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A Method to Detect Broken Bars in Induction
Machine Using Pattern Recognition Techniques

Olivier Ondel, Emmanuel Boutleux, and Guy Clerc, Member, IEEE

Abstract—In this paper, a pattern recognition (PR) method is
used to provide the tracking and the diagnosis of a system. First
of all, from measurements carried out on the system, features
are extracted from current and voltage measurements without
any other sensors. These features are used to build up a pattern
vector, which is considered as the system signature. Then, a feature
selection method is applied in order to select the most relevant
features, which define the representation space. The decision phase
is based on the “k-nearest neighbors” (knn) rule, associated with
an evolution tracking of system using trajectory allowing a diag-
nosis not only of states defined in the training set, but also of the
intermediate states. The appearance of a new operating mode is
taken into account in order to enrich the initial knowledge base
and thus to improve the diagnosis. This approach is illustrated
on asynchronous motor of 5.5 kW with squirrel cage, in order to
detect broken bars under any load level. The experimental results
prove the efficiency of PR methods in condition monitoring of
electrical machines.

Index Terms—Fault detection and diagnosis, features selection,
induction motor, k-nearest neighbors (knn) rule, pattern recogni-
tion (PR).

I. INTRODUCTION

THE MONITORING and diagnosis of electrical machines
have been under focus for at least twenty years with

a special interest in squirrel-cage three-phase induction ma-
chines [1]–[3].

Induction motors present numerous advantages due to their
robustness and their power–weight ratio. Thus, they are widely
used in the industry. Therefore, there is a considerable de-
mand to reduce maintenance costs and prevent unscheduled
downtimes for electrical drive systems, especially ac induction
machine. Most of the recent research has been directed toward
electrical monitoring of the motor in particular on inspecting a
stator current.

Several methods and techniques can be used to detect induc-
tion machine faults. Some methods are described with details
in [4]–[7]. Certainly, among these, the motor current signature

Paper IPCSD-06-026, presented at the 2005 IEEE International Sympo-
sium on Diagnostics for Electrical Machines, Power Electronics and Drives,
Vienna, Austria, September 7–9, and approved for publication in the IEEE
TRANSACTIONS ON INDUSTRY APPLICATIONS by the Electric Machines
Committee of the IEEE Industry Applications Society. Manuscript submitted
for review November 19, 2005 and released for publication April 2, 2006.

O. Ondel and E. Boutleux are with the Centre de Génie Electrique de
Lyon, Ecole Centrale de Lyon, 69134 Ecully, France (e-mail: olivier.ondel@
ec-lyon.fr).

G. Clerc is with the Centre de Génie Electrique de Lyon, Université Claude
Bernard-Lyon 1, 69622 Villeurbanne Cedex, France.

Digital Object Identifier 10.1109/TIA.2006.876071

analysis (MCSA) is a well-known approach for the detection
and identification of faults in induction machine through their
“signatures” over current signals. These methods are rather
effective when the motor is supplied by electricity network.
However, nowadays, more and more in the industrial applica-
tions, the asynchronous motor is associated with pulsewidth-
modulation (PWM)-based drives in particular for the variation
speed.

With this type of supply, the currents are affected by the
multiple harmonics of the commutation frequency. This makes
it almost impossible to detect of the faulty modes by current
signature analysis. Moreover, the spectral lines do not exist with
very weak load level. Furthermore, the analysis of these current
lines could be ineffective to detect the appearance of other
defects such as those related to the stator. For these reasons it
is necessary to determine other features from various analyses
(statistical analysis) [8], [9].

Finally, a wide range of features is necessary in order to
identify the maximum of defects (electrical and mechanical).

Despite the various techniques mentioned above, the mon-
itoring and fault detection of electrical machines have moved
from the traditional techniques to artificial intelligence (AI)
techniques in recent years [10]–[16]. Research trends show
that AI techniques will have a greater role in electrical motor
diagnostic system with advanced practicability, sensitivity, reli-
ability, and automation.

Recent developments in hardware and software make it pos-
sible to produce a system for automatic condition monitoring of
induction machines using signal processing and classification
techniques for fault diagnosis. The most important point is that
their design does not require a complete mathematical model of
the induction motor.

In this context, this paper presents a diagnosis method
based on a current measurement and a pattern recognition
(PR) analysis. This method is used to detect and localize
failures in induction motors. The aim is to identify automati-
cally the operating conditions (faulty or not) under any level
of load.

In Section II, an introduction to PR for diagnosis is done.
The PR method is made in two phases. The first, named training
phase, consists in determining the pattern vector (choice of the
features sensitive to the defects), the representation space by
features selection methods, the decision space (the classes) and
in developing a decision rule. The second step, named working
phase, consists in associating an unknown pattern with one of
the defined classes, according to the decision rule.

An evolution tracking of various operating modes of the stud-
ied system is presented, just as the prediction of this evolution
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in order to obtain a more powerful diagnosis. Then, we will
be able to characterize all the intermediate states between two
classes.

Section III is devoted to knowledge updating, which corre-
sponds to the recovery for analysis of rejected points in order to
highlight the appearance of one or more new classes.

In Section IV, we apply our diagnosis method on a given
system (asynchronous motor).

In Section V, results obtained are discussed. It presents the
advantage of the diagnosis by PR method and the contribu-
tion of the evolution tracking of operating modes in the final
classification.

II. DIAGNOSIS BY PR

The aim of statistical PR is to classify objects (patterns)
by comparison with reference patterns gathered into classes
(clusters) [17]. Such a decision system based upon PR requires
an a priori knowledge of the studied process in order to define
objects and classes. In statistical PR an object is a set of d
features (x1, x2, . . . , xp, . . . , xd) represented as a point in the
d-dimensional real space issued from these features. This space
is named representation space. Thus, a pattern i (i = 1 to n,
n being the total number of points composing the initial data-
base), is characterized by a pattern vector (or a signature) Xi =
[xi1, xi2, . . . , xid] which belongs to �d. The classes or clusters
(Ω1,Ω2, . . . ,Ωi, . . . ,ΩM ) are geometric areas of �d including
similar reference patterns. The principle of the recognition is
to determine with which class, among the M known classes, to
associate a new observed pattern Xu = [xu1, xu2, . . . , xud].

The PR method is made in two phases. The first one, named
training phase, consists in determining the representation space
(a pattern vector), the decision space (the clusters), and devel-
oping a decision rule that produces boundaries between classes.
The second one, named decision phase, consists in associating
an unknown pattern with one of the defined clusters, according
to the decision rule. The accuracy of PR is based on the
relevance of the pattern vector, i.e., choice of features contained
in this vector. Thus, in the following section, the features used
to detect failures on our system are described.

A. Relevant Signatures for Induction Machine
Fault Monitoring

In order to monitor the electric machine under a large number
of defaults, a list of features is extracted from the current and
voltage signal analysis, respectively, Ia, Ib, Ic and Va, Vb, Vc

[18], [19].
Twenty four features are extracted from the estimation of

the positive sequences components of the lines voltages and
currents (respectively id and vd).

1) Twenty two features are the amplitudes of harmonics,
which are in the power spectrum of the current positive
sequence component:
a) around the supply frequency (fs)

f = fs(1 ± 2 · n · g) (1)

b) around the principal slot frequencies

f = fs

[
Nr(1 − g)

p
± 2 · m

]
± 2 · k · g · fs (2)

where
n 1, 2;
k 0, 1;
m 1/2, 1, 3/2;
g per unit slip;
Nr number rotor slot;
p number of pole pairs.

2) Two features are given by
a) the current energy. For C points in the spectrum, it is

expressed as

P1d =
1
C

·
C∑

k=1

|id(k)|2 (3)

b) the direct impedance (Zd).
Considering the fast Fourier transforms, Id(f) and Vd(f) of

id and vd, respectively, f being the frequency, Zd is calculated.
It is the ratio between the fundamental components of Vd

and Id

Zd =
Vd(f = fs)
Id(f = fs)

with fs : supply frequency. (4)

Most of the faults produce different sensitive frequency
harmonics. However, some of them (stator faults) require other
investigations. For that, the Park’s transformation was applied
on the currents and the voltages in order to calculate others
features.

Eight features are extracted with the help of Park’s vector
approach [20] that is based on a two-dimensional representation
of the three-phase components of the stator current. As a
function of main phase-variables (Ia, Ib, Ic), the current Park’s
vector components are called isα and isβ . Thus, we can write∥∥∥−−→Isα,β

∥∥∥ =
√

i2sα + i2sβ . (5)

In the same way the modulus of the voltage is given by∥∥∥−−−→Vsα,β

∥∥∥ =
√

v2
sα + v2

sβ . (6)

1) Five features are calculated from the currents. The peak-
to-peak values of isα and isβ denoted δα and δβ , respec-
tively, and the standard deviation of ‖−−→Isα,β‖, isα and isβ
named, respectively, σs, σα, and σβ .

2) Three other features are determined from active and reac-
tive powers (P and Q, respectively), which are calculated
with voltages and currents Park’s components [21]

P = vsα · isα + vsβ · isβ
Q = vsβ · isα − vsα · isβ . (7)

Reactive and active powers are normalized by the rms value
of apparent power modulus S =

√
P 2 + Q2 and are denoted
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Q′ and P ′. Their mean values mq and mp are calculated for
each acquisition such as

mp =
1

Np

Np∑
k=1

P ′(k) (8)

mq =
1

Np

Np∑
k=1

Q′(k) (9)

where Np is the number of points in the signals.
Let sk be one point of coordinates (P ′(k), Q′(k)) and

mp,q be the gravity center of this set point mp,q = �mpmq�.
Thus, the variation of the apparent power is the scalar

defined by

ζ =
Np∑
k=1

(sk − mp,q)(sk − mp,q)
T. (10)

Finally, 32 features are determined. This set represents a list
of indicator of multiple faults (electrical and mechanical faults).
The feature set used as motor signature is further described in
[19] and [22].

The disadvantage is that the high number of features can lead
to a very large computing time. According to the various studied
modes contained in the initial training set, it is possible that
some of these features may be not really relevant or may be cor-
related. To correct these drawbacks, a feature selection method
must be used in order to preserve only the most representative
features for the studied faults [23]–[25]. Thus, the pattern vector
will be fitted to the various faults contained in Xa.

B. Pattern Vector Determination

In [26], the authors present the advantages and drawbacks of
the selection methods. According to the author, the sequential
backward selection (SBS) is one of the most simple feature
selection methods. However, this method is not the most per-
fect. Unlike the methods based on genetic algorithm (GA), it
does not allow calculating all the possible combinations of d′

features. Indeed, a comparative study between SBS method and
a method based on GA was carried out in [27]. This paper
showed that the two methods gave almost the same results for
the selected features and for the level of classification. Thus, we
chose to use SBS method because it requires less CPU time.

The objective is to seek, among d initial features, a subset
of d′ features giving the most information. The features subset
will have to maximize a criterion taking into account the sepa-
rability/compactness of classes allowing a better discrimination
of various operating modes.

For that the criterion is based on within-class scatter SW and
the between-class scatter SB matrices whose expressions are as
follows, respectively:

SW =
1
n

M∑
i=1

ni∑
j=1

(Xij − mi)(Xij − mi)T (11)

SB =
1
n

M∑
i=1

(mi − m)(mi − m)T (12)

Fig. 1. Choice of the dimension of representation space.

where M is the number of classes, ni number of samples in the
class Ωi, n the total number of samples, mi the gravity center
of class Ωi, Xij the jth sample of class Ωi, and m the general
gravity center of the initial training set.

The criterion J is directly linked to both above matrices

J = trace
(
S−1

W · SB

)
. (13)

The SBS algorithm consists in deleting, at each step, the
feature that penalizes the above criterion. This algorithm en-
ables reducing the computing times by eliminating redundant
or uninteresting information. This method requires knowing
the partitioning of patterns contained in the initial training
set in various clusters. Thereafter, the classification of a new
observation, i.e., the diagnosis of the system state is strongly
dependent on the selected features but also it can strongly
depend on representation space dimension. Thus, the definition
of this space dimension is also a key point because this value
influences the final classification result. The ideal would be to
determine simultaneously the best features and also the best
dimension. For that, the criterion evolution used in SBS method
according to the different values of d′ is analysed.

Fig. 1 shows an example of the criterion value evolution. It
allows determining the representation space dimension. Indeed,
starting from a certain dimension, the addition of a feature does
not bring any more information. Clearly, on Fig. 1, “b” appears
as the best dimension.

C. Decision Phase: “k-nearest neighbors” (knn) Rule

The decision rule is based on the knn rule. It allows deciding
with which class among M known classes (Ω1,Ω2, . . . ,Ωm) to
associate a new observed patterns Xu.

The distance between all new form Xu and the training
patterns Xi are computed as the following:

d(Xu,Xi) =
[
(Xu − Xi) · Δ · (Xu − Xi)

T
]1/2

(14)

where

d(Xu,Xi) = distance between the points Xu and Xi.

Δ is the identity matrix if the classical Euclidean distance
is used or the inverse of the variance covariance matrix if
Mahalanobis distance [28] is used.
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Fig. 2. Decision phase in PR system. (a) Affectation. (b) Ambiguity reject.
(c) Distance reject.

The Mahalanobis distance is used for our application because
it takes into account the dispersion of classes.

The Euclidean distance is more suitable when the defined
classes have hyperspheric patterns with almost the same vari-
ance on each axis.

Xu will be assigned with the best-represented class among
its knn.

In order to minimize the errors of classification, it is neces-
sary to realize an adaptive diagnosis system, in which incom-
plete knowledge can be enriched. For that, the system must
be able to include in its initial database, new operating modes,
and to take into account the possible evolution of a number of
classes.

In this purpose, two reject options [26], [29] are used, which
allows avoiding automatic assigning of an unknown form to one
of the classes (Fig. 2).

1) The ambiguity reject deals with the observations, which
are near to the decision border between two classes. It
copes with patterns that could belong equally to several
classes: Xu is really assigned to Ωi only if more than k′

among its knn belong to Ωi, else Xu is rejected (with k′

equals k/2).
2) The distance reject is applied to patterns situated far from

high-density areas. In other words, the distance between
an unknown pattern Xu and its assigned class must be
less than a defined threshold.

Assume that the class Ωi is made up of ni points (Xij ,
j = 1 . . . ni). mi is the center of gravity of this class. Then,
the distance reject rule is{

Xu is rejected if d(Xu,mi)>2 · max
j=1,ni

⌊
d(Xij ,mi)

⌋
Else Xu belongs to Ωi.

(15)

D. Taking Into Account the Evolution of the Operating Modes

The disadvantage of the previous method is that a new
observation located between two classes can be rejected in
ambiguity or distance, whereas it belongs to the same operating
mode. Indeed, the training set being not exhaustive, it is impos-
sible to have measurements with and without defect under any
load level.

Fig. 3. (a)–(c) Representation of the trajectory of the operating mode
concerned.

Thus, it is necessary to take into account the evolution
of operating mode due to the level of load of the motor. A
linear interpolation between the different centers of gravity
of L various classes of the same operating mode is applied.
This leads to a function representing an 〈〈average trajectory〉〉
[Fig. 3(a)]. It is estimated by a mathematical function for each
dimension. As this evolution is slow, the mathematical function
used is a polynomial function with the following expression:

x(d) = a(d) +
L−1∑
r=1

(br(d)zr) (16)

where
z level of load;
d number of dimension (i = 1 to d′);
ad, bd coefficients determined for each dimension “d”.

These coefficients can be easily computed using a
mean-square method;

x(d) dth component of the pattern vector.
The evolution of an operating mode is finally described by a

function discretized every 1%.
Let us consider an example of the motors application. A

training set of healthy operation for various levels of load (0%,
25%, 50%, and 75% of nominal load) (cf., Fig. 3) will be
considered. The evolution function is then defined by

x(d) = a(d) + b1(d) · z + b2(d) · z2 + b3(d) · z3. (17)

Thus, the rejected points by the knn decision rule will be
analysed according to this “trajectory.” We are able to deter-
mine if a new observation Xu belongs to the same operating
mode but with a different level of load.

As for the knn rule, a distance reject option was applied
to avoid an assignment error. We will call it “trajectory of
maximum dispersion.” This one is determined according to the
following way.

1) Starting from an operating mode made up of L classes,
we search, for each class, the furthest point from their
respective center of gravity. It consists in determining the
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maximum dispersion of these classes. From the L points,
which are obtained, we estimate a mathematical function
that will be used as acceptance threshold. This threshold
is represented in the Fig. 3(b).

This reject can be summarized in the following way:

If d(mi,mn) ≤ 1.5 ∗ d(mi,mimax) then Nch = i% (18)

where
mn center of gravity of the new class or new obser-

vation;
mi points of the 〈〈Evolution of operating mode〉〉(i =

1, . . . , 100);
mimax points of 〈〈Acceptance threshold〉〉 (i=1, . . . ,

100);
Nch level of load of the new class or the new

observation.

III. KNOWLEDGE UPDATING

The method of classification is a decision method with
reject option (distance and ambiguity): some observations are
classified and others rejected.

This knowledge updating phase corresponds to the reusing
for analysis of the rejected points: there is, perhaps, a structure
of these rejected set points highlighting one or more classes.

For that, the intraclass dispersion of the rejected points is
taking into account.

From the rejected points, the intraclass dispersion Cr of the
pseudo new class is determined, and then it is compared with
average intraclass dispersion Cm of the classes defined in the
training set. If Cm and Cr are nearly the same value then we
have appearance of a new class.

The detection or the appearance of a new class can be
summarized as follows:

Detection of new classes
1) Calculation of average compactness Cm of the classes

defined in the training set.
2) Calculation of the compactness of the rejected

points Cr.
3) Comparison of Cm and Cr.
If Cr ≤ 1.5 ∗ Cm

Then Appearance of a new class
4) Human expertise to label the new class.
5) Integration of this new class in the training set.

IV. EXPERIMENTAL RESULTS

The asynchronous motor used for experimental investigation
is a three-phase induction motor, 50 Hz, 4 poles, 5.5 kW,
11.4 A, and 1440 r/min. The healthy squirrel-cage rotor is made
of 28 bars.

As all AI methods, our method based on PR approach is
based on an initial knowledge database named “training set.”
This set is defined in Table I.

In this table, two operating modes are studied: healthy mode
and faulty mode with three broken bars. These operating con-

TABLE I
COMPOSITION OF INITIAL TRAINING SET

Fig. 4. Evolution of criterion value according to various values of d′.

ditions are studied for four load levels: at no load, 25%, 50%,
and 75% of the nominal load. The total number of operating
conditions is six: three for the healthy mode and three for the
rotor having three broken bars.

For each functional state, 15 acquisitions of 10 s, at 10 kHz,
have been made in order to check the signature robustness.
Among the 15 acquisitions, 10 are used to perform the
training set. The five remaining constitute a test set being
used to validate the performance of the diagnosis method
(cf., Section IV-B). Thus, the training set is made of 60 samples,
10 by operating modes.

As we can seen in the Table I, the classes Ω2 and Ω8

corresponding to the healthy mode at 25% of load and faulty
mode at 50% of load, respectively, have not been included into
the initial training set, in order to show the utility of evolution
tracking for each operating modes in the final diagnosis. The
experiment is realized in two steps:

1) determination of the relevant features constituting the
pattern vector;

2) assignment of test samples according to the decision rule
(knn) described in Section II-C.

A. First Step: Pattern Vector Determination

Initially, it is composed of 32 features (d = 32).
As we have seen, classification varies according to the pattern

vector dimension. While following the evolution of the criterion
value, it is possible to determine automatically the value of d′.

We note, on the Fig. 4, for d′ = 5, the criterion value does
not decrease any more to a significant degree. This break allows
determining, without ambiguity, the choice of d′. Increasing
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TABLE II
COMPARISON OF THE CRITERION VALUE FOR THE

TWO METHODS WITH d′ = 5

Fig. 5. Different classes representing the two states and their evolutions
according to level of load (healthy rotor “+”, three broken bars “O”).

the value of d′ will not bring any additional information on
classification.

These results confirm that the evolution of the criterion value
(13) is a simple and satisfactory solution to determine the
dimension of the representation space.

The results in Table II are obtained on a computer unit
“Advanced Micro Devices, Inc. (AMD) AthlonTM 64 proces-
sor 3000+” and 512 Mb double-data-rate (DDR) RAM.

If we compare the pattern vector defined by SBS and GA
method, the only difference is the choice of features d′ (two dif-
ferent for d′ = 5). The criterion value given by the two methods
is nearly the same. On the other hand, the computing time with
SBS is much lower than the GA one (decreasing of 75%).

Thus, for this classification application, the pattern vector
Vop used, is this determined by SBS method

Vop = [mp mq σα σβ Zd ]

where
mp, mq mean values of active and reactive powers, nor-

malized by the rms value of apparent modulus;
σα, σβ standard deviations of iα and iβ (currents Park’s

vector components);
Zd direct impedance. It is the ratio between the fun-

damental components of Vd (voltage Park’s vector
component) and Id.

It is noted that the frequency components used as features
are not selected to form the optimal pattern vector. Indeed, they
are ineffective to discriminate the different operating modes
for weak load level (near to 0%). That confirms they are less
effective than the features extracted with the Park’s vector
approach (cf., Section II-A).

TABLE III
PRESENTATION OF THE VARIOUS TEST SETS

TABLE IV
ASSIGNMENT RESULTS OF TEST SET HEALTHY PATTERNS

TABLE V
ASSIGNMENT RESULTS OF TEST SET FAULTY PATTERNS

Fig. 5 shows the different classes in the best three-
dimensional space obtained from the principal components
analysis (PCA) [30]. The three-dimensional space is a linear
combination of the five features contained into the pattern
vector.

In the second step, various test sets representing several
operating modes are used to verify the fault detection capability
of the diagnosis system.

B. Second Step: Validation

The data file for the test phase is made up of 40 samples,
5 by operating states. These 40 samples were not used to carry
out the training phase. In this way, the training and test sets are
always disjoined. Test sets are presented in the Table III.

The Tables IV and V present the assignment of the tests
points Xu at a defined class in training set. This assignment
is carried out by the decision rule associated with trajectory.

Concerning the healthy mode (cf., Table IV), only two mea-
surements are badly affected. They are samples being located at
0% of load. That shows all the difficulty to dissociate these ma-
chine states for weak level of load. The five test points contained
in C2 representing the healthy mode at 25% of load are assigned
to the class Ω2 corresponding to the healthy mode at 25%.
Normally, these points should have been rejected in distance
because they are not represented in the initial training set. But
using the evolution tracking (trajectories) (cf., Section II-D)
they are well identified.

Concerning the faulty mode (cf., Table V), all the samples are
well assigned. The five test points contained in C8 representing
the faulty mode at 50% of load are assigned to the class Ω8

corresponding to the faulty mode at 50%.
The total classification rate (TC) is: TC : 38/40 = 95%.
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V. DISCUSSION ON THE RESULTS

The use of a great set of features (signature of the system)
versus a single indicator allows a better discrimination of the
various operating modes. Indeed, this set represents a list of
indicator of several faults (electrical and mechanical faults).
Using this pattern vector, the application of a simple decision
method (knn rule) allows obtaining very good classification
result. Indeed, as the classes (representing the various operating
modes) are well separated, it is easy to carry out the assignment
of a new observation. Taking into account the evolution of
each operating mode contained in the initial training set makes
it possible to decrease the number of samples necessary for
the training phase. Moreover, which allows classifying all new
observation being located between two classes of the same
operating mode but with a different level of load.

VI. CONCLUSION

A diagnosis system based on PR was presented and applied
to the detection of broken bars in an asynchronous motor. The
knn rule, associated with the reject options was improved by
taking into account the evolution of operating modes contained
in the training set (trajectories). Now, this rule allows carrying
out a more complete diagnosis by allowing us to label a new
observation which belongs to an operating mode defined in the
training set but being located between two classes (intermediate
state). The updating of knowledge by the detection of new
classes will allow packing the database (training set), and
thus, progressively, obtaining a more complete labeling, and
therefore a more powerful diagnosis. Finally, this technique will
allow realizing a preventive maintenance ensuring the safety of
the material and the personnel.
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