium set, and secondly, some combination of imposed
variables may introduce causal conflicts. Indeed, if the considered storage element
is related to causal conflicts due to sources or to zero order causal loops in the bond
graph in derivative causality, a specific procedure has to be used. The concepts of
bicausality and input-output causal path are here useful to determine if the chosen
subset is adequate to solve the steady state problem.
If the power variable of an energy source or a modulation variable is chosen as a
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known variable, there is no consequence on the bond graph. But if it is a co-energy
variable, 2 conditions are introduced at the same place on the bond graph: the equi-
librium condition and the steady state value. Although it is possible to introduce this
constraint on the bond graph using the adequate double source (SeSf0 for a C-element
and a SfSe0 for an I-element), this requires also to introduce double detectors. Either
energy sources, or a modulated elements (in fact, the control variable) may be used as
the new outputs. But any choice is not adequate. A causal path between the imposed
variable (the steady state of the co-energy variable) and the input to compute have to
exist in the bond graph in integral causality. Any input variable which is linked by
a causal path with the considered co-energy variable in the bond graph in integral
causality can be chosen.
Considering the research of a specific equilibrium point, the number of equilibrium
states that may be imposed to energy storage elements is limited by the dimension
of the equilibrium set. This case is naturally corresponding to an inverse method as
some inputs of the system become outputs. In order to verify if the choice of a subset
of imposed steady states leads to a solvable system of equations, a set of disjoint
causal paths have to exist in the bond graph in integral causality between the imposed
co-energy variables and the outputs to compute. The causal loops which are related
to storage elements that stay in integral causality in the bond graph in derivative
causality (as indicated in section 6), have also to be taken into account.
If a set of disjoint causal path does exist, the bicausality can be assigned from the
different double sources SeSf towards the double detectors DeDf. The new system
to solve can be obtained if it is still possible to complete the causality with the
assignation of derivative causalities to the rest of the bond graph. Otherwise it shows
that the choice is not adequate as causality conflicts will take place.
Example:
Let us consider the bond graph (Fig.7) representing a load driven by two DC-motors
coupled by a differential described on figure 7. As one storage element is in derivative
causality in the bond graph in integral causality (Fig.8), the order of the model is
5. Applying derivative causality, we show that the system state matrix rank is equal
to the model order, that is 5. The dimension of the equilibrium set is then 2, and
consequently, two variables have to be known to define a specific equilibrium point.
If the problem is to compute the values of the sources in order to obtain a specific
equilibrium state of the system, only two energy storage elements can impose their
steady state to the system. Figure 8 shows a set of disjoint causal paths from the
two effort sources towards the co-energy variables of a couple of energy storage.
Some other sets of disjoint causal paths can be identified on the bond graph, but for
example, it is not possible to choose as imposed state the couple constituted by the
C-element and the I-element (ω), or by the I-elements (ω) and the I-element (ω1). In
these two cases the causal paths are not disjoint and causal conflict would occur if
they were used.
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The equilibrium bond graph (Fig.9) is deduced from the proposed procedure by
substituting the chosen storage elements by double sources SeSf imposing the steady
state and the equilibrium condition, and propagating the bicausality towards the effort
sources, which are replaced by double detectors DeDf. The other storage elements
are replaced by the adequate zero source-detector and finally, the causality is assigned
to the rest of the bond graph. The obtained bond graph gives the calculation scheme
(Eq.13), which expresses the equilibrium point as a function of the imposed steady
state values.





u1e = R1 − k2/k1 · i2e + k1 · ω1e

u2e = R2 · i2e + k2 · ω1e

i1e = k2/k12 · i2e

qe = k2/k · i2e

ω2e = 0

(13)



13 EQUILIBRIUM SET INVESTIGATION USING BICAUSALITY

: R1
: k1

: R2
: k2(U2e, i2e)

ωωωωe

Fe

ωωωω2e

: (0, ωωωω1e)

: (0, i2e)

(U1e, i1e)
i1e

: R1
: k1

: R2
: k2(U2e, i2e)

ωωωωe

Fe

ωωωω2e

: (0, ωωωω1e)

: (0, i2e)

(U1e, i1e)
i1e

Fig. 9. Equilibrium bond graph

7. EQUILIBRIUM PROCEDURE

From the previous sections, a global procedure can be defined to determine first the
dimension of the equilibrium set, and second a specific equilibrium point.

1. Determine the ordern of the model, which is equal to the numbernI of storage
elements in integral causality in the bond graph in integral causality.

2. Impose the equilibrium conditions to thep integrators in signal part and assign the
derivative causality to the bond graph.

3. Determine the rankr of the system state matrix in steady state, which is equal
to the difference betweennI and the numbernD of storage elements that stay in
integral causality in the bond graph in derivative causality.

4. Identify the causal paths between the storage elements in integral causality and
sources in the bond graph in derivative causality. For each element, check if there
is a modulated transformer or gyrator on one of the paths or if it is possible to
control the value of the sources. Otherwise the equilibrium cannot exist. Mark the
chosen loops.

5. Identify the causal loops between the storage element in integral causality in the
bond graph in derivative causality and other storage elements. Choose the depen-
dent storage element within the concerned elements of the loops and mark the
loops.

6. From point 3, 4, 5 determine the rank of the matrix and the dimension of the equi-
librium set.

7. According to the researched equilibrium point, define the storage elements, for
which the steady state will be known.

8. On the bond graph in integral causality, determine a set of disjoint input-output
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causal paths, where the inputs are the power variables of the controllable sources
and/or the modulation signals, and the outputs are the co-energy variables to be im-
posed at steady state and/or the power variables corresponding to signal integration
and imposing constraints at junctions. The marked causal paths and causal loops
corresponding to step 4 and 5 have to be taken into account.

9. If there is at least one set of disjoint input-output causal paths, replace the storage
elements where the steady states and/or constraints are imposed by double sources
SeSf, and the chosen sources by double detectors DeDf. Propagate the bicausality
between the SeSf and the DeDf or the modulated elements. Introduce the resolu-
tion of the dependent storage elements corresponding to step 4 and 5. Assign a
derivative causality to the rest of the bond graph.

10. If there is a causal conflict, try another set of disjoint input-output paths. If there
is no other set of disjoint input-output paths, the subset of imposed variables is not
adequate for solving the equilibrium.

11. On the bond graph in derivative causality, replace the storage elements in derivative
causality by the adequate zero source-detector (DeSf0 for C-elements and DfSe0
for I-element) and assign causality to the rest of the bond graph. Solve the system
using the orientation of the characteristic relations defined by the causal assign-
ment.

8. CONCLUSION

Based on causal analysis and the use of bicausality concepts, this paper should com-
plete the Peter Breedveld’s approach for solving equilibrium problems. The existence
and the dimension of the equilibrium set are only determined from a causal analysis of
the bond graph. Then a complete procedure is proposed and allows a specific equilib-
rium point to be determined, being given either input signals, or energy source value,
or specific steady states of energy storage elements. The adequacy of the chosen subset
of known variables can be easily checked before computing the equilibrium point. The
developments introduced in this paper can naturally be extended to systems with mul-
tiport elements [21] and with non linear elements. In these cases, the possible causal
and bicausal assignments must be checked carefully before applying the procedure.
The research of equilibrium points is usually considered as straightforward problem
as it is only the starting point before linearizing the model. Nevertheless, it can be
useful to have a correct value of an equilibrium point to define good initial conditions
for complex simulations. The study of the steady state is also generally the first step of
a system design, and for this purpose, the proposed procedure may show many advan-
tages. Actually, any parameter to size can be considered as a variable and introduced
as a signal input in the bond graph. Determining a specific equilibrium point can then
be used to compute this parameter. To our point of view, that is in this context the
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proposed procedure will show many advantages over other methods.
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5. Dauphin-tanguy G. et al: Modélisation des systèmes physiques par bond graphs: Ouvrage Collectif,
Editions Masson, Paris, 1999.

6. Cornet A., Lorenz F.: Equation Ordering Using Bond Graph Causality Analysis:IMACS Annals of Com-
puting and Applied Mathematics: Vol.3, Modeling and Simulation of Systems, Baltzer, Basel, 1989,
pp.55-58.

7. Cornet, A., Lorenz F.:Equation Ordering Using Bond Graph Causality Analysis:12th IMACS World
Congress, Vol. 1, Paris, pp. 43-46.

8. Gawthrop P.J.: Bicausal bond graphsProceedings of ICGBM’95, Las Vegas, pp. 83-88.
9. Gawthrop, P.J.: Physical Interpretation of Inverse Dynamics Using Bicausal Bond Graphs:Journal of

The Franklin Institute, Vol. 337, 2000, pp.743-769.
10. Fotsu-Ngwompo, R., Scavarda, S., Thomasset, D.: Inversion of linear time invariant SISO systems

modeled by bond graphJournal of the Franklin Institute, Vol. 333B, n2, pp. 157-174.
11. Fotsu-Ngwompo, R., Scavarda, S.: Dimensioning Problems in System Design Using Bicausal Bond

Graphs:Simulation Practice and theory, Vol. 7, 1999, pp. 577-587.
12. Gawthrop, P.J.: Control system configuration: Inversion and bicausal bond graphs:Proceedings of

ICGBM’97, Phoenix, pp. 97-102.
13. Gawthrop, P.J., Ballance, D.J., Dauphin-Tanguy, G.: Controllability Indicators from Bond

Graphs:Proceedings of ICGBM’99, San Francisco, pp. 101-107.
14. Lorenz, F., Erhard, P.: MS1: A Multi-Formalism Modeling and Simulation Environment:Proceedings

of ICGBM’97, Phoenix, Oct. 1997, pp. 192-196.
15. Lorenz, F.: New Features in MS1:Proceedings of ICGBM’99, San Francisco, 1999, pp. 169-174.
16. MS1: Lorenz Simulation: http://www.lorsim.be
17. Breedveld, P.C.: Physical systems theory in terms of bond graphs: Ph.D. thesis, Twente Univ. of Tech-

nology Enschede, The Netherlands, ISBN-n90-9000599-4, 1984, 201p.
18. Fotsu-Ngwompo, R., Scavarda, S., Thomasset, D.: Physical Model-based Inversion in Control Systems

Design Using Bond Graph Representation. Part 1: Theory: :Proceedings of the IMECHE Part I, Journal
of Systems and Control Engineering, Vol. 215, n2, 2001, pp. 95-103.

19. Fotsu-Ngwompo, R., Scavarda, S., Thomasset, D.: Physical Model-based Inversion in Control Systems
Design Using Bond Graph Representation. Part 2: Applications:Proceedings of the IMECHE Part I,
Journal of Systems and Control Engineering, Vol. 215, n2, 2001, pp. 105-112.

20. Karnopp, D.C.: On the order of a physical system model: :Journal of Dynamic Systems, Measurements,
and Control, Sept. 79, Vol. 101, pp185-186.

21. Bideaux E., Martin de Argenta D., Marquis-Favre W., Scavarda S.: Applying causality and bicausality to
multi-port elements in Bond Graphs: :Int. Conf. on Bond Graph Modeling, Proceedings of ICGBM’01,
18-25 jan. 2001, Orlando, Florida, CDROM.


