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1 Introduction

Let F be a finite extension of Qp, with ring of integers OF , and uniformizing parameter πF ,
whose residual field has q elements. For G = GL2(F ), let (π1, V1), (π2, V2) and (π3, V3) be
three irreducible, admissible, infinite dimensional representations of G. Using the theory of
Gelfand pairs, Diprenda Prasad proves in [P] that that the space of G-invariant linear forms
on V1⊗ V2⊗ V3 has dimension at most one. He gives a precise criterion for this dimension to
be one, that we will explain now.

Let D∗
F be the group of invertible elements of the quaternion division algebra DF over

F . When (πi, Vi) is a discrete serie representation of G, denote by (π′
i, V

′
i ) the irreducible

representation of D∗
F associated to (πi, Vi) by the Jacquet-Langlands correspondance. Again,

by the theory of Gelfand pairs, the space of D∗
F -invariant linear forms on V ′

1 ⊗ V ′
2 ⊗ V ′

3 has
dimension at most one.

Let σi be the two dimensional representations of the Weil-Deligne group of F associated
to the irreducible representations πi. The triple tensor product σ1 ⊗ σ2 ⊗ σ3 is an eight
dimensional symplectic representation of the Weil-Deligne group, and has local root number
ε(σ1 ⊗ σ2 ⊗ σ3) = ±1. When ε(σ1 ⊗ σ2 ⊗ σ3) = −1, one can prove that the representations
πi’s are all discrete serie representations of G.

Theorem 1. (Prasad, theorem 1.4 of [P] ) Let (π1, V1), (π2, V2), (π3, V3) be three irreducible,
admissible, infinite dimensional representations of G such that the product of their central
characters is trivial. If all the representations Vi’s are cuspidal, assume that the residue
characteristic of F is not 2. Then

� ε(σ1 ⊗ σ2 ⊗ σ3) = 1 if and only if there exist a non zero G-invariant linear form on
V1 ⊗ V2 ⊗ V3

� ε(σ1 ⊗ σ2 ⊗ σ3) = −1 if and only if there exist a non zero D∗
k invariant linear form on

V ′
1 ⊗ V ′

2 ⊗ V ′
3 .

Once you got a non zero G-invariant linear form ℓ on V1 ⊗ V2 ⊗ V3, or a non zero D∗
k-

invariant linear form ℓ′ on V ′
1 ⊗ V ′

2 ⊗ V ′
3 , you want to find a vector in V1 ⊗ V2 ⊗ V3 which is

not in the kernel of ℓ, or a vector in V ′
1 ⊗ V ′

2 ⊗ V ′
3 which is not in the kernel of ℓ′. Such a

vector is called a test vector. At first sight, it appears to have strong connections with the
new vectors v1, v2 and v3 of the representations π1, π2 et π3.

Theorem 2. (Prasad, theorem 1.3 of [P]) When all the πi’s are unramified principal series
representations of G, v1 ⊗ v2 ⊗ v3 is a test vector for ℓ.
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Theorem 3. (Gross and Prasad, proposition 6.3 of [G-P]) When all the πi’s are unramified
twists of the special representation of G :

� if ε(σ1 ⊗ σ2 ⊗ σ3) = 1, then v1 ⊗ v2 ⊗ v3 is a test vector for ℓ,
� if ε(σ1 ⊗ σ2 ⊗ σ3) = −1, let R′ be the unique maximal order in DF . Then the open

compact subgroup R′∗×R′∗×R′∗ fixes a unique line in V ′
1 ⊗ V ′

2 ⊗ V ′
3 . Any vector on this line

is a test vector for ℓ′.

The proof by Gross and Prasad of the first statement of this theorem, actually contains
another result:

Theorem 4. When two of the πi’s are unramified twists of the special representation of G
and the third one belongs to the unramified principal serie of G, v1 ⊗ v2 ⊗ v3 is a test vector
for ℓ.

But the paper [G-P] ends up with an evidence that v1⊗ v2⊗ v3 is not always a test vector
for ℓ. Let K = GL(OF ) be the maximal compact subgroup of G. If π1 and π2 are unramified
and if π3 has conductor n ≥ 1, ℓ being G-invariant, v1 and v2 being K-invariant, one gets a
K-invariant linear form {

V3 −→ C

v 7−→ ℓ(v1 ⊗ v2 ⊗ v)

which must be 0 since π3 is ramified. Then ℓ(v1 ⊗ v2 ⊗ v3) = 0.
Now Gross and Prasad make the following suggestion. Let Γ0(π

n
F ) be the congruence

subgroup

Γ0(π
n
F ) = {

(
a b
c d

)
∈ K c ≡ 0 modπF

n }

and R be a maximal order M2(F ) such that R∗ ∩K = Γ0(π
n
F ). If v∗2 is a R∗-invariant vector

inV2, the linear form {
V3 −→ C

v 7−→ ℓ(v1 ⊗ v∗2 ⊗ v)

is invariant under the action of R∗ ∩K = Γ0(π
n
F ), and one can still hope that v1 ⊗ v∗2 ⊗ v3 is

a test vector for ℓ. In theorem 5 we will focus on the case n = 1, and prove that v1 ⊗ v∗2 ⊗ v3

is a test vector for ℓ, up to a condition on π1 and π2. This will almost complete the study of
test vectors when the π′

is have ramification 0 or 1.

In the long term, the search for test vectors is motivated by the subconvexity problem for
L-functions. Roughly speaking, one wants to bound some L-functions along the critical line
ℜ(z) = 1

2 . A recent and successful idea in this direction has been to relate triple products
of automorphic forms to special values of L-functions on the critical line. In [B-R 1] and
[B-R 2] Joseph Bernstein and Andre Reznikov did this in the eigenvalue aspect , and in [V]
Akshay Venkatesh did it in the level aspect. More details about subconvexity and those
related techniques will be found in [M-V]. Test vectors are key ingredients. Bernstein and
Reznikov use an explicit test vector. Venkatesh uses a theoretical one, but explains that the
bounds would be better with an explicit one (see paragraph 5 of [V]). Unfortunately, the
difficulty of finding them increases with the ramification of the representations involved.

There is an extension of Prasad’s result in [H-S], where Harris and Scholl prove that the
dimension of the space of G-invariant linear forms on V1⊗V2⊗V3 is one when π1, π2 and π3 are
principal series representations, either irreducible or reducible with their unique irreducible
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subspace, infinite dimensional. They apply the global setting of this to the construction of
elements in the motivic cohomology of the product of two modular curves constructed by
Beilinson.

I would like to thank Philippe Michel for suggesting this problem, and Wen-Ching Winnie
Li who invited me to spend one semester at PennState University where I could write the
first draft of this paper.

2 Strategy

2.1 Notations

Let (ρ,W ) be a smooth representation of a closed subgroup H of G. Let ∆H be the modular
function on H. The induction of ρ from H to G is a representation π whose space is the space
IndG

H

(
ρ
)

of functions f from G to W satisfying the two following conditions :

(1) ∀h ∈ H ∀g ∈ G f(hg) = ∆H
− 1

2 (h)ρ(h)f(g),
(2) there exist an open compact subgroup Kf of G such that

∀k ∈ Kf , ∀g ∈ G, f(gk) = f(g)

where G acts by right translation. The resulting function will be denoted 〈π(g), f〉 that is

∀g, g0 ∈ G 〈π(g), f〉(g0) = f(g0g).

With the additional condition that f must be compactly supported modulo H, one gets the
compact induction denoted by indG

H . When G/H is compact, there is no difference between
IndG

H and indG
H .

Let B the Borel subgroup of upper triangular matrices in G and T be the diagonal torus.

Then we will use δ = ∆B
−1 with δ

((a b
0 d

))
= |ad | and ∆T is trivial. The quotient B\G is

compact and can be identified with P1(F ).
For a smooth representation V of G, V ∗ is the space of linear forms on V . The contra-

gredient representation π̃ is given by the action of G on Ṽ , the subspace of smooth vectors
in V ∗. If H is a subgroup of G, Ṽ ⊂ Ṽ|H ⊂ V ∗.

More information about induced and contragredient representations will be found in [B-Z].

Let (π1, V1), (π2, V2) and (π3, V3) be three irreducible, admissible, infinite dimensional
representations of G such that the product of their central characters is trivial. Assume that
π1 and π2 are unramified principal series, and that π3 has conductor n ≥ 1. Then, according
to theorem 1, there exist a non-zero, G-invariant linear form ℓ on V1 ⊗ V2 ⊗ V3, and we are
looking for a vector v in V1⊗ V2 ⊗ V3 which is not in the kernel of ℓ. In order to follow Gross
and Prasad suggestion, we will consider

γ =

(
πn

F 0
0 1

)
and R = γ−1M2(OF )γ.

One can easily check that

R∗ = γ−1Kγ and R∗ ∩K = Γ0(π
n
F ).
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If v1, v2 and v3 denote the new vectors of π1, π2 and π3, the vector

v∗2 = π2(γ
−1) · v2

is invariant under the action of R∗. Hence we can write

v1 ∈ V1
K v∗2 ∈ V1

R∗

v3 ∈ V3
R∗∩K

According to Gross and Prasad v1 ⊗ v∗2 ⊗ v3 should be a test vector for ℓ , for any
n ≥ 1. In this paper, we will focus on the case where n = 1. We will need the following
condition regarding π1 and π2: since they are unramified principal series, they are induced
from characters χ1 and χ2 of B, that are required to satisfy

χ1

(πF 0
0 πF

−1

)
6= −1 or χ2

(πF 0
0 πF

−1

)
6= −1 (1)

We will prove

Theorem 5. If n = 1, and (1) is satisfied, v1 ⊗ v∗2 ⊗ v3 is a test vector for ℓ.

The proof will follow the same pattern as Prasad’s proof of theorem 2 in [P], with the
necessary changes.

2.2 Central characters

Let ω1, ω2 and ω3 be the central caracters of π1, π2 and π3. Notice that the condition
ω1ω2ω3 = 1 derives from the G-invariance of ℓ. Since π1 and π2 are unramified, ω1 and ω2

are unramified too, and so is ω3 because ω1ω2ω3 = 1. Let ηi, for i ∈ {1, 2, 3} be unramified
quasi-characters of F ∗ with η2

i = ωi and η1η2η3 = 1. Then

V1 ⊗ V2 ⊗ V3 ≃
(
V1 ⊗ η−1

1

)
⊗
(
V2 ⊗ η−1

2

)
⊗
(
V3 ⊗ η−1

3

)

as a representation of G. Hence it is enough to prove theorem 4 when the central characters
of the representations are trivial.

When n = 1, it is also enough to prove theorem 5 when V3 is the special representation
Sp of G : take η3 to be the unramified character such that V3 = η3 ⊗ Sp.

2.3 Prasad’s exact sequences

Let us now explain how Prasad finds ℓ. It is equivalent to search ℓ or to search a non zero

element in HomG

(
V1 ⊗ V2, Ṽ3

)
. Since the central characters of π1 and π2 are trivial, there

are unramified characters µ1 and µ2 such that for i = 1 and i = 2

πi = IndG
Bχi with χi

((a b
0 d

))
= µi

(a

d

)

Hence
V1 ⊗ V2 = ResG IndG×G

B×B

(
χ1 × χ2

)

where G is diagonally embedded in G×G for the restriction. The action of G on B×B\G×G =
P1(F )× P1(F ) has precisely two orbits : the first one is {(u, v) ∈ P1(F )× P1(F ) | u 6= v},
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it is open and can be identified with T\G, the second one is the diagonal embedding of P1(F )
in P1(F )×P1(F ), it is closed and it can be identified with B\G. Then, we have a short exact
sequence of G-modules

0→ indG
T

(χ1

χ2

)
ext−−→ V1 ⊗ V2

res−−→ IndG
B

(
χ1χ2δ

1

2

)
→ 0 (2)

The surjection res is the restriction of functions from G × G to the diagonal part of
B\G×B\G, that is

∆B\G =
{

(g, bg) | b ∈ B, g ∈ G
}

.

The injection ext takes a function f ∈ indG
T

(
χ1

χ2

)
to a function F ∈ IndG×G

B×B

(
χ1 × χ2

)
given

by the relation

F
(
g,

(
0 1
1 0

)
g
)

= f(g).

Applying the functor HomG

(
· , Ṽ3

)
, one gets a long exact sequence

0→ HomG

(
IndG

B

(
χ1χ2δ

1

2

)
, Ṽ3

)
→ HomG

(
V1 ⊗ V2, Ṽ3

)
→ HomG

(
indG

T

(χ1

χ2

)
, Ṽ3

)

↓
· · · ← Ext1G

(
IndG

B

(
χ1χ2δ

1

2

)
, Ṽ3

)
(3)

2.4 The simple case

The situation is easier when n = 1 and µ1µ2| · |
1

2 = | · |− 1

2 . Then π3 is special and there is a
natural surjection

IndG
B

(
χ1χ2δ

1

2

)
−→ Ṽ3

whose kernel is the one dimensional subspace of constant functions. Thanks to the exact
sequence (2) one gets a surjection

Ψ : V1 ⊗ V2 −→ Ṽ3

which corresponds to

ℓ

{
V1 ⊗ V2 ⊗ V3 −→ C

v ⊗ v′ ⊗ v′′ 7−→ Ψ(v ⊗ v′).v′′

The surjection Ψ vanishes on v1 ⊗ v∗2 if and only if res(v1 ⊗ v∗2) has constant value on
P1(F ) ≃ B\G. Easy computation proves that it is not constant : the new vectors v1 and v2

are functions from G to C such that

∀i ∈ {1, 2}, ∀b ∈ B, ∀k ∈ K, vi(bk) = χi(b) · δ(b)
1

2

and
∀g ∈ G, v∗2(g) = v2(gγ−1).

Then

(v1 ⊗ v∗2)
((1 0

0 1

))
= v1

((1 0
0 1

))
v2

(
γ−1

)
= v2

((π−1
F 0
0 1

))
= µ2(πF )−1|πF |−

1

2 =

√
q

µ2(πF )
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and

(v1 ⊗ v∗2)
((0 1

1 0

))
= v2

((0 1
1 0

)(
π−1

F 0
0 1

))
= v2

((1 0

0 π−1
F

)(
0 1
1 0

))
=

µ2(πF )√
q

.

The representation π2 is principal so
√

q
µ2(πF ) 6=

µ2(πF )√
q and

(v1 ⊗ v∗2)
((1 0

0 1

))
6= (v1 ⊗ v∗2)

((0 1
1 0

))
.

Hence, Ψ does not vanish on v1 ⊗ v∗2. Then, v1 being K-invariant and v∗2 being R∗-invariant,

Ψ(v1 ⊗ v∗2) is a non zero Γ0(π
n
F )-invariant element of Ṽ3, that is, a new vector for π̃3, and it

does not vanish on v3 :
ℓ(v1 ⊗ v∗2 ⊗ v3) = Ψ(v1 ⊗ v∗2).v3 6= 0

Then v1 ⊗ v∗2 ⊗ v3 is a test vector for ℓ.

2.5 The other case

If n ≥ 2 or µ1µ2| · |
1

2 6= | · |− 1

2 then HomG

(
IndG

B

(
χ1χ2δ

1

2

)
, Ṽ3

)
= 0 and by corollary 5.9 of [P]

Ext1G

(
IndG

B

(
χ1χ2δ

1

2

)
, Ṽ3

)
= 0

Through the long exact sequence (3) we get an isomorphism

HomG

(
V1 ⊗ V2, Ṽ3

)
≃ HomG

(
indG

T

(χ1

χ2

)
, Ṽ3

)

and by Frobenius reciprocity

HomG

(
indG

T

(χ1

χ2

)
, Ṽ3

)
≃ HomT

((χ1

χ2

)
, Ṽ3|T

)

By lemmas 8 and 9 of [W], this latter space is one dimensional. Thus, we have a chain of
isomorphic one dimensional vector spaces

ℓ ∈ HomG

(
V1 ⊗ V2 ⊗ V3, C

)

↓ ≀
Ψ ∈ HomG

(
V1 ⊗ V2, Ṽ3

)

↓ ≀
Φ ∈ HomG

(
indG

T

(
χ1

χ2

)
, Ṽ3

)

↓ ≀
ϕ ∈ HomT

((
χ1

χ2

)
, Ṽ3|T

)

with generators ℓ, Ψ, Φ and ϕ corresponding via the isomorphisms. Notice that ϕ is a linear
form on V3 such that

∀t ∈ T ∀v ∈ V3 ϕ
(
π3(t)v

)
=

χ2(t)

χ1(t)
ϕ(v) (4)
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Lemma 1. ϕ(v3) 6= 0.

Proof : this is proposition 2.6 of [G-P] with the following translation :
- the local field F is the same,
- the quadratic extension K/F of Gross and Prasad is F × F (this case in included in

their proof) and their group K∗ is our torus T ,
- the infinite dimensional representation V1 of Gross and Prasad is our π3,
- the one dimensional, unramified representation V2 of Gross and Prasad is χ1

χ2
.

Then the representation that Gross and Prasad call V is χ1

χ2
⊗π3 and their condition (1.3) is

exactly our condition (4). The character ω of Gross and Prasad, which is the central character
of their V1, is trivial for us. Let αK/F be the quadratic character of F ∗ associated to the
extension K/F by local class-field theory, and let σ and σ3 be the representations of the Weil-
Deligne group of F associated to χ1

χ2
and π3. Thanks to [T] we know that ε(σ⊗σ3) = αK/F (−1)

because K is not a field, and we are in the first case of proposition 2.6.
The restriction of χ1

χ2
⊗ π3 to the group

M =
{(x 0

0 z

)
| x, y ∈ O∗

F

}
× Γ0(π

n
F )

fixes a unique line in V3 : it is the line generated by the new vector v3. According to Gross
and Prasad, a non-zero linear form on V3 which satisfies (4) cannot vanish on v3. �

We still need to prove that ℓ(v1 ⊗ v∗2 ⊗ v3) 6= 0. For the reason described at the end of
section 2.4, it is enough to prove that

{
V3 −→ C

v 7−→ ℓ(v1 ⊗ v∗2 ⊗ v)

is non zero in Ṽ3. In order to do that we want to build a function F in V1 ⊗ V2, of the form

F =
∑

i∈I

ai

〈
(π1 ⊗ π2)(gi), v1 ⊗ v∗2

〉
(5)

which vanishes on the closed orbit of G in P1(F ) × P1(F ). Then, F is in the kernel of res

so it is the image by ext of a function f ∈ indG
T

(
χ1

χ2

)
. The important point is that f must

be the characteristic function of the orbit of the unit in the decomposition of T\G under the
action of Γ0(π

n
F ), which means :

f(g) =

{
χ1(t)
χ2(t) if g = tk with t ∈ T and k ∈ Γ0(π

n
F )

0 else
(6)

Then, the function {
G −→ C

g 7−→ f(g)ϕ
(
π3(g)v3

)

7



is invariant by the action of T by left translation and we can do the following computation:
on the one hand

(
Ψ(F )

)
(v3) =

(
Φ(f)

)
(v3)

=

∫

T\G
f(g)ϕ

(
π3(g)v3

)
dg

=

∫

(T∩K)\Γ0(πn

F
)
ϕ
(
π3(k)v3

)
dk

= λ · ϕ(v3).

where λ is a non zero constant. Thanks to lemma 1 we know that ϕ(v3) 6= 0 then
(
Ψ(F )

)
(v3) 6= 0.

On the other hand, it comes from (5) that
(
Ψ(F )

)
(v3) =

∑

i∈I

ai ℓ
(
π1(gi)v1 ⊗ π2(gi)v

∗
2 ⊗ v3

)

=
∑

i∈I

ai ℓ
(
v1 ⊗ v∗2 ⊗ π3(g

−1
i )v3

)

= Ψ(v1 ⊗ v∗2)
((∑

i∈I

ai π3(g
−1
i )
)
v3

)

then Ψ(v1 ⊗ v∗2) 6= 0 and v1 ⊗ v∗2 ⊗ v3 is a test vector for ℓ.

3 Calculations

3.1 The big function F and the little function f

The function F has to be ext(f), where f is the function described by formula (6). Since F

is in V1 ⊗ V2 = ResG IndG×G
B×B

(
χ1 × χ2

)
and G = BK, it is enough to know the values of F

on K ×K.

Lemma 2. ∀(k, k′) ∈ K ×K,

F (k, k′) =

{
1 if k ∈ Γ0(π

n
F ) and k′ 6∈ Γ0(πF )

0 else
(7)

Proof : F must vanish on

∆B\G =
{
(g, bg) | b ∈ B, g ∈ G

}

The other part of B\G×B\G can be identified with T\G via the bijection




(
B\G×B\G

)
\∆B\G → T\G

(
Bg,B

(
0 1
1 0

)
g
)

7−→ Tg

8



through which, the orbit of the unit in T\G under the action of Γ0(π
n
F ) corresponds to

{(
Bk,B

(
0 1
1 0

)
k
)
| k ∈ Γ0(π

n
F )
}

Pick any (k, k′) ∈ K × K. If k′ ∈ Bk, then k′ ∈ Γ0(π
n
F ) if and only if k ∈ Γ0(π

n
F ), and

k′ ∈ Γ0(πF ) if and only if k ∈ Γ0(πF ). Else, put

k =

(
a b
c d

)
and k′ =

(
a′ b′

c′ d′

)
.

There exist (b1, b2) ∈ B ×B such that





k = b1k0

k′ = b2

(
0 1
1 0

)
k0

with k0 =

(
c′ d′

c d

)
.

Then

k0 ∈ Γ0(π
n
F ) ⇐⇒ c ≡ 0 modπF

n and c′d ∈ O∗
F

⇐⇒ c ≡ 0 modπF
n and c′ ∈ O∗

F

⇐⇒ k ∈ Γ0(π
n
F ) and k′ /∈ Γ0(πF ).

It follows that (k, k′) corresponds to an element of the orbit of the unit in the decomposition
of T\G under the action of Γ0(π

n
F ) if and only if k ∈ Γ0(π

n
F ) and k′ /∈ Γ0(πF ). �

3.2 The big function F when n = 1

Now we have to find the coefficients ai and elements gi of (5) to get the right F . This can be
done for n = 1. For the sake of simplicity, for any family (gi) of elements of G, and (ai) some
complex numbers, denote

(∑

i

ai · gi

)
(v1 ⊗ v∗2) =

∑

i

ai ·
〈
(π1 × π2)(gi), v1 ⊗ v∗2

〉

Let { τ0, . . . τq−1 } be a set of representatives of OF /πFOF in OF , and A be the number

A =
(µ1(πF )√

q
−
√

q

µ1(πF )

)−1(µ2(πF )√
q
−
√

q

µ2(πF )

)−1

which can be defined because the representations π1 and π2 are principal so µ1(πF )2 − q 6= 0
and µ2(πF )2 − q 6= 0.

Lemma 3. When n = 1 and 1 + µ1(πF )2 6= 0 the function F is given by

9



F = A ·
{ √

q

µ2(πF )
·
(

0 1
πF 0

)
+

µ1(πF )√
q
·
(

1 0
0 1

)

− 1

(1 + µ1(πF )2)
· µ1(πF )√

q
· µ1(πF )

µ2(πF )
·
( q−1∑

i=0

(
πF τi

0 1

)
+

(
0 1

πF 0

))

− 1

(1 + µ1(πF )2)
· µ1(πF )√

q
·
( q−1∑

i=0

(
1 τi

πF

0 1

)
+

(
0 1

πF

πF 0

)) }
(v1 ⊗ v∗2)

When n = 1 and 1 + µ2(πF )2 6= 0 the function F is given by

F = A ·
{ √

q

µ2(πF )

(
0 1

πF 0

)
+

µ1(πF )√
q

(
1 0
0 1

)

− 1

(1 + µ2(πF )2)
· µ1(πF )√

q
·
( q−1∑

i=0

(
1 0
τi 1

)
+

(
0 1
1 0

))

− 1

(1 + µ2(πF )2)
· µ2(πF )√

q
·
( q−1∑

i=0

( 1
πF

0

τi 1

)
+

(
0 1

πF

1 0

)) }
(v1 ⊗ v∗2)

Proof : for g ∈ G and k =

(
a b
c d

)
∈ K in order to compute

〈
π1(g), v1

〉
(k) = v1(kg) and

〈
π2(g), v∗2

〉
(k) = v2(kgγ−1)

write

kg =

(
x y
0 z

)
k1 and kgγ−1 =

(
x′ y′

0 z′

)
k2

with k1 and k2 in K. Then

v1(kg) =
µ1(x)

µ1(z)
·
∣∣∣x
z

∣∣∣
1

2

=
(µ1(πF )√

q

)(val x−val z)
v2(kg) =

(µ2(πF )√
q

)(val x′−val z′)

The following tables give the pairs
(〈

π1(g), v1

〉
(k),

〈
π2(g), v∗2

〉
(k)
)
. The entries, are : an

element g in G, val(c) and val(d) where (c, d) is the second line of k.
The first table is inspired by the formula

TπF
= K

(
πF 0
0 1

)
K = ⊔q−1

i=1

(
πF τi

0 1

)
K +

(
0 1

πF 0

)
K
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g val(c) = 0 val(c) ≥ 1

(
πF τi

0 1

)
such that cτi + d ∈ OF

∗
(

µ1(πF )√
q

)
, 1

(
µ1(πF )√

q

)
, 1

(
πF τi0

0 1

)
such that cτi0 + d ∈ πFOF

(
µ1(πF )√

q

)−1
, 1 ∅

(
0 1

πF 0

) (
µ1(πF )√

q

)
, 1

(
µ1(πF )√

q

)−1
, 1

Fix

F1 =
( q−1∑

i=0

(
πF τi

0 1

)
+

(
0 1

πF 0

))
(v1 ⊗ v∗2)

It comes out that ∀(k, k′) ∈ K ×K

F1(k, k′) = q.
µ1(πF )√

q
+

√
q

µ1(πF )
=

√
q

µ1(πF )
· (1 + µ1(πF )2)

Now consider γ−1F1(k, k′). On the one hand

γ−1F1 =
( q−1∑

i=0

γ−1

(
πF τi

0 1

)
+ γ−1

(
0 1

πF 0

))
(v1 ⊗ v∗2)

=
( q−1∑

i=0

(
1 τi

πF

0 1

)
+

(
0 1

πF

πF 0

))
(v1 ⊗ v∗2).

On the other hand, for any (k, k′) in K ×K,

(
γ−1F1

)
(k, k′) = F1(kγ−1, k′γ−1).

Take k =

(
a b
c d

)
, and kγ−1 =

(
a

πF

b
c

πF
d

)
. If val c = 0, then val d + 1 ≥ val c and

kγ−1 =

(
ad−bc

c
a

πF

0 c
πF

)(
0 −1

1 πF d
c

)

with (
0 −1

1 πF d
c

)
∈ K and (χ1 · δ

1

2 )

(
ad−bc

c
a

πF

0 c
πF

)
=

µ1(πF )√
q
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If val c ≥ 1, then val d = 0 and

kγ−1 =

(ad−bc
πF d b

0 d

)(
1 0
c

πF d 1

)

with (
1 0
c

πF d 1

)
∈ K and (χ1 · δ

1

2 )(

(ad−bc
πF d b

0 d

)
) =

√
q

µ1(πF )

The same calculation with k′ leads to the following:

F1(kγ−1, k′γ−1) =

√
q

µ1(πF )
· (1 + µ1(πF )2) ·





µ1(πF )√
q · µ2(πF )√

q if val c = val c′ = 0
µ1(πF )√

q ·
√

q
µ2(πF ) if val c = 0 and val c′ ≥ 1

√
q

µ1(πF ) ·
µ2(πF )√

q if val c ≥ 1 and val c′ = 0
√

q
µ1(πF ) ·

√
q

µ2(πF ) if val c ≥ 1 and val c′ ≥ 1

Now, with the simple table

g val(c) = 0 val(c) ≥ 1

(
1 0
0 1

)
1,
(

µ2(πF )√
q

)
1,
(

µ2(πF )√
q

)−1

(
0 1

πF 0

) (
µ1(πF )√

q

)
, 1

(
µ1(πF )√

q

)−1
, 1

and

F =A ·
( √

q

µ2(πF )
·
(

0 1
πF 0

)
+

µ1(πF )√
q
·
(

1 0
0 1

))
(v1 ⊗ v∗2)

− A

(1 + µ1(πF )2)
· µ1(πF )√

q
·
(µ1(πF )

µ2(πF )
· F1 + γ−1F1

)

one gets the first formula of lemma 3.

The second formula of lemma 3 is obtained by considering the decomposition

K = ⊔q−1
j=0

(
1 0
τj 1

)
Γ0(πF ) ⊔

(
0 1
1 0

)
Γ0(πF )
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Then, using the table

val(c) = 0 val(c) ≥ 1
g val(d) = val(c) = 0

val(d) ≥ 1 val(d) = 0

(
1 0
0 1

)
1,
(

µ2(πF )√
q

)
1,
(

µ2(πF )√
q

)
1,
(

µ2(πF )√
q

)−1

(
1 0
τj 1

)
such that τj 6= 0
and dτj + c ∈ OF

∗ 1,
(

µ2(πF )√
q

)
1,
(

µ2(πF )√
q

)
1,
(

µ2(πF )√
q

)

(
1 0

τj0 1

)
such that τj 6= 0
and dτj0 + c ∈ πFOF

∅ 1,
(

µ2(πF )√
q

)−1
∅

(
0 1
1 0

)
1,
(

µ2(πF )√
q

)−1
1,
(

µ2(πF )√
q

)
1,
(

µ2(πF )√
q

)

one gets a function

F2 =
( q−1∑

i=0

(
1 0
τi 1

)
+

(
0 1
1 0

))
(v1 ⊗ v∗2)

which satisfies ∀(k, k′) ∈ K ×K

F2(k, k′) = q.
µ2(πF )√

q
+

√
q

µ2(πF )
=

√
q

µ2(πF )
· (1 + µ2(πF )2).

This is the same situation as the previous one : by computing γ−1F2 and choosing the right
coefficients, one gets the second formula of lemma 3. �

Conclusion : Thus, we could write the function F for n = 1 and 1 + µ1(πF )2 6= 0 or
1 + µ2(πF )2 6= 0. The latter condition is precisely condition 1 of theorem 5, which is now
proved. Of course, it would be interesting to remove this condition and then to find F for
any n.
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