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I. INTRODUCTION

The phase behavior of ternary mixtures of two incompatible neutral linear polymers in solution has been the subject of several theoretical investigations using, first, the Random of blends of cyclic homopolymers towards phase separation as compared to systems of linear homologous, make them more attractive for some specific applications. From a theoretical point of view, cyclic macromolecules provide a model of polymers that are free from end effects. In some cases, these effects may have important implications, especially when one deals with short chains.

In comparison with linear charged polymers, few investigations have been devoted to similar properties of systems with other architectures. Consequently, this report aims to overcome this handicap by the study of the phase behavior of cyclic weakly charged polymers, and to compare the results with those obtained, in previous studies, for mixtures of linear chains with the same charge distributions [30]. By analogy with considerations mentioned below, the total structure factor of weakly charged cyclic homopolymers is expected to be different from that of linear chains mixtures.

The remainder of presentation proceeds as follows. Sec. 2 is devoted to a review of the theoretical formalism enabling us to apprehend the structural properties of systems under consideration, such as the total structure factor. A detailed discussion of our main results, by specifying the impact of the charge, composition and architecture effects on the total structure factor, is the aim of Sec. 3. Some concluding remarks are drawn in Sec. [START_REF] Amit | Field Theory, the Renormalization Group and Critical Phenomena[END_REF].

II. THEORETICAL BACKGROUNDS

The physical system we consider is a mixture of two weakly charged polymers A and B immersed in a good solvent. We are interested in the determination of the static structure matrix, S, of the considered ternary mixture. Within the framework of RPA, it has been found [30,31] that this structure matrix satisfies a generalized Zimm equation [32] 

S -1 (Q) = S -1 0 (Q) + U (Q) . (1) 
This equation gives the inverse total structure matrix for the interacting system as a sum of the inverse bare structure matrix S -1 0 (Q) and the interaction matrix U (Q), independently on the architecture of chains involved in the polymeric systems under investigation. There, the quantity Q = |q| stands for the module of the scattering wave-vector (or scattering wavevector amplitude), which is given by the standard relationship : Q = (4π/λ) sin (θ/2), where λ and θ are the wavelength of the incident radiation and the scattering angle, respectively.

We note that the bare structure matrix S 0 (Q) has zero off-diagonal elements, and we write

S 0 =    S 0 a 0 0 S 0 b    , (2) 
where

S 0 i (Q) = Φ i Z i P i (Q) (i = a, b).
Here, Φ i is the concentration of polymer chains of type i, Z i their polymerization degree, and P i (Q) their form factor.

The interaction matrix in formula ( 1) is given by the sum

U (Q) = V + F . (3) 
Here, V is the ordinary excluded volume matrix whose elements are the excluded volume

parameters v ij (i, j = a, b) V =    v aa v ab v ba v bb    , (4) 
with

v aa = 1 Φ s -2χ as , (5a) 
v bb = 1 Φ s -2χ bs , (5b) 
v ab = v ba = 1 Φ s -χ as -χ bs + χ ab . (5c) 
In these expressions, Φ s represents the volume fraction of solvent, while χ is and χ ab are the polymer i-solvent and polymer A-polymer B Flory-Huggins interaction parameters, respectively. For the sake of simplicity, we assume that the solvent has the same quality for A and B-polymers (χ as = χ bs ), and write

v aa = v bb = v ab -χ ≡ v . (6) 
We have used the notation : χ ≡ χ ab .

The long-range electrostatic matrix F reads

F = α (Q)    f 2 a η ab f a f b η ab f a f b f 2 b    , (7) 
with

α (Q) = 4πl B Q 2 + κ 2 . ( 8 
)
In this expression, l B = e 2 /ǫk B T accounts for the Bjerrum length, of the order of 7

• A at room temperature.
Here, e is the electron charge, ǫ the dielectric constant of the medium, k B the Boltzmann's constant and T the absolute temperature. In Eq. ( 7), η ab = +1, if monomers

A and B have charges of the same sign, and η ab = -1, otherwise ; f a e and f b e represent the charges carried by A and B monomers, respectively. The Debye-Hückel screening length κ -1 is as follows

κ 2 = 4πl B i Φ ci + Φ salt . (9) 
Here, Φ ci is the number density of counterions and Φ salt is that of the added salt (or electrolyte). The sum in the above relation runs over all free-point ions in the system.

With these considerations, the total interaction matrix writes

U =    U aa U ab U ba U bb    , (10) 
with

U aa = v + α (Q) f 2 a , (11a) 
U bb = v + α (Q) f 2 b , (11b) 
U ab = U ba = v + χ + α (Q) η ab f a f b . (11c) 
Relationships (11a) and (11b) clearly show that the repulsive electrostatic AA and BBinteractions increase the quality of the solvent. On the other hand, relationship (11c) tells us that, if η ab = +1, the electrostatic repulsion has tendency to increase the incompatibility of A and B polymers, and if η ab = -1, the electrostatic attraction has as effect to make the mixture more compatible.

Substituting Eqs. ( 11) and (2) into Eq. (1) yields

S -1 =    1 S 0 a + U aa U ab U ab 1 S 0 b + U bb    . (12) 
Inverting this matrix gives

S aa (Q) = S 0 a (1 + U bb S 0 b ) D (Q) , (13a) 
S bb (Q) = S 0 b (1 + U aa S 0 a ) D (Q) , (13b) 
S ab (Q) = S ba (Q) = - U ab S 0 a (Q) S 0 b (Q) D (Q) , (13c) 
with

D (Q) = 1 + U aa S 0 a (Q) + U bb S 0 b (Q) + U aa U bb -U 2 ab S 0 a (Q) S 0 b (Q) . (13d) 
On the other hand, the total structure factor is defined by

S T (Q) = S aa (Q) + S bb (Q) + 2S ab (Q) . (14) 
By using the above explicit forms of S 0 a , S 0 b , U aa , U bb and U ab , we find that

S T (Q) ZΦ = P (Q) 1 -2χ -α (Q) (f a -η ab f b ) 2 x (1 -x) ΦN P (Q) D (Q) . (15) 
We assumed that polymers A and B have the same degree of polymerization, Z. Thus, we are concerned with a monodisperse ternary mixture. This implies, in particular, that the two polymers have the same form factor :

P (Q) ≡ P a (Q) = P b (Q). We have set Φ a = xΦ and Φ b = (1 -x) Φ
, where x is the composition and Φ = Φ a + Φ b the total monomer concentration. The denominator D (Q) appearing in formula (15) can be decomposed as follows

D (Q) = D n (Q) + D c (Q) , (16a) 
where

D n (Q) = 1 + vΦZP (Q) -χ (2v + χ) x (1 -x) Φ 2 Z 2 P 2 (Q) (16b)
is the usual contribution, that is in the absence of charges, and

D c (Q) = α (Q) ΦZP (Q) xf 2 a + (1 -x) f 2 b + v 0 x (1 -x) ΦZP (Q) (16c)
accounts for the contribution of charges. In expression (16c), the parameter v 0 reads

v 0 = v (f a -η ab f b ) 2 -2η ab f a f b χ . ( 16d 
)
Until now, the general formalism reviewed above applies to chains, whatever be their architecture. It is only at this stage that a difference appears in the expressions of their radii of gyration and form factors. For this purpose, we assume that the polyions behave as flexible polymers, and depending on weather chains are linear or cyclic, their form factors are respectively given by Debye [33] and Casassa [34] functions

g D (u i ) = 2 u 2 i e -u i + u i -1 , (17) 
g C (u i ) = 2 √ u i e -u i /4 √ u i /2 0 e t 2 dt . (18) 
In formulae ( 17) and ( 18), u i represents the dimensionless variable

u i = Q 2 R 2 gi = Q 2 Z i σ 2 i 6 , (19) 
where σ i is the monomer size, and R gi represents the radius of gyration of a Gaussian linear chain of specie i (i = a, b), unperturbed by the excluded volume interactions. Moreover, the radii of gyration of linear chains and their cyclic counterparts are assumed to be governed by excluded volume effects. The calculation of the gyration radius of cyclic chains can be performed using some more recent model [29], according to which the mean-squared distance between two points separated by n monomers along the cyclic chain writes

r 2 n = n 1+ζ 1 - n Z i 1+ζ σ 2 i . (20) 
Combining this relation and the general definition of the radius of gyration of a given polymer yields

R 2 gc = Z 1+ζ i σ 2 i 1 0 t 1+ζ (1 -t) 2+ζ dt . (21a) 
Explicitly, we have

R 2 gc = Z 1+ζ i σ 2 i B (2 + ζ, 3 + ζ) , (21b) 
where B (x, y) = Γ (x) Γ (y) /Γ (x + y) is the standard Euler's Beta function [START_REF] Gradshteyn | Table of Integrals, Series and Products[END_REF]. While in the case of their linear homologous, one obtains [36]

R 2 gl = Z 1+ζ i σ 2 i (2 + ζ) (1 + ζ) , (22) 
with the notation ζ = 2ν -1, where ν ≃ 0.6 is the swelling critical exponent. This assumption, which is valid only in the case of weakly charged polymers, means that the conformational properties of chains are dominated by the excluded volume interactions, and the local rigidity due to the electrostatic potential can be neglected. Indeed, if such polymeric systems are highly charged, the chains become strongly extended, and thus, they take configurations similar to that of rods. In addition to the local rigidity, it is interestingly to recall the existence of the overall one due to electrostatic repulsions.

III. RESULTS AND DISCUSSION

A. The scattered intensity

In order to illustrate the angular dependence of the total structure factor S T (Q), we have plotted it as a function of the renormalized wavenumber QR g , in various conditions of charge distribution, using the following numerical parameters : Z = 104, σ = 2.5

• A , R gl = 135 • A , R gc = 93 • A , v = 30 • A 3 and l B = 7 • A .
It is possible to access directly to the total structure factor S T (Q), by choosing two polymers whose refraction indices or diffusion lengths are equal. The scattered intensity is then proportional to S T (Q) of expression [START_REF] Katchalsky | Chemical Physics of Ionic Solutions[END_REF], namely

I (Q) = (a -s) 2 S T (Q) , (23) 
where a -s is the contrast factor with respect to solvent molecules.

At fixed Z and monomer concentration Φ, the scattered intensity curve depends on the charges values f a and f b and their relative sign (through η ab = -1, +1).

B. Mixture of a charged and a neutral polymers in solution

We consider a ternary mixture made of a charged polymer A (f a = f ), a neutral one B (f b = 0) and a good solvent. The corresponding total structure factor is obtained from general formula [START_REF] Katchalsky | Chemical Physics of Ionic Solutions[END_REF] setting f a = f and f b = 0. We find that

S T (Q) ZΦ = P (Q) 1 -[χ -α (Q) f 2 /2] χ -1 c (Q) D (Q) , (24) 
with the notation

χ -1 c (Q) = 2x (1 -x) ΦZP (Q) . ( 25 
)
The angular dependences of the total structure factor, defined in Eq. ( 24), are plotted in Figs. 1a and1b, for f a = f and f b = 0. The first one illustrates the effects of the charge parameter f with a composition fixed to the value x = 0.8. Analysis of this figure reveals that, even for a relatively important charge parameter, that is f = 0.3, the presence of 20% in neutral polymer is sufficient to provoke practically the disappearance of the scattering peak, whatever be the architecture of chains.

This observation is in agreement with those of Refs. [13] and [24], according to which a peak collapse occurs due to adding a small content in neutral polymer. This phenomenon appears more clearly in Fig. 1b which represents the angular dependence of the total structure factor for f = 0.1, vΦZ = 1, χ/v = 0.1, and several values of the composition x in monomers of specie 1. On the other hand, we observe clearly a peak in the case of a single polyion (x = 1), regardless its architecture, but the scattering maximum almost disappears due to adding of only 5% in neutral polymer. Contrary to linear chains systems, for which the scattering peak disappears in the presence of only 5% in neutral polymer, the one corresponding to systems made of their cyclic homologous is significant only for a composition of value x = 10%. These both figures show that the height of the scattering maximum is higher, as compared to that observed in the case of their linear counterparts.

C. Mixture of two charged polymers of the same sign in solution

We consider now two charged polymers A and B, and denote by f a and f b the respective non-vanishing charge parameters. The corresponding total structure factor can be obtained substituting η ab = +1 into general expression (15)

S T (Q) ZΦ = P (Q) 1 -2χ -α (Q) (f a -f b ) 2 x (1 -x) ΦZP (Q) D (Q) , (26) 
where the denominator D (Q) is given by Eqs. (16a)-(16d), with η ab = +1.

Firstly, if we fix the composition to the value x = 0.8 and neutralize the charge of the second polymer, that is f b = 0, we will have a behavior similar to that illustrated in Fig. 1a. In the second case, the charge parameter of polymer A is maintained constant, namely f a = 0, but that of the second one is increased from 0 to 0.1, with vΦZ = 1. The behavior of the polymeric system under consideration is depicted in Fig. 2a. This latter shows a progressive reemergence of the peak as the charge parameter f b increases, and we recover the behavior almost similar to that shown in the single polyion limit, with a small χ-parameter as compared to the electrostatic part.

However, it is interestingly and worthwhile to examine the total structure factor S T (Q)

in the case where both charge parameters f a and f b are similar, that is f b = f b = f . With these considerations, Eq. ( 26) becomes

S T (Q) ZΦ = P (Q) 1 -2χx (1 -x) ΦZP (Q) 1 + v ef f (Q) ΦZP (Q) -χ [2v ef f (Q) + χ] x (1 -x) Φ 2 Z 2 P 2 (Q) , (27a) 
with the notation

v ef f (Q) = v + α (Q) f 2 . ( 27b 
)
At this stage, we remark that, with a modified excluded volume parameter, the expression governing the variations of the total structure factor S T (Q), has a form similar to that obtained in the neutral limit.

We note that, if χ = 0, Eq. (27a) reduces to that of a single polyion in solution, whose behavior is shown in Fig. 2b. The above observations remain valid for linear chains as well as for their cyclic homologous.

D. Mixture of two charged polymers of different sign in solution

In this case, we find for the total structure factor the expression

S T (Q) ZΦ = P (Q) 1 -2χ -α (Q) (f a + f b ) 2 x (1 -x) ΦZP (Q) D (Q) , (28) 
where D (Q) is given by Eqs. (16a)-(16d), with η ab = -1.

For this particular system, we have represented, in Fig. 3a, the variations of the total structure factor S T (Q), as a function of QR g , for f a = 0.1, χ/v = 0.1, x = 0.8, and vΦZ = 1, and several values of the charge parameter f b ranging from 0 to 0.3. This figure

shows that, as the charge parameter f b increases, the total structure factor S T (q) increases substantially at small values of Q. In fact, this originates from strong electrostatic attraction force between polymers of different species, which induces an important scattering signal in that Q's domain.

Likewise, we show, in Fig. 3b, the variations of the total structure factor versus QR g for f a = f b = 0.1 (η ab = -1), vΦZ = 1, and χ/v = 0.1, and several values of composition

x ranging from 0 to 0.8. Analysis of this figure reveals that the peak disappears rapidly when only 5 % of chains are unlikely charged with respect to the remainder of chains. As expected, we observe that a small quantity in neutral polymer induces a collapse of the scattering peak, because of the significant reduction of the electrostatic repulsion between different polymeric species.

IV. CONCLUSIONS

This paper gives a theoretical framework for the study of structural properties of mixtures of two weakly charged cyclic homopolymers, in solution and their comparison with those corresponding to linear chains systems. This study has been stimulated by several recent reports. However, the present report is voluntarily limited to the examination of the only angular dependence of the total structure factor of polymeric systems under investigation. Various conditions of charge distributions were considered. At this point of view, we note that this latter quantity is readily accessible by radiation scattering measurements, if the contrast factors, with respect to solvent molecules (when neutrons are used) or the increments of refractive indices (in the case of light-scattering) of two monomeric species A and B, are the same.

On one hand, the interactions between two charged monomers are assumed to be governed by an ordinary screened Debye-Hückel potential of the form exp {-κd} /d, where d is the distance which separates the centers of two monomeric species. Due to this fact, we are in agreement with the assumptions that the charges are not in a near neighboring each other, and with the fact that the electrostatic interaction is relatively weak. However, in the case where the first hypothesis is not fulfilled, only the excluded volume interaction determines the phase behavior of the considered polymeric system. These features, illustrated clearly by the scattering curves, show that, at small values of the wavenumber Q, the electrostatic interaction predominates, and then, the thermodynamic interaction becomes more and more pronounced as Q increases.

Elsewhere, we have used the Debye and Casassa functions to describe the form factors of Gaussian linear and cyclic chains unperturbed by the excluded volume effects, respectively.

Moreover, the radii of gyration of linear chains and cyclic counterparts are assumed to be governed by the excluded volume interactions. For this purpose, the concept of persistence length is not introduced, in such a way that we remain in agreement with our description restricted only to weakly charged polymers. We have also assumed that the small ions, as the counterions, are point-like without any specific contribution to scattering curves or molecular interactions. However, their presence enables to ensure the overall electroneutrality condition and contributes to the screening of the electrostatic interactions.

In summary, the present model is based mainly on two assumptions. The first one is the RPA which allows to relate the scattering functions for the total system made of a mixture of identical homopolymers in solution. This is introduced through the interaction matrix which, in this case, corresponds to the sum of the bare excluded-volume matrix and the longrange Coulombian one. Meanwhile, we make use of the second approximation according to which the latter matrix is modeled through the Debye-Hückel potential. Strictly speaking, these two approximations apply only far from the overlap polymer concentration (threshold),

where the fluctuations of matter are not very strong, so-that the RPA is expected to be reliable. Furthermore, the Debye-Hückel approximation assumes that, even in the absence of salt, it occurs a substantial screening of the electrostatic forces between charged monomers.

This requirement is also satisfied in the semi-dilute regime where the counterions, coming from the dissociation of the polymer, are in large number, because of the electroneutrality condition which needs a concentration of counterions equal to f Φ.

In the light of this study, it appears the following facts : (i) in the neutral limit, the total structure factor S T (Q) was found to be identical to the one obtained for a homopolymer with a form factor P (Q) and an excluded-volume parameter v+χ/2. Several cases of distributions of charge were examined. (ii) In the case of a mixture of partially charged homopolymers in which the neutral one is isorefractive with respect to solvent molecules, the structure factor shows the same features than those observed for a single polyion system (ordinary polyelectrolyte behavior). This observation was explained by the fact that the whole chains undergo the same repulsions due to the long-range potential. Consequently, the interaction of the polyion is decreased in the presence of polymer B. In other words, this means that an addition of a small quantity of neutral polymer implies a disappearance of the scattering peak. However, if the charges, carried by monomers of species A and B, are of the same sign, the counterions of the second polymer induce a screening of the interaction due to the first one. This implies that, if a small percentage in chains do not contribute to the scattering, the scattering maximum tends to disappear. It has been also observed that, when one passes from a neutral polymer to a charged polymer, the scattering curves decrease substantially, due to the electrostatic interactions which predominate at small values of Q. On the other hand, these curves tell us that cyclic weakly charged polymers scatter better than their linear homologous. This originates from their architectural differences and the fact that the cyclic chains are characterized by a higher segmental density. Elsewhere, we have remarked that the peak location, when it exists, is slightly shifted towards the lower values of Q ; in particular, one observes that the peak, corresponding to cyclic chains, disappears at a value of the charge parameter higher than that referring to the case of their linear counterparts.

In the case of similarly charged monomer species, we essentially found that the results of neutral polymers remain valid with a modified excluded-volume parameter, which becomes Q-dependent, in order to include the effect of long-range electrostatic repulsions. If the two monomer species are oppositely charged, we again found that formulae for neutral polymers could be used, but both the excluded-volume v and the interaction parameter χ should be modified, in order to take into account the long-range electrostatic interactions between

FIGURE CAPTIONS

Fig. 1a : Variations of the reduced total structure factor, S T (Q)/ZΦ, upon the renormalized wave-number QR g , for a ternary system made of charged (f a = 0) and neutral (f b = 0) homopolymers in solution, at several values of the charge parameter f a , with no added salt.

The solid curves correspond to cyclic chains, whereas the dashed ones represent their linear homologous. From the top, each series of curves corresponds to f a = 0 (neutral polymeric system), 0.075, 0.1, 0.15, 0.2 and 0.3, respectively. In plotting of these curves, we have used the following numerical parameters : x = 0.8, vΦZ = 1 and χ/v = 0.1.

Fig. 1b : Variations of S T (Q)/ZΦ upon QR g , for a polymeric system, similar to that considered in Fig. 1a, for various values of the composition x. The solid curves correspond to cyclic chains, whereas the dashed ones represent their linear homologous. From the bottom, each series of curves corresponds to x = 1 (single polyion), 0.95, 0.90, 0.85, 0.80 and 0.50, respectively. The used parameters are : v = 1, vΦZ = 1 and Φ salt = 0 (no added salt). 

Fig. 2a :

 2a Fig. 2a : Angular dependence of S T (Q)/ZΦ upon the variable QR g , for a ternary system made of neutral (f a = 0) and charged (f b = 0) homopolymers in solution, in the absence of salt and for several values of the charge parameter f b . The solid curves correspond to cyclic chains, whereas the dashed ones represent their linear homologous. From the top, each series of curves corresponds to f b = 0 (neutral polymeric system), 0.01, 0.03, 0.05, 0.075 and 0.1, respectively. The used parameters are similar to those of Fig. 2a

Fig. 2b :

 2b Fig. 2b : Angular dependence of S T (Q)/ZΦ upon the variable QR g , for a ternary system made of two similarly charged homopolymers (f a = f b ≡ f = 0, η ab = +1), with vΦZ = 1, χ/v = 0.1, in the absence of added salt and for several values of the common charge parameter f . The solid curves correspond to cyclic chains, whereas the dashed ones represent their linear homologous. From the top, each series of curves corresponds to f a = f b = 0 (neutral polymeric system), 0.075, 0.1, 0.15 and 0.2, respectively.

Fig. 3a :

 3a Fig.3a: Angular dependence of S T (Q)/ZΦ upon the variable QR g , for a ternary system made of two unlikely charged homopolymers (η ab = -1) for f a = 0.1, χ/v = 0.1, and several values of the charge parameter f b , with vΦZ = 1 and no added salt. The solid curves correspond to cyclic chains whereas the dashed ones represent their linear homologous. From the bottom, each series of curves corresponds to f b = 0 (polymer 2 is neutral), 0.075, 0.1, 0.15, 0.2 and 0.3, respectively.

Fig. 3b :

 3b Fig.3b: Angular dependence of S T (Q)/ZΦ upon the variable QR g , for a polymeric system similar that considered in Fig.3a, with f a = f b = 0.1 (η ab = -1) and several values of the composition x of the mixture. The solid curves correspond to cyclic chains, whereas the dashed ones represent their linear homologous. From the bottom, each series of curves corresponds to x = 1 (single polyion system), 0.95, 0.90, 0.85 and 0.8, respectively. The used parameters are : χ/v = 0.1, vΦZ = 1 and Φ salt = 0 (no added salt).
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charges within the same species (repulsion) and between different ones (attraction).