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Homogenization of the dislocation dynamics

and of some particle systems with two-body interactions

Nicolas Forcadel1, Cyril Imbert2, Régis Monneau1

May 15, 2007

Abstract. This paper is concerned with the homogenization of a non-local first order Hamilton-Jacobi equation
describing the dynamics of several dislocation lines and the homogenization of some particle systems with two-
body interactions. The first objective is to establish a connection between the rescaled dynamics of a increasing
number of dislocation lines and the dislocation dynamics density, passing from a discrete model (dislocation
lines) to a continuous one (dislocation density). A first answer to this problem was presented in a paper by
Rouy and the two last authors [18] but the geometric definition of the fronts was not completely satisfactory.
This problem is completely solved here. The limit equation is a nonlinear diffusion equation involving a first
order Lévy operator. This integral operator keeps memory of the long range interactions, while the nonlinearity
keeps memory of short ones. The techniques and tools we introduce turn out to be the right ones to get
homogenization results for the dynamics of particles in two-body interaction. The systems of ODEs we consider
are very close to overdamped Frenkel-Kontorova models. We prove that the rescaled “cumulative distribution
function” of the particles converges towards the continuous solution of a nonlinear diffusion equation.

Keywords: periodic homogenization, Hamilton-Jacobi equations, moving fronts, two-body interactions,
integro-differential operators, Lévy operator, dislocation dynamics, Slepčev formulation, Frenkel-Konto-
rova model.
Mathematics Subject Classification: 35B27, 35F20, 45K05, 47G20, 49L25, 35B10.

1 Introduction

In this paper, we study a non-local Hamilton-Jacobi equation describing the dynamics of dislocation lines
in interaction and we apply these results to get homogenization for both the dislocation dynamics and
some one dimensional particle systems.

A model for the dynamics of a single dislocation is proposed in Alvarez et al. [1] by using the so-called
level set approach. We adapt here this model to describe the motion of several dislocation lines moving in
two-body interaction. The level set approach permits to describe such geometric motions by considering
a function u : R+×RN such that, for any (but fixed) α ∈ [0, 1), the dislocation line Γα

k at time t coincides
with

{x : u(t, x) = α+ k}
for k = 1, . . . , N. After rescaling the problem, we therefore obtain the following equation

{

∂tu
ε =

(

c
(

t
ε ,

x
ε

)

+Mε
[

uε(t,·)
ε

]

(x)
)

|∇uε| in (0,+∞)× RN ,

uε(0, x) = u0(x) on RN
(1)

where Mε is a 0 order non-local operator defined by

Mε [U ] (x) =

∫

RN

dz J(z)E (U(x+ εz)− U(x)) (2)
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where E is a modification of the integer part:

E(α) = k +
1

2
if k ≤ α < k + 1. (3)

The non-local operator M ε describes the interactions between dislocation lines. Their interactions are thus
completely characterized by a kernel J . We assume that J ∈ W 1,1(RN ) is an even nonnegative function
with the following behaviour at infinity

∃ R0 > 0 and ∃ g ∈ C0(SN−1), g ≥ 0 such that J(z) =
1

|z|N+1
g

(

z

|z|

)

for |z| ≥ R0. (4)

Let us mention that such an assumption is natural for dislocations and can be (slightly) generalized. In
the special case where J has a bounded support (choose g = 0), we also assume

inf
e∈[0,1)N

∫

RN

dz min(J(z), J(z + e)) > 0 if N ≥ 2. (5)

As far as the forcing term c and the initial datum are concerned, we assume
{

c(τ, y) is Lipschitz continuous and ZN+1-periodic w.r.t. (τ, y);
u0 ∈W 2,∞(RN ).

(6)

Our first aim is to say what happens to the solution uε of (1) as ε→ 0.

This paper follows [17] and [18]. The main difference lies in the fact that the model we propose here
describes better the geometric motion of the dislocation lines (see Section 3). Let us explain this briefly.
In the level set approach for the motion of a single front, the initial front is described as the 0-level set
of a function u0 that is used as the initial datum of a Cauchy problem. The front at time t > 0 is then
defined as the 0-level set of the solution u of the Cauchy problem. If now one considers two functions u0

and v0 with the same 0-level set, the geometric motion is well defined if the corresponding 0-level sets of
the solutions of the Cauchy problem coincide. Considering now the motion of a finite number of fronts,
the model in [18] did not satisfy such a property. But it does with the new model we consider in this paper
(see Theorem 4.7). We will refer to this property as the consistency of the definition of the fronts.

The technical difficulty when trying to solve (1) is: how to deal with the integer part E, since it is
discontinuous? Our first try in [18] was to regularize E, make a change of unkown function and perform
the homogenization in this framework (see also [17] for similar techniquess for local equations). Here, on
the contrary, we want to keep the model with the integer part in order to get consistency of the definition
of the fronts. We use a notion of viscosity solutions for non-local equations introduced by Slepčev [24]. It
consists in considering the simultaneous evolution of all the level sets of the function uε (see Definition 4.1).
Such a definition ensures the stability of solutions, a key property in the viscosity solution approach.

The first aim of this work is to pass from a discrete and microscopic model involving the evolution
of a finite number of dislocation lines to a continuous and macroscopic one describing the evolution of a
dislocation density. To do so, we prove a homogenization result, i.e. we prove that the limit u0 of uε as
ε → 0 exists and is the (unique) solution of a homogenized (or effective) equation. The function u0 is
understood as a “cumulative distribution function” associated with dislocations and its gradient represents
the dislocation density. As in [18], the effective equation is

{

∂tu
0 = H

0 (I1[u0(t, ·)],∇u0
)

in (0,+∞)× RN ,
u0(0, x) = u0(x) on RN

(7)

where H
0

is a continuous function and I1 is an anisotropic Lévy operator of order 1 associated with the
function g appearing in (4). It is defined for any function U ∈ C2

b (RN ) for r > 0 by

I1[U ](x) =
∫

|z|≤r
(U(x+ z)− U(x)−∇xU(x) · z) 1

|z|N+1 g
(

z
|z|

)

dz

+
∫

|z|≥r
(U(x+ z)− U(x)) 1

|z|N+1 g
(

z
|z|

)

dz (8)
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(notice that the latter expression is independent of r since J is even). As explained in [18], this Lévy
operator I1 only keeps the memory of the long range interactions between dislocations, as the effective

Hamiltonian H
0

will keep the memory of the short range interactions (see the proof of Lemma 6.1 below).
As usual in periodic homogenization, our aim is two-folded: to determine the so-called effective Hamiltonian

H
0

and to prove the convergence of uε towards u0.

The second aim of this work is to apply these techniques to get homogenization results for the following
system of ODEs

ẏi = F − V ′
0(yi)−

∑

j∈{1,...,Nε}\{i}

V ′(yi − yj) for i = 1, . . . , Nε (9)

where F is a constant given force, V0 is a 1-periodic potential and V is a potential taking into account
two-body interactions. One can think of yi as the “position” of dislocation straight lines. The key fact for
applying the results about the solution of (1) is that, under proper assumptions on V0 and V , the function

ρε(t, x) = ε

(

−1

2
+

Nε
∑

i=1

H(x− εyi(t/ε))

)

(where H is the Heavyside function — see below for a definition) satisfies (1) for some c and J well
chosen and suitable initial data. Hence, the rescaled “cumulative distribution function” ρε of particles is
proved to converge towards the unique solution of the corresponding nonlinear diffusion equation (7). See
in particular [22] for interesting results concerning homogenization of some gradient systems with wiggly
energies.

We would like to conclude this introduction by mentioning that our work is focused on a particular
equation with a particular scaling in ε, directly inspired from the dislocation dynamics. It would be
interesting to consider several extensions of this model. A first extension could take into account the
presence of Franck-Read sources or of mean curvature motion terms. The study of different scalings in ε
and different decays at infinity for the kernel J is another interesting question. We also want to point out
that getting some error estimates, both for the homogenization process and for the numerical computation
of the effective Hamiltonian, would be also very interesting. To finish with, let us mention that we will
study in a future work the homogenization of classical Frenkel-Kontorova models [20] (see also [15]) which
are systems of ODEs. The main idea is to redefine the nonlocal operator M ε in (2) by truncating the
modified integer part E. Precisely, one can consider a Slepčev formulation of (1)-(2) where E is replaced
with T 3

2
(E)(r) = max(− 3

2 ,min( 3
2 , E(r))).

Organization of the article. The paper is organized as follows. In Section 2, we present our main results.
In Section 3, we give a physical derivation of equation (1). In Section 4, we recall the definition of viscosity
solutions for equations like (1) and (12), we give a stability result, a comparison principle and existence
results. The proof of the ergodicity of the problem (Theorem 2.1) is presented in Section 5. Section 6 is
devoted to the proof of the convergence (Theorem 2.5). In Section 7, we establish the qualitative properties
of the effective Hamiltonian described in Theorem 2.6. Finally, in Section 8, we apply our approach to the
case of systems of particles (Theorem 8.1 and 2.11).

Notation. The open ball of radius r centered at x is classically denoted Br(x). When x is the origin,
Br(0) is simply denoted Br and the unit ball B1 is denoted B. The cylinder (t−τ, t+τ)×Br(x) is denoted
Qτ,r(t, x). The indicator function of a subset A ⊂ C is denoted by 1A: it equals 1 on A and 0 on C \A.

The quantity bxc denotes the floor integer parts of a real number x. Let H(x) denote the Heaviside
function:

H(r) =

{

1 if r ≥ 0,
0 if r < 0.

It is convenient to introduce the unbounded measure on RN defined on RN \ {0} by:

µ(dz) =
1

|z|N+1
g

(

z

|z|

)

dz (10)
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and such that µ({0}) = 0. For the reader’s convenience, we recall here the five integro-differential operators
appearing in this work:

Mε [U ] (x) =

∫

RN

E(U(x+ εz)− U(x))J(z) dz

Mα
p [U ] (x) =

∫

RN

{E(U(x+ z)− U(x) + p · z + α)− p · z} J(z) dz,

for α = 0, Mp [U ] (x) =

∫

RN

{E(U(x+ z)− U(x) + p · z)− p · z} J(z) dz,

for α = 0 and p = 0, M [U ] (x) =

∫

RN

{E(U(x+ z)− U(x))} J(z) dz,

I1[U ](x) =

∫

RN

(U(x+ z)− U(x)− 1Br
(z)∇xU(x) · z)

1

|z|N+1
g

(

z

|z|

)

dz.

To each operator M , we associate M̃ which is defined in the same way but where E is replaced with
E∗ defined as follows

E∗(α) = k +
1

2
if k < α ≤ k + 1.

See Section 4 for further details.

2 Main results

2.1 General homogenization results

We explained in the introduction that our first aim is to get homogenization results for (1). In other
words, we want to say what happens to the solution uε of (1)as ε → 0. We classically try to prove that
uε converges to the solution u0 of an effective equation. In order to both determine the effective equation
and prove the convergence, it is also classical to perform a formal expansion, that is to write uε as u0 + εv.
One must next find an equation (E) solved by v. The function v is classically called a corrector and the
equation it satisfies is referred to as the cell equation or cell problem. In our case, such a problem is
associated with any constant L ∈ R and any p ∈ RN :

λ+ ∂τv =

(

c(τ, y) + L+Mp[v(τ, ·)](y)

)

|p+∇v| in (0,+∞)× RN (11)

where

Mp[U ](y) =

∫

dz J(z) {E (U(y + z)− U(y) + p · z)− p · z} .

The construction of correctors v satisfying (11) is one of the important problem we have to solve. It is
done by considering the solution w of







∂τw =

(

c(τ, y) + L+Mp[w(τ, ·)](y)

)

|p+∇w| in (0,+∞)× RN ,

w(0, y) = 0 on RN .
(12)

and by looking for some λ ∈ R such that w − λτ is bounded. Here is the precise result.

Theorem 2.1 (Ergodicity). Under the assumptions (4)-(5)-(6), for any L ∈ R and p ∈ RN , there exists a
unique λ ∈ R such that the continuous viscosity solution of (12) (in the sense of Definition 4.1) satisfies:
w(τ,y)

τ converges towards λ as τ → +∞, locally uniformly in y. The real number λ is denoted by H
0
(L, p).

Moreover, the function H
0

satisfies

H
0

is continuous in (L, p) and nondecreasing in L. (13)
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Remark 2.2. Condition (5) is related to the periodicity assumption on the velocity. Indeed, assumption (5)
is crucial in our analysis and we do not know if ergodicity holds or not if this assumption is not fullfilled
in dimension N ≥ 2.

Remark 2.3. Condition (13) ensures the existence of solutions for the homogenized equation (7) (see
Theorem 4.6).

Remark 2.4. A superscript 0 appears in the effective Hamiltonian. The reason is the same as in [18]: we
will have to study the ergodicity of a family of Hamiltonians in order to prove the convergence. With the

notation of Section 5, we have H
0
(L, p) = H(L, p, 0).

With correctors in hand, we can now prove the convergence of the sequence uε. The second main result
of this paper is the following convergence result.

Theorem 2.5 (Convergence). Under the assumptions (4)-(5)-(6), the bounded continuous viscosity solu-
tion uε of (1) (in the sense of Definition 4.1) with initial data u0 ∈W 2,∞(RN ), converges as ε→ 0 locally
uniformly in (t, x) towards the unique bounded viscosity solution u0 of (7).

Recall that the first homogenization problem we are trying to solve comes from dislocation theory. We
thus would like to be able to get an interpretation of the homogenization result we obtain in terms of

dislocation theory. This is the reason why we look for qualitative properties of H
0
. Considering the one

dimensional special case and a driving force independent of time, we obtain the following

Theorem 2.6 (Qualitative properties of H
0
). Under the assumptions N = 1, c = c(y) and

∫

(0,1)
c = 0,

the function H
0
(L, p) is continuous and satisfies the following properties:

1. If c ≡ 0 then H
0
(L, p) = L|p|.

2. (Bound) We have
∣

∣

∣

∣

∣

H
0
(L, p)

|p| − L
∣

∣

∣

∣

∣

≤ ‖c‖∞ for (L, p) ∈ R× R.

3. (Sign of the Hamiltonian)

H
0
(L, p)L ≥ 0 for (L, p) ∈ R× R.

4. (Monotonicity in L) The function H
0
(L, p) satisfies for C = ‖c‖∞ + (|p|+ 1

2 )‖J‖L1 :

|H0|
(|L| − C)

+ ≥
∂H

0

∂L
≥ |H0|
|L|+ C

.

5. (Modulus of continuity in L) There exists a constant C1 only depending on ‖∇c‖∞ such that

0 ≤ H0
(L+ L′, p)−H0

(L, p) ≤ C1|p|
| lnL′| for 0 < L′ ≤ 1

2
.

6. (Antisymmetry in L) If there exists a ∈ R such that −c(y) = c(y + a), then:

H
0
(−L,−p) = −H0

(L, p).

7. (Symmetry in p) If there exists a ∈ R such that c(−y) = c(y + a), then:

H
0
(L,−p) = H

0
(L, p).
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8. (0-plateau property) If c 6≡ 0, then there exists r0 > 0 (only depending on ‖c‖∞ and J|R\[−1,1])
such that:

H
0
(L, p) = 0 for (L, p) ∈ Br0

(0) ⊂ R2.

9. (Non-zero Hamiltonian for large p) Let us assume that c ∈W 2,∞(R), J ∈W 1,∞(R) and:

h0, h1 ∈ L1(R)

where
h0(z) = sup

a∈[−1/2,1/2]

|J(z + a)|, h1(z) = sup
a∈[−1/2,1/2]

|J ′(z + a)|.

Then there exists a constant C > 0 (depending on ‖c‖W 2,∞ , ‖h0‖L1 , ‖h1‖L1) such that:

LH
0
(L, p) > 0 for |L| > C/|p| and |p| > C.

Remark 2.7. Notice that assuming
∫

c = 0 is not a restriction at all.

Remark 2.8. The qualitative properties 8 and 9 of the homogenized Hamiltonian shows that there is a
cooperative collective behaviour. More precisely, increasing the dislocation density allows to move the
dislocations that were locked for small densities (and small enough L).
The 0-plateau property for small p is related to the work of Aubry [3] on the breaking of analyticity of the
hull function. In particular, from De La Llave [7], it is possible to see that for any Diophantine number p
and for any c small enough (depending on p), with c and V analytic, we have

LH
0
(L, p) > 0 for L 6= 0.

The threshold C
p for large p is related to the well-known pile-up effect for dislocations in front of an obstacle.

Indeed, it is know that for an applied stress La and a pile-up of p dislocations stuck on the obstacle, the
internal stress field created by the the obstacle is F = pLa (see [14] page 766 for further details). Therefore
to make the dislocations to move, we need to apply a stress of the order F/p, which is exactly the result
we get.

Remark 2.9. In the case c ≡ 0, self-similar solutions of (7) were obtained by Head (see for instance [8, 13]).

The typical profile of H
0

is represented in Figure 1. We also refer to Ghorbel [11] and Ghorbel, Hoch,
Monneau [12] for simulations.

Remark 2.10. The boundary of the set {H0
(L, p) = 0} is given by two graphs h−(p) ≤ L ≤ h+(p), but it

is not known if h+ and h− are continuous.

2.2 Application to the homogenization of particle systems with two-body in-

teractions

As explained in the Introduction, we are able to apply the homogenization results of (1) to the system of
ODEs (9) because under appropriate assumptions the function ρ of (τ, y) defined by

ρ(τ, y) = −1

2
+

Nε
∑

i=1

H(y − yi(τ)) (14)

(where H is the Heaviside function — see the Introduction for a definition) is a solution of (1) with ε = 1
and c independent on time where

c(y) = V ′
0(y)− F and J = V ′′ on R\{0}. (15)

See Theorem 8.1 for a precise statement.
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H
0

= 0

H
0

> 0

H
0

< 0

L

p

Figure 1: Schematic representation of the effective Hamiltonian

Before presenting the results for (9), let us make precise the assumptions on F , V0 and V and make
some comments on them. We recall that F is a constant given force and V0 is a 1-periodic potential. As
far as V is concerned, we assume

Assumption (H)

(H0) V ∈W 1,∞
Loc (R) and V ′′ ∈W 1,1(R\{0}),

(H1) V is symmetric, i.e. V (−y) = V (y),

(H2) V is nonincreasing and convex on (0,+∞),

(H3) V ′(y)→ 0 as |y| → +∞,

(H4) there exists R0 > 0 and a constant g0 such that V ′′(y)y2 = g0 for |y| ≥ R0.

In (H4), V ′′ will play the role of the function J appearing in (2) and condition (H4) is equivalent to (4). It
is possible to slightly generalize Assumption (H4) by only assuming an asymptotic behaviour of V ′′ instead
of assuming that it coincides with g0/y

2 outside a fixed ball. The system of ODEs (9) has some similarities

V (y)

y

Figure 2: Typical profile for a potential V satisfying assumptions (H).

with the overdamped Frenkel-Kontorova model [20], except that in the classical Frenkel-Kontorova model
only interactions between nearest neighboors are considered (see Hu, Qin, Zheng [15]; see also Aubry [3],
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Aubry, Le Daeron [4] as far as stationnary solutions are concerned). We plan to study the homogenization
of the classical Frenkel-Kontorova model in a future work.

Then we have the following homogenization result for our particle system.

Theorem 2.11 (Homogenization of the particle system). Assume that V0 is 1-periodic, V ′
0 is Lipschitz

continuous and V satisfies (H). Assume that y1(0) < ... < yNε
(0) are given by the discontinuities of the

function ρε
0(x) = εE

(

u0(x)
ε

)

with E defined by (3), for some given nondecreasing function u0 ∈W 2,∞(R).

Define ρ as in (14) and consider

ρε(t, x) = ερ

(

t

ε
,
x

ε

)

.

Then ρε converges towards the solution u0(t, x) of (7) where the operator I1 is defined by (8) with

g (z/|z|) = g0 and H
0

is given in Theorem 2.1 with c and J defined in (15).

Remark 2.12. In the case of short range interactions, i.e., g0 = 0 in (H4), the homogenized equation (7) is

a local Hamilton-Jacobi equation and the dislocation density ∂u0

∂x satisfies formally a hyperbolic equation.

Remark 2.13. Theorem 2.11 is still true (with other constants depending possibly on these quantities) with
a potential V0(t, x) periodic in x and t (see Theorem 2.5). Moreover, the regularity of the initial data u0

can be considerably weakened if necessary.

Since our first goal was to study dislocation dynamics, the following generalization is of special interest.

Theorem 2.14 (The dislocation case). Theorems 2.11 and 2.6 (excepted point 4. and point 9.) are still
true with V (x) = − ln |x| and c and J defined by (15).

Remark 2.15. Here the annihilation of particles is not included in (9), but our approach with equation (1)
could be developed in this case.

3 Physical derivation of the model for dislocation dynamics

Dislocations are line defects in crystals. Their typical length is of the order of 10−6m and their thickness
of the order of 10−9m. When the material is submitted to shear stress, these lines can move in the
crystallographic planes and their complicated dynamics is one of the main explanation of the plastic
behaviour of metals.

In the present paper we are interested in describing the effective dynamics for the collective motion
of dislocation lines with the same Burgers’s vector and all contained in a single slip plane {x3 = 0} of
coordinates x = (x1, x2), and moving in a periodic medium. At the end of this derivation, we will see that
the dynamics of dislocations is described by equation (1) in dimension N = 2.

Several obstacles to the motion of dislocation lines can exist in real life: precipitates, inclusions, other
pinned dislocations or other moving dislocations, etc. We will describe all these obstacles by a given field

c(t, x) (16)

that we assume to be periodic in space and time. Another natural force exists: this is the Peach-Koehler
force acting on a dislocation j. This force is the sum of the interactions with the other dislocations k for
k 6= j, and of the self-force created by the dislocation j itself.

The level set approach for describing dislocation dynamics at this scale consists in considering a function
v such that the dislocation k ∈ Z is basically described by the level set {v = k}. Let us first assume that
v is smooth.

As explained in [1], the Peach-Koehler force at the point x created by a dislocation j is well-described
by the expression

c0 ? 1{v≥j}

8



where 1{v≥j} is the characteristic function of the set {v ≥ j} which is equal to 1 or 0. In a general setting,
the kernel c0 can change sign. In the special case where the dislocations have the same Burgers vector and
move in the same slip plane, a monotone formulation (see Alvarez et al. [1], Da Lio et al. [6]) is physically
acceptable. Indeed, the kernel can be chosen as

c0 = J − δ0

where J is nonnegative and δ0 denotes the Dirac mass. The negative part of the kernel is somehow
concentrated at the origin. Moreover, we assume that J satisfies the symmetry condition: J(−z) = J(z)
and

∫

R2
J = 1 so that we have (at least formally)

∫

R2 c0 = 0. The kernel J can be computed from physical
quantities (like the elastic coefficients of the crystal, the Burgers vector of the dislocation line, the slip
plane of the dislocation, the Peierls-Nabarro parameter, etc.). We set formally

(

δ0 ? 1{v≥j}

)

(x) :=







1 if v(x) > j
1
2 if v(x) = j
0 if v(x) < j

We remark in particular that the Peach-Koehler force is discontinuous on the dislocation line in this
modeling (see Figure 3).

(J − δ0) ? 1{x∈R2, x1>0}

x1

Figure 3: Typical profile for the Peach-Koeller force created by a dislocation straight line.

Let us now assume that for integers N1, N2 ≥ 0, we have −N1− 1/2 < v < N2 + 1/2. Then the Peach-
Koehler force at the point x on the dislocation j (i.e. v(x) = j) created by dislocations for k = −N1, ..., N2

is given by the sum
(

(J − δ0) ?

N2
∑

k=−N1

1{v≥k}

)

(x) = (J ? E(v − v(x))) (x) (17)

with E defined in (3). Defining the normal velocity to dislocation lines as the sum of the periodic field
(16) and the Peach-Koehler force (17), we see that the dislocation line {v = j} for integer j, is formally a
solution of the following level set (or eikonal) equation:

vt = (c+ J ? E(v − v(x))) |∇v| (18)

which is exactly (1) with ε = 1.
We refer in particular to [18] for a mechanical interpretation of the homogenized equation and the

references therein for other studies of models with dislocation densities. See in particular [23] for the
homogenization of one-dimensional models giving some rate-independent plasticity macroscopic models.
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4 Viscosity solutions for non-local equations (1) and (12)

In this paper, we have to deal with Hamilton-Jacobi equations involving integro-differential operators. For
Equations (1) and (12), we will use a definition of viscosity solutions first introduced by Slepčev [24]. As
far as Equation (7) is concerned, the reader is referred to [18] for a definition for viscosity solution and for
the proof of a comparison principle in the class of bounded functions.

Let us first recall the definition of relaxed lower semi-continuous (lsc for short) and upper semi-
continuous (usc for short) limits of a family of functions uε which is locally bounded uniformly w.r.t.
ε:

lim sup∗uε(t, x) = lim sup
ε→0,s→t,y→x

uε(s, y) and lim inf∗u
ε(t, x) = lim inf

ε→0,s→t,y→x
uε(s, y).

If the family contains only one element, we recognize the usc envelope and the lsc envelope of a locally
bounded function u:

u∗(t, x) = lim sup
s→t,y→x

u(s, y) and u∗(t, x) = lim inf
s→t,y→x

u(s, y).

4.1 Definition of viscosity solutions

In this subsection, we will give the definition of viscosity solution for the following problem

{

∂tu =
(

c(t, x) +Mα
p [u(t, ·)](x)

)

|p+∇u| in (0,+∞)× RN ,
u(0, x) = u0(x) on RN (19)

where Mα
p is defined by

Mα
p [U ](x) =

∫

RN

dz J(z) {E(U(x+ z)− U(x) + p · z + α)− p · z} .

It will be convenient to define the following associated operator

M̃α
p [U ](x) =

∫

RN

dz J(z) {E∗(U(x+ z)− U(x) + p · z + α)− p · z} .

where we recall that

E∗(α) = k +
1

2
if k < α ≤ k + 1.

We now recall the definition of viscosity solutions introduced by Slepčev in [24]:

Definition 4.1 (Viscosity solutions for (19)). A upper semi-continuous (resp. lower semi-continuous)
function u : R+ × RN → R is a viscosity subsolution (resp. supersolution) of (19) if u(0, x) ≤ u∗0(x) in
RN (resp. u(0, x) ≥ (u0)∗(x)) and for any (t, x) ∈ (0,∞) × RN and any test function φ ∈ C2(R+ × RN )
such that u− φ attains a maximum (resp. a minimum) at the point (t, x) ∈ (0,+∞)× RN , then we have

∂tφ(t, x) ≤
(

c(t, x) +Mα
p [u(t, ·)](x)

)

|p+∇φ|
(

resp. ∂tφ(t, x) ≥
(

c(t, x) + M̃α
p [u(t, ·)](x)

)

|p+∇φ|
)

.

A function u is a viscosity solution of (19) if u∗ is a viscosity subsolution and u∗ is a viscosity supersolution.

4.2 Stability results for (19)

In this subsection, we will prove a general stability result for the non-local term. The following proposition
permits to show all the classical stability results for viscosity solutions we need.
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Proposition 4.2 (Stability of the solutions of (19)). Let (un)n be a sequence of uniformly bounded usc
functions (resp. lsc functions) and let u denote lim sup∗un (resp. u = lim inf∗un). Let (tn, xn, pn, αn) →
(t0, x0, p, α) in R×RN ×RN ×R be such that un(tn, xn)→ u(t0, x0) (resp. un(tn, xn)→ u(t0, x0)). Then

lim sup
n→∞

Mαn
pn

[un(tn, ·)](xn) ≤Mα
p [u(t0, ·)](x0) (20)

(

resp. lim inf
n→∞

M̃αn
pn

[un(tn, ·)](xn) ≥ M̃α
p [u(t0, ·)](x0)

)

.

This result is a consequence of the stability of the Slepčev definition and in particular of the following
lemma (whose proof is given in [24]):

Lemma 4.3. Let (fn)n be a sequence of measurable functions on RN , and consider

f = lim sup∗fn

and
f = lim inf∗fn.

Let (an)n be a sequence of R converging to zero. Then

L({fn ≥ an}\{f ≥ 0})→ 0 as n→∞
and

L({f > 0}\{fn > an})→ 0 as n→∞
where L(A) denotes the Lebesgue measure of measurable set A.

Proof of Proposition 4.2. We just prove the result for u. Let ε > 0. Using the strong decay at infinity of
J and the fact that |E(r)− r| ≤ 1

2 , we know that there exists R such that for any n ∈ N
∣

∣

∣

∣

∣

∫

|z|≥R

J(z){E(un(tn, xn + z)− un(tn, xn) + pn · z + αn)− pn · z}
∣

∣

∣

∣

∣

≤ ε

4
,

∣

∣

∣

∣

∣

∫

|z|≥R

J(z){E(u(t0, x0 + z)− u(t0, x0) + p · z + α)− p · z}
∣

∣

∣

∣

∣

≤ ε

4
. (21)

Moreover, using the uniform bound on the sequence (un)n, we deduce that for |z| ≤ R, there exists N0 ∈ N,
N0 ≥ 1, such that

|un(tn, xn + z)− un(tn, xn) + pn · z + αn| ≤ N0

and
|u(t0, x0 + z)− u(t0, x0) + p · z + α| ≤ N0.

We notice that

E(β) =
∑

k≥1

1{β≥k} −
∑

k≤0

1{β<k} +
1

2
. (22)

We then get that
∫

|z|≤R

J(z){E(un(tn, xn + z)− un(tn, xn) + pn · z + αn)− pn · z}

−
∫

|z|≤R

J(z){E(u(t0, x0 + z)− u(t0, x0) + p · z + α)− p · z}

≤
∫

|z|≤R

J(z)

{ N0
∑

k=1

(

1{un(tn,xn+z)−un(tn,xn)+pn·z+αn≥k} − 1{u(t0,x0+z)−u(t0,x0)+p·z+α≥k}

)

−
0
∑

k=−N0

(

1{un(tn,xn+z)−un(tn,xn)+pn·z+αn<k} − 1{u(t0,x0+z)−u(t0,x0)+p·z+α<k}

)

}

(23)
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Since the two sums are finite, we get, using Lemma 4.3, that for n big enough

N0
∑

k=1

∫

|z|≤R

dz J(z)
(

1{un(tn,xn+z)−un(tn,xn)+pn·z+αn≥k} − 1{u(t0,x0+z)−u(t0,x0)+p·z+α≥k}

)

≤ ε

4

0
∑

k=−N0

∫

|z|≤R

dz J(z)
(

1{u(t0,x0+z)−u(t0,x0)+p·z+α<k} − 1{un(tn,xn+z)−un(tn,xn)+pn·z+αn<k}

)

≤ ε

4
. (24)

Using (21), (23) and (24) we deduce that

Mα
p [un(tn, ·)](xn) ≤Mα

p [u(t0, ·)](x0) + ε

for n big enough. This implies (20).

4.3 Comparison principles

In this subsection, we will prove a comparison principle for (19).

Theorem 4.4 (Comparison Principle). Let T > 0 and assume that J ∈ W 1,1(RN ). Consider an initial
datum u0 ∈ W 2,∞(RN ) and a forcing term c ∈ W 1,∞([0,+∞) × RN ). Let u be a bounded upper semi-
continuous subsolution of (19) and v be a bounded lower semi-continuous supersolution. Then u(t, x) ≤
v(t, x) for all (t, x) ∈ [0, T ]× RN .

Proof. Suppose by contradiction that M0 = sup(0,T )×RN (u(t, x) − v(t, x)) > 0. For all 0 < γ < 1, η >
0, β > 0, we define

Φη
γ,β(t, x, y) = u(t, x)− v(t, y)− ηt+ p · (x− y)− eK0t

( |x− y|2
2γ

+ β(|x|2 + |y|2)

)

where K0 is a constant which will be chosen latter. We observe that lim sup|x|,|y|→∞ Φη
γ,β(t, x, y) = −∞

so Φη
γ,β reaches its maximum at a point (t̄, x̄, ȳ) ∈ [0, T ] × RN × RN . Moreover, the constant K0 being

fixed, we have M0 = sup Φη
γ,β ≥ M0

2 for η and β small enough. Standard arguments show that

|x̄− ȳ|2 ≤ C0γ, β(|x̄|2 + |ȳ|2) ≤ C0 (25)

with C0 depending on ‖u‖∞, ‖v‖∞, p and K0.
We claim that there exists 0 < γ < 1 such that for all β small enough, we have t̄ > 0. Indeed, if for all

0 < γ < 1 there exists β > 0 (small) such that t̄ = 0, then the following estimates holds:

M0

2
≤M0 ≤u(0, x̄)− v(0, ȳ) + |p||x̄− ȳ|

≤(‖Du0‖∞ + |p|)|x̄− ȳ|.

Using (25), we get a contradiction if γ is small enough and we prove the claim. Dedoubling the time
variable and passing to the limit yields that there are a, b ∈ R and p̄, q̄x, q̄y ∈ RN such that

a− b = η +K0e
K0 t̄

( |x̄− ȳ|2
2γ

+ β(|x̄|2 + |ȳ|2)

)

,

p̄ = eK0 t̄ x̄− ȳ
γ

, q̄x = 2βeK0 t̄x̄, q̄y = 2βeK0 t̄ȳ,

a−
(

c(t̄, x̄) +Mα
p [u(t̄, ·)](x̄)

)

|p̄+ q̄x| ≤ 0

and
b−

(

c(t̄, ȳ) + M̃α
p [v(t̄, ·)](ȳ)

)

|p̄− q̄y| ≥ 0.
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Subtracting the two last inequalities, we get

η +K0e
K0 t̄

( |x̄− ȳ|2
2γ

+ β(|x̄|2 + |ȳ|2)

)

≤
(

c(t̄, x̄) +Mα
p [u(t̄, ·)](x̄)

)

|p̄+ q̄x| −
(

c(t̄, ȳ) + M̃α
p [v(t̄, ·)](ȳ)

)

|p̄− q̄y|. (26)

We define

A = {z : E(u(t̄, z)− u(t̄, x̄) + p · (z − x̄) + α) ≤ E∗(v(t̄, z)− v(t̄, ȳ) + p · (z − ȳ) + α)}. (27)

The inequality Φη
γ,β(t̄, x̄, ȳ) ≥ Φη

γ,β(t̄, x, x) yields

u(t̄, z)−u(t̄, x̄)+p ·(z− x̄)+α ≤ v(t̄, z)−v(t̄, ȳ)+p ·(z− ȳ)+α−eK0 t̄

( |x̄− ȳ|2
2γ

+ β(|x̄|2 + |ȳ|2)− 2β|z|2
)

.

This implies that
Ac ⊂ {|z| ≥ Rγ,β},

where

(Rγ,β)2 =
1

2β

( |x̄− ȳ|2
2γ

+ β(|x̄|2 + |ȳ|2)

)

.

We now distinguish two cases.

Case 1. There exists a constant C̃γ > 0 such that for any β small enough we have

|x̄− ȳ|
2γ

≥ C̃γ .

In this case, we have
{|z − x̄| ≥ Rγ,β} ⊂ {|z| ≥ R̃γ,β} (28)

where R̃γ,β = −|x̄|+Rγ,β → +∞ as β → 0 (see Da Lio et al. [6, Lemma 2.5]). This implies that

Mα
p [u(t̄, ·)](x̄) =

∫

RN

dz J(x̄− z) {E(u(t̄, z)− u(t̄, x̄) + p · (z − x̄) + α)− p · (z − x̄)}

≤
∫

RN

dz J(x̄− z) {E∗(v(t̄, z)− v(t̄, ȳ) + p · (z − ȳ) + α)− p · (z − x̄)}+ oβ(1).

Using (26) we then get

η +K0e
K0 t̄

( |x̄− ȳ|2
2γ

+ β(|x̄|2 + |ȳ|2)

)

≤ (c(t̄, x̄)− c(t̄, ȳ)) |p̄+ q̄x|+ c(t̄, ȳ) (|p̄+ q̄x| − |p̄− q̄y|)
+Mα

p [u(t̄, ·)](x̄) (|p̄+ q̄x| − |p̄− q̄y|)
+
(

Mα
p [u(t̄, ·)](x̄)− M̃α

p [v(t̄, ·)](ȳ)
)

|p̄− q̄y|

≤‖∇c‖∞|x̄− ȳ||p̄+ q̄x|+ ‖c‖∞|q̄x + q̄y|+
(

2‖u‖∞ + α+
1

2

)

‖J‖L1(RN )|q̄x + q̄y|

+

(∫

RN

dz J(x̄− z) {E∗(v(t̄, z)− v(t̄, ȳ) + p · (z − ȳ) + α)− p · (z − ȳ)}+

∫

RN

dz J(x̄− z)(p · (x̄− ȳ))

−
∫

RN

dz J(ȳ − z) {E∗(v(t̄, z)− v(t̄, ȳ) + p · (z − ȳ) + α)− p · (z − ȳ)}
)

|p̄− q̄y|

+ oβ(1)|p̄− q̄y|

≤eK0 t̄ |x̄− ȳ|2
2γ

(

2‖∇c‖∞ + 2‖∇J‖L1(RN )

(

2‖v‖∞ +
1

2
+ α

)

+ 2‖J‖L1(RN )

)

+ oβ(1)
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where we have used the definition of p̄ and that |q̄x|, |q̄y| = oβ(1). Taking

K0 = 2‖Dc‖∞ + 2‖DJ‖L1(RN )(2‖v‖∞ +
1

2
+ α) + 2‖J‖L1(RN ),

we get a contradiction for β small enough.

Case 2. there exists a subsequence βn, such that

|x̄− ȳ|
2γ

→ 0 as n→ +∞.

In this case, we have |p̄ + q̄x| → 0 and |p̄ − q̄y| → 0 as n → +∞. Sending n → +∞ in (26), we get a
contradiction.

This ends the proof of the theorem.

4.4 Existence results

Theorem 4.5. Consider u0 ∈ W 2,∞(RN ), c ∈ W 1,∞([0,+∞) × RN ) and J ∈ W 1,1(RN ). For ε > 0,
there exists a (unique) bounded continous viscosity solution uε of (1). Moreover, there exists a constant
C independent on ε > 0 such that,

|uε(t, x)− u0(x)| ≤ Ct. (29)

Proof. As it is explained in [18, Proof of Theorem 6] (see also Alvarez, Tourin [2] or Imbert [16, Theorem
3]), to apply the Perron’s method for non-local equations, it suffices to prove that there exists a constant
C > 0 (independent of ε) such that u0±Ct are respectively a super and a subsolution. The only difficulty

is to bound, for every C, the term
∣

∣

∣Mε
[

u0(·)+Ct
ε

]∣

∣

∣

∞
by a constant C1 independent of C and ε. To do this,

it suffices to remark that
∣

∣

∣

∣

Mε

[

u0(·) + Ct

ε

]∣

∣

∣

∣

∞

≤ 1

2
‖J‖L1 +

∫

RN

dz J(z)

∣

∣

∣

∣

u0(x+ εz)

ε
− u0(x)

ε
−∇u0(x) · z

ε
1B(z)

∣

∣

∣

∣

and to use [18, Proof of Theorem 6] to get a constant C̃1 = C̃1(R0, N, ||u0||W 2,∞) such that

∫

RN

dz J(z)

∣

∣

∣

∣

u0(x+ εz)

ε
− u0(x)

ε
−∇u0(x) · z

ε
1B(z)

∣

∣

∣

∣

≤ C̃1

(with R0 appearing in (4)). Then taking C1 = 1
2‖J‖L1 + C̃1 and C = (‖c‖∞ + C1)‖∇u0‖, we get that

u0 ± Ct are respectively a super and a subsolution. This achieves the proof of the theorem.

We recall the existence and uniqueness result for (7).

Theorem 4.6 ([18, Proposition 3]). Assume that u0 ∈ W 2,∞(RN ), g ≥ 0, g ∈ C0(SN−1) and H
0

is
continuous in (L, p) and nondecreasing in L, then the homogenized equation (7) has a unique bounded
continuous viscosity solution u0.

4.5 Consistency of the definition of the geometric motion

As explained in Sections 1 and 3, Eq. (1) is the rescaled level set equation corresponding to the motion of
N fronts submitted to monotone two-body interactions. The classical level set approach is well adapted
for describing the motion of fronts since it can be proved (at least for local equations) that if (1) is solved
for two initial data u0 and v0 that have the same 0-level set, then so have the two corresponding solutions.
It turns out that the classical proof of [5] can be adapted to our framework. Before explaining it, let us
state precisely the result.
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Theorem 4.7. Consider two bounded uniformly continuous functions u0, v0 and two corresponding solu-
tions u and v of (1) with ε = 1. Fix any α ∈ [0, 1), and assume that u0 and v0 satisfy for any k ∈ Z

{u0 < k + α} = {v0 < k + α} & {u0 > k + α} = {v0 > k + α}.

Then the solutions u and v satisfy

{u(t, ·) < k + α} = {v(t, ·) < k + α} & {u(t, ·) > k + α} = {v(t, ·) > k + α}.

The proof of this theorem relies on the invariance of the set of sub/super solutions of a level set equation
under the action of monotone semicontinuous functions. Such a result is classical in the level set approach
literature.

Proposition 4.8. Assume that θ : R → R is nondecreasing and upper semicontinuous (resp. lower
semicontinuous). Assume also that

θ(v)− v is 1− periodic in v. (30)

Assume that ε = 1 in (1). Consider also a subsolution (resp. supersolution) u of (1). Then θ(u) is also a
subsolution (resp. supersolution) of (1).

The proof of this proposition is postoned and we now explain how to use it to prove Theorem 4.7.

Proof of Theorem 4.7. We only do the proof for bounded fronts since the general case imply further tech-
nicalities we want to avoid, see for instance [19]. This is the reason why we assume that for any k ∈ Z
(case α = 0)

{u0 = k} = {v0 = k} is bounded.

We now follow the lines of the original proof of [5]. Hence, we introduce two nondecreasing functions φ
and ψ

φ(r) =

{

inf{v0(y) : u0(y) ≥ r} if r ≤M
φ(M) if r > M

ψ(r) =

{

sup{v0(y) : u0(y) < r} if r ≥ m
ψ(m) if r < m

where M = supu0 and m = inf u0. It is clear that φ is upper semicontinuous and ψ is lower semicontinuous.
We now consider increasing extension φ̃, ψ̃ of φ and ψ that satisfy ψ̃(k) = k = φ̃(k) for k ∈ Z and define







φ̄(v) = inf
k∈Z

{φ̃(v + k)− k}
ψ̄(v) = sup

k∈Z

{ψ̃(v + k)− k}

(in fact the infimum or supremum are only on finite values of k because u0 and v0 are bounded). By
noticing that φ̄(u0) ≤ v0 ≤ ψ̄(u0) (because v0 ≤ Ψ(u0 + ε) for any ε > 0) and using Proposition 4.8, we
conclude that φ̄(u) ≤ v ≤ ψ̄(u). It is now easy to conclude.

It remains to prove Proposition 4.8.

Proof of Proposition 4.8. We just need to check that the non-local term can be handled in the classical
proof. We only treat the case of subsolutions. Consider first θ ∈ C1(R) such that θ′ > 0. Consider ϕ a
test function from above satisfying θ(u) ≤ ϕ with equality at (t0, x0). Then u ≤ θ−1(ϕ) and

∂t(θ
−1(ϕ)) ≤ c[u]|∇xθ

−1(ϕ)|

with
c[u] = c(t0, x0) +M [u(t0, ·)](x0).

Because from (22)

E(u(t0, x0 + z)− u(t0, x0)) ≤ E(θ(u(t0, x0 + z))− θ(u(t0, x0)))
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we deduce that
∂tϕ ≤ c[θ(u)]|∇xϕ|,

i.e. θ(u) is a subsolution in the sense of Definition 4.1.
In the general case, use the following lemma whose proof is left to the reader.

Lemma 4.9. For a usc nondecreasing function θ, there exists θε ∈ C1 such that (θε)′ > 0, θε ≥ θ and
lim sup∗ θε = θ.

On one hand, one can prove that such an approximation satisfies lim sup∗ θε(u) = θ(u). On the other
hand, θε still satisfies (30). Hence θε(u) is a subsolution of (1) by the previous case and we conclude that
so is θ(u) by the stability result.

5 Ergodicity

As explained in the Introduction, we will need in the proof of convergence to add a parameter α > 0 in
the cell problem. For the solution w of

{

∂τw =
(

c(τ, y) + L+Mα
p [w(τ, ·)](y)

)

|p+∇yw| in (0,+∞)× RN

w(0, y) = 0 on RN ,
(31)

we prove a result that is stronger than Theorem 2.1.

Theorem 5.1 (Estimates for the initial value problem). There exists a unique λ = λ(L, p, α) such that
the (unique) bounded continuous viscosity solution w ∈ C([0, T ]× RN ) of (31) satisfies:

|w(τ, y)− λτ | ≤ C3, (32)

|w(τ, y)− w(τ, z)| ≤ C1, for all y, z ∈ RN (33)

|λ− (L+ α‖J‖L1)|p|| ≤ ‖c‖∞|p| =: C2 (34)

where

C1 =
(2‖c‖∞ + ‖J‖L1)

c0
, C3 = 5C1 + 2C2, c0 = inf

δ∈[0,1/2)N

∫

RN

dz min (J(z − δ), J(z + δ)) > 0. (35)

In the case N = 1, we can choose:
C1 = |p|. (36)

Theorem 2.1 is a consequence of (32). The existence of bounded solutions v(τ, y) = w(τ, y)− λτ of

λ+ ∂τv =
(

c(τ, y) + L+Mα
p [v(τ, ·)](y)

)

|p+∇yv| on (0,+∞)× RN (37)

is a straighforward consequence of the previous theorem:

Corollary 5.2 (Existence of bounded correctors). There exists a solution v of (37) that satifies:

|v(τ, y)| ≤ C3,

|v(τ, y)− v(τ, z)| ≤ C1.

Remark 5.3. To construct periodic sub and supersolution of (11) we can also classically consider

δvδ + vδ
τ =

(

c1(τ, y) + L+Mp[vδ(τ, ·)](y)
)

|p+∇yv
δ|

and take the limit δ → 0.

In order to solve the homogenized equation and to prove the convergence theorem, further properties
of the number λ given by Theorem 5.1 are needed.
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Corollary 5.4 (Properties of the effective Hamiltonian). The real number λ defines a continuous function
H : R× RN × R→ R that satisfies:

H(L, p, α)→ ±∞ as L→ ±∞, (38)

H(L, p, α)→ ±∞ as α→ ±∞. (39)

Moreover, H(L, p, α) is nonincreasing in L and α.

In a first subsection, we successively prove Theorem 5.1 in dimension N ≥ 2 and Corollary 5.4. Theorem
5.1 in the case N = 1 will be proved in a second subsection.

5.1 Proof of Theorem 5.1 and Corollary 5.4

Proof of Theorem 5.1 in the case N ≥ 2. We proceed in several steps.

Step 1: barrriers and existence of a solution. We proceed as in the proof of Theorem 4.5. We
remark that w±(τ, y) = C±τ with C± = (L+α‖J‖L1)|p| ±C2 (with C2 defined in (34)) are respectively a
super- and a subsolution of (31) (use that Mp[0] ≡ 0). Hence, there exists a unique bounded continuous
viscosity solution of (31) that satisfies:

|w(τ, y)− (L+ α‖J‖L1)|p|τ | ≤ ‖c‖∞|p|τ. (40)

Remark that by uniqueness, w is ZN -periodic with respect to y.

Step 2: control of the oscillations w.r.t. space, uniformly in time. We proceed as in [18] by
considering the functions M(τ), m(τ) and q(τ) defined by:

M(τ) = sup
y∈RN

w(τ, y), m(τ) = inf
y∈RN

w(τ, y) and q(τ) = M(τ)−m(τ) ≥ 0.

The supremum and infimum are attained since w is 1-periodic with respect to y. In particular, we can
assume that:

M(τ) = w(τ, Yτ ) and m(τ) = w(τ, yτ ) and Yτ − yτ ∈ [0, 1)N .

Now m, M and q satisfy in the viscosity sense:

dM

dτ
(τ) ≤

(

c(τ, Yτ ) + L+Mα
p [w(τ, ·)](Yτ )

)

|p|

≤(‖c‖∞ +
1

2
‖J‖L1 + L+ α‖J‖L1)|p|+

∫

dz J(z)(w(τ, Yτ + z)− w(τ, Yτ ))|p|,

dm

dτ
(τ) ≥

(

c(τ, yτ ) + L+Mα
p [w(τ, ·)](yτ )

)

|p|

≥(−‖c‖∞ −
1

2
‖J‖L1 + L+ α‖J‖L1)|p|+

∫

dz J(z)(w(τ, yτ + z)− w(τ, yτ ))|p|,

dq

dτ
(τ) ≤(2‖c‖∞ + ‖J‖L1)|p|+ L(τ)|p|

where

L(τ) =

∫

dz J(z)(w(τ, Yτ + z)− w(τ, Yτ ))−
∫

dz J(z)(w(τ, yτ + z)− w(τ, yτ )).

Let us estimate L(τ) from above by using the definition of yτ and Yτ . To do so, let us introduce δτ =
Yτ−yτ

2 ∈ [0, 1
2 )N and cτ = Yτ +yτ

2 and write:

L(τ) =

∫

dz J(z − δτ )(w(τ, cτ + z)− w(τ, Yτ ))−
∫

dz J(z + δτ )(w(τ, cτ + z)− w(τ, yτ ))

≤ min
δ∈[0, 1

2
)N

∫

dz min{J(z − δ), J(z + δ)}(w(τ, yτ )− w(τ, Yτ )) = −c0q(τ).
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We conclude that q satisfies in the viscosity sense:

dq

dτ
(τ) ≤ (2‖c‖∞ + ‖J‖L1)|p| − c0|p|q(τ)

with q(0) = 0 from which we obtain q(τ) ≤ C1 for any τ ≥ 0 which can be rewritten under the following
form:

|w(τ, y)− w(τ, z)| ≤ C1 for any τ ≥ 0, y, z ∈ RN . (41)

Step 3: control of the oscillations w.r.t. time. We keep following the construction of the
correctors of [18] by introducing, in order to estimate oscillations w.r.t. time, the two quantities:

λ+(T ) = sup
τ≥0

w(τ + T, 0)− w(τ, 0)

T
and λ−(T ) = inf

τ≥0

w(τ + T, 0)− w(τ, 0)

T

and proving that they have a common limit as T → +∞. In order to do so, we first estimate λ+ from
above. This is a consequence of the comparison principle for (31) on the time interval [τ, τ + τ0] for every
τ0 > 0: since w(τ, 0) + C1 + w+(t) is a supersolution, we get for t ∈ [0, τ0]:

w(τ + t, y) ≤ w(τ, 0) + C1 + C+t (42)

where C± = (L+ α‖J‖L1)|p| ± C2. Similarly, we get

w(τ, 0)− C1 + C−t ≤ w(τ + t, y). (43)

We then obtain for τ0 = t = T :

(L+ α‖J‖L1)|p| − C2 −
C1

T
≤ λ−(T ) ≤ λ+(T ) ≤ (L+ α‖J‖L1)|p|+ C2 +

C1

T

By definition of λ±(T ), for any δ > 0, there exists τ± ≥ 0 such that

∣

∣

∣

∣

λ±(T )− w(τ± + T, 0)− w(τ±, 0)

T

∣

∣

∣

∣

≤ δ.

Let us consider β ∈ [0, 1) such that τ+−τ−−β = k is an integer. Next, consider ∆ = w(τ+, 0)−w(τ−+β, 0).
From (41), we get:

w(τ+, y) ≤ w(τ− + β, y) + 2C1 + ∆ = w(τ+ − k, y) + 2C1 + ∆.

The comparison principle for (31) on the time interval [τ+, τ+ +T ] (using the fact that c(τ, y) is Z-periodic
in τ) therefore implies that:

w(τ+ + T, y) ≤ w(τ+ − k + T, y) + 2C1 + ∆

= w(τ− + β + T, y) + 2C1 + w(τ+, 0)− w(τ− + β, 0).

Choosing y = 0 in the previous inequality yields:

w(τ+ + T, 0)− w(τ+, 0) ≤ w(τ− + β + T, 0)− w(τ− + β, 0) + 2C1

and setting t = β ≤ 1 and τ = τ− + T in (42) and τ = τ− in (43) finally yields:

Tλ+(T ) ≤ Tλ−(T ) + 2δ + 2(C1 + C2) + 2C1.

Since this is true for any δ > 0, we conclude that:

|λ+(T )− λ−(T )| ≤ 4C1 + 2C2

T
.
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Now arguing as in [17, 18], we conclude that limT→+∞ λ±(T ) exist and are equal to λ and:

|λ±(T )− λ| ≤ 4C1 + 2C2

T
. (44)

Step 4: conclusion. Estimate (40) implies (34). From (44), we conclude that:

∣

∣

∣

∣

w(τ + T, 0)− w(τ, 0)

T
− λ

∣

∣

∣

∣

≤ 4C1 + 2C2

T

which implies that:
|w(T, 0)− λT | ≤ 4C1 + 2C2

and finally (32) derives from this inequality and (41). The uniqueness of λ follows from (32) for instance.

Proof of Corollary 5.4. The only point to be proved is the continuity of H since (34) implies the other
properties. Let us consider a sequence (Ln, pn, αn)→ (L0, p0, α0) and set λn = λ(Ln, pn, αn). We remark
that by (32), we have for any τ > 0

∣

∣

∣

∣

λn −
wn(τ, 0)

τ

∣

∣

∣

∣

≤ C3

τ

for some constant C3 that we can choose independent on n. Stability of viscosity solutions for (31) implies
that wn → w0 locally uniformly w.r.t. (τ, y). This implies that lim supn→+∞ |λn − λ0| ≤ 2C3

τ for any
τ > 0. Hence, we conclude that limn→+∞ λn = λ0.

Finally the monotonicity in L and α of H(L, p, α) comes from the comparison priniciple.

5.2 Proof of Theorem 5.1 in the case N = 1

Before proving Theorem 5.1 in the one dimensional case, we need the following lemma:

Lemma 5.5. Let w be the solution of (31) in dimension N = 1. Then the function y 7→ p(p · y+w(τ, y))
is nondecreasing for any τ ≥ 0, i.e.,

p(p+ wy(τ, y)) ≥ 0.

Proof. We only do the proof in the case p > 0, since the case p < 0 is similar and the case p = 0 is trivial.
We want to prove that

M0 = inf
ΩT

{w(τ, x)− w(τ, y) + p · (x− y)} ≥ 0

where ΩT = {(τ, x, y), 0 ≤ τ ≤ T, y ≤ x}. By contradiction, assume that M0 ≤ −δ < 0. For η > 0, we
consider

Φη(τ, x, y) = w(τ, x)− w(τ, y) + p · (x− y) +
η

T − τ
and

Mη = inf
ΩT

Φη(τ, x, y) ≤ − δ
2

(45)

for η small enough.

By the space periodicity of w, we remark that

{

Φη(τ, x+ 1, y + 1) = Φη(τ, x, y)
Φη(τ, x− 1, y) = Φη(τ, x, y)− p if x− 1 ≥ y

so the minimum is reached at a point (τ̄ , x̄, ȳ) with 0 ≤ x̄ − ȳ < 1 and τ̄ < T (because w is bounded
by the barrier functions). Moreover x̄ > ȳ and t̄ > 0; indeed, otherwise we can check easily that the
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minimum would be nonnegative. Dedoubling the time variable and passing to the limit yields that there

exist (a,−p) ∈ D+
w(τ̄ , ȳ) and (b,−p) ∈ D−

w(τ̄ , x̄) with

a− b =
η

(T − τ̄)2

such that (see equation (31))
a ≤ 0 and b ≥ 0.

Subtracting the two above inequalities yields a contradiction.

Proof of Theorem 5.1 in the case N = 1. Let us assume that p > 0 since the case p < 0 is proved similarly
and the case p = 0 is trivial.

Consider the solution w of (31). Lemma 5.5 ensures that u(τ, y) = w(τ, y) + p · y is nondecreasing:

∇yu ≥ 0.

To simplify the notation, let us drop the time dependence. We also know that w is 1-periodic in y, so
for all 0 ≤ y ≤ z ≤ 1, we have

py + w(y) ≤ pz + w(z) ≤ p(y + 1) + w(y).

This implies that
|w(y)− w(z)| ≤ p.

The rest of the proof in the same as in the case N ≥ 2.

6 The proof of convergence

This Section is devoted to the proof of Theorem 2.5.

Proof of Theorem 2.5. We consider the upper semicontinuous function u = lim sup ∗uε. By Theorem 4.5,
it is bounded for bounded times and u(0, x) = u0(x). As usual, we are going to prove that it is a
subsolution of (7). Similarly, we can prove that u = lim inf ∗u

ε is a bounded supersolution of (7) such that
u(0, x) = u0(x). Theorem 4.6 thus yield the result.

Let us prove that u is a subsolution of (7). We argue (classically) by contradiction by assuming that
there exists a point (t0, x0), t0 > 0, and a test function φ ∈ C2 such that u− φ attains a global zero strict
maximum at (t0, x0) and:

∂tφ(t0, x0) = H
0
(L0, p) + θ = H(L0, p, 0) + θ

with

L0 =

∫

|z|≤2

{φ(t0, x0 + z)− φ(t0, x0)−∇φ(t0, x0) · z}µ(dz) +

∫

|z|≥2

{u(t0, x0 + z)− u(t0, x0)}µ(dz) (46)

and p = ∇φ(t0, x0) and θ > 0. By Corollary 5.4, there exists α > 0 and β > 0 such that:

∂tφ(t0, x0) = H(L0 + β, p, α) +
θ

2
. (47)

In the following, λ denotes H(L0 + β, p, α).

We now construct a supersolution φε of (1) on a small ball centered at (t0, x0) by using the perturbed
test function method (see [9, 10]). Precisely, we consider:

φε(t, x) =

{

φ(t, x) + ε v
(

t
ε ,

x
ε

)

− ηr if (t, x) ∈ (t0/2, 2t0)×B1(x0),
uε(t, x) if not
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where ηr is chosen later and the corrector v is a bounded solution of (37) associated with (L, p, α) =
(L0 + β, p, α) given by Corollary 5.2. We will prove that φε is a supersolution of (1) on Br(t0, x0) (for r
and ε small enough – this is made precise later) and that φε ≥ uε outside. In particular, r is chosen small
enough so that Br(t0, x0) ⊂ (t0/2, 2t0)×B1(x0).

Let us first focus on “boundary conditions”. For ε small enough (i.e. 0 < ε ≤ ε0(r) < r), since u − φ
attains a strict maximum at (t0, x0), we can ensure that:

uε(t, x) ≤ φ(t, x) + εv

(

t

ε
,
x

ε

)

− ηr for (t, x) ∈ (t0/3, 3t0)×B3(x0) \Br(t0, x0) (48)

for some ηr = or(1) > 0. Hence, we conclude that φε ≥ uε outside of Br(t0, x0).

We now turn to the equation. Consider a test function ψ such that φε −ψ attains a local minimum at
(t, x) ∈ Br(t0, x0). This implies that v − Γ attains a local minimum at (τ , y) where τ = t

ε , y = x
ε and

Γ(τ, y) =
1

ε
(ψ − φ)(ετ, εy).

Since v is a viscosity solution of (37), we conclude that:

λ+ ∂τ Γ(τ , y) ≥
(

c(τ , y) + L+ M̃α
p [v(τ , ·)](y)

)

|p+∇Γ(τ , y)|

from which we deduce:
(

∂tφ(t0, x0)− θ

2

)

+ ∂tψ(t, x)− ∂tφ(t, x)

≥
(

c(τ , y) + L+ M̃α
p [v(τ , ·)](y)

)

∣

∣∇ψ(t, x)− (∇φ(t, x)−∇φ(t0, x0))
∣

∣ .

Hence, we get:

∂tψ(t, x) ≥
(

c

(

t

ε
,
x

ε

)

+ L0 + β + M̃α
p

[

v

(

t

ε
, ·
)](

x

ε

))

|∇ψ(t, x) + or(1)|+ θ

2
+ or(1)

where or(1) only depends on local bounds of φ and its derivatives. Since c is bounded and:

|M̃α
p [v(τ , ·)](y)| ≤ (osc v(τ, ·) + α‖J‖L1) +

1

2
‖J‖L1 ≤

(

C1 + α+
1

2

)

‖J‖L1 ,

where C1 is given in Theorem 5.1, we conclude that:

∂tψ(t, x) ≥
(

c

(

t

ε
,
x

ε

)

+ L0 + β + M̃α
p

[

v

(

t

ε
, ·
)](

x

ε

))

|∇ψ(t, x)|. (49)

Now recall that L0 is defined by (46) and use the following lemma:

Lemma 6.1. There exists ε0 > 0 such that for any ε ≤ ε0, r ≤ r0 and (t, x) ∈ Br(t0, x0):

M̃ε

[

φε(t, ·)
ε

]

(x) ≤ L0 + β + M̃α
p

[

v

(

t

ε
, ·
)]

(x

ε

)

. (50)

The proof of this lemma is postponed. Combining (49) and (50), we conclude that for any ε ≤ ε0 and
r ≤ r0:

∂tψ(t, x) ≥
(

c

(

t

ε
,
x

ε

)

+ M̃ε

[

φε(t, ·)(x)

ε

])

|∇ψ(t, x)|.

We conclude that φε is a supersolution of (1) on Br(t0, x0) and φε ≥ uε outside. Using the comparison
principle, this implies φε(t, x) ≥ uε(t, x). Passing to the supremum limit at the point (t0, x0), we obtain:
φ(t0, x0) ≥ u(t0, x0) + ηr which is a contradiction. The proof of Theorem 2.5 is now complete.
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It remains to prove Lemma 6.1.

Proof of Lemma 6.1. It is convenient to use the notation: τ = t/ε and y = x/ε. We simply divide the
domain of integration in two parts: short range interaction and long range interaction. Precisely:

M̃ε

[

φε(t, ·)(x)

ε

]

=

∫

dz J(z)E∗

(

φε(t, x+ εz)− φε(t, x)

ε

)

=

∫

|z|≤rε

dz {. . . }+

∫

ε|z|≥εrε

dz {. . . } = T1 + T2

and we choose rε such that rε → +∞ and εrε → 0 as ε→ 0. Let us estimate from above each term. For
(t, x) ∈ Br(t0, x0) and |z| ≤ rε, we are sure that (t, x+ εz) ∈ (t0/2, 2t0)×B1(x0) for ε small enough, and:

T1 =

∫

|z|≤rε

dz J(z)E∗

(

φε(t, x+ εz)− φε(t, x)

ε

)

=

∫

|z|≤rε

dz J(z)E∗

(

φ(t, x+ εz)− φ(t, x)

ε
+ v(τ, y + z)− v(τ, y)

)

=

∫

|z|≤rε

dz J(z)

{

E∗

(

∇φ(t, x) · z + v(τ, y + z)− v(τ, y)

+
φ(t, x+ εz)− φ(t, x)− ε∇φ(t, x) · z

ε

)

−∇φ(t, x) · z
}

.

To get the last line of the previous inequality, we used that J is even. Choose next ε small enough and rε

big enough so that

φ(t, x+ εz)− φ(t, x)− ε∇φ(t, x) · z
ε

≤ Cε(rε)2 ≤ α

2
∫

|z|≥rε

dz J(z)
{

E∗

(

v
(

·, x
ε

+ z
)

− v
(

·, x
ε

)

+
α

2
+ z · ∇φ(t, x)

)

− z · ∇φ(t, x)
}

≤ β

4
.

Hence we obtain

T1 ≤ M̃α/2
∇φ(t,x)

[

v

(

t

ε
, ·
)]

(x

ε

)

+
β

4
. (51)

We now claim that:

M̃
α/2
∇φ(t,x)

[

v

(

t

ε
, ·
)]

(x

t

)

≤ M̃α
∇φ(t0,x0)

[

v

(

t

ε
, ·
)]

(x

t

)

+ β/4 (52)

for r small enough. To see this, consider Rβ > 0 such that:

∫

|z|≥Rβ

dz J(z){E∗(∇φ(t, x) · z + v(τ, y + z)− v(τ, y))−∇φ(t, x) · z} ≤ β/8,
∫

|z|≥Rβ

dz J(z){E∗(∇φ(t0, x0) · z + v(τ, y + z)− v(τ, y))−∇φ(t0, x0) · z} ≤ β/8.

Now for |z| ≤ Rβ and r small enough:

|(∇φ(t, x) · z −∇φ(t0, x0)) · z| ≤ α/2

and we get (52). Combining this inequality with (51), we obtain:

T1 ≤ M̃α
p

[

v

(

t

ε
, ·
)]

(x

t

)

+ β/2. (53)
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We now turn to T2. We can choose rε ≥ R0 where R0 appears in (4) so that J(z) = g(z/|z|)|z|−N−1

for |z| ≥ rε. Hence

T2 =

∫

ε|z|≥εrε

dz J(z)E∗

(

φε(t, x+ εz)− φε(t, x)

ε

)

=

∫

|q|≥εrε

µ(dq)Eε
∗(φε(t, x+ q)− φε(t, x))

with µ defined by (10) and where Eε
∗(α) = εE∗

(

α
ε

)

. Remark that |Eε
∗(α)− α| ≤ ε

2 and use (48) to get:

T2 ≤
∫

|q|≥εrε

µ(dq) (φε(t, x+ q)− φε(t, x)) +
ε

2
µ(RN \Bεrε

)

≤
∫

εrε≤|q|≤2

µ(dq) {φ(t, x+ q)− φ(t, x) + ε osc v(τ, ·)}

+

∫

|q|≥2

µ(dq) {uε(t, x+ q)− φ(t, x)}+
C

rε
+ C ′ηr.

Now use that µ is even and get

T2 ≤
∫

εrε≤|q|≤2

µ(dq) {φ(t, x+ q)− φ(t, x)−∇φ(t, x) · q}

+

∫

|q|≥2

µ(dq) {uε(t, x+ q)− φ(t, x)}+ C ′

(

1

rε
+ ε+ ηr

)

.

Now remark that:
∫

εrε≤|q|≤2

µ(dq) {φ(t, x+ q)− φ(t, x)−∇φ(t, x) · q}

≤
∫

|q|≤2

µ(dq) {φ(t0, x0 + q)− φ(t0, x0)−∇φ(t0, x0) · q}+ Cεrε + or(1)

and keeping in mind that φ(t0, x0) = u(t0, x0), we also have

∫

2≤|q|

µ(dq) {uε(t, x+ q)− φ(t, x)} ≤
∫

2≤|q|

µ(dq) {u(t0, x0 + q)− u(t0, x0)}+ or(1).

Indeed, it is equivalent to

lim sup
y→x0,ε→0

∫

2≤|q|

µ(dq) {uε(t, y + q)− φ(t, y)} ≤
∫

2≤|q|

µ(dq) {u(t0, x0 + q)− u(t0, x0)}

and such an inequality is a consequence of Fatou’s lemma.
Combining all the estimates yields:

T2 ≤
∫

|q|≤2

µ(dq) {φ(t0, x0 + q)− φ(t0, x0)−∇φ(t0, x0) · q}

+

∫

2≤|q|

µ(dq) {u(t0, x0 + q)− u(t0, x0)}+ Cεrε + C ′

(

1

rε
+ ε

)

+ or(1) + β/4

≤ L0 + β/2. (54)

Combining (53) and (54) yields (50).
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7 Qualitative properties of the effective Hamiltonian

In this section, we consider the special case of the one-dimensional space and of a driving force independent
of time: c(τ, y) = c(y). Before proving Theorem 2.6 in Subsection 7.3, we establish gradient estimates in
Subsection 7.1 and then construct sub/super/correctors independent on time in Subsection 7.2.

7.1 Gradient estimates

We recall that w denotes the solution of the following Cauchy problem






∂tw =

(

c(x) + L+Mp[w(t, ·)](x)

)

|p+∇w| in (0,+∞)× RN ,

w(0, x) = 0 on RN .
(55)

Lemma 7.1 (Lipschitz estimates on the solution). The solution w of (55) is Lipschitz continuous w.r.t.
x and satisfies:

‖p+∇xw(t, ·)‖∞ ≤ |p|et‖∇c‖∞ . (56)

Proof. The function u(t, x) = p · x+ w(t, x) is a solution of

∂tu = (c(x) + L+M [u(t, ·)](x)) |∇u| on (0,+∞)× R. (57)

Consider the sup-convolution of u:

uβ(t, x) = sup
y∈RN

{

u(t, y)− eKt |x− y|2
2β

}

= u(t, xβ)− eKt |x− xβ |2
2β

. (58)

We claim that uβ is a subsolution of the equation (57) for K large enough. Indeed, for any (η, q) ∈
D1,+uβ(t, x), it is classical that

(

η +KeKt |x−xβ |
2

2β , q
)

∈ D1,+u(t, xβ), q = −eKt x−xβ

β and |x−xβ | ≤ C
√
β

where C depends on ‖w‖∞, so that:

η +KeKt |x− xβ |2
2β

≤ (c(xβ) +Mp[w(t, ·)](xβ)) |q|

≤
(

c(x) +Mp[wβ(t, ·)](x)
)

|q|+ ‖∇c‖∞eKt |x− xβ |2
β

where we used that

w(t, xβ + z)− w(t, xβ) ≤ wβ(t, x+ z)− wβ(t, x) with wε(t, x) = u(t, x)− p · x

(this comes from (58) and the fact that u(t, xβ+z)−eKt |x−xβ |
2

2β ≤ uβ(t, x+z)). Choosing now K = 2‖∇c‖∞
permits to get that uβ is a subsolution. Next, remark that:

uβ(0, x) ≤ u(0, x) + sup
r>0

{

‖ ∇u0‖∞r −
r2

2β

}

≤ u(0, x) + β
‖∇u0‖2

2
.

Hence, the comparison principle (see Theorem 4.4 applied to uβ(t, x)− p · x and w(t, x)) implies that

uβ ≤ u+ β
‖∇u0‖2

2
.

Rewrite this inequality as follows

u(t, y) ≤ u(t, x) + β
‖∇u0‖2

2
+ eKt |x− y|2

2β
.

Optimizing with respect to β permits to conclude.
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7.2 Sub- and supercorrectors

We give an alternative characterization of the ergodicity of (55) that complements Theorem 2.1 in the
special case c(τ, y) = c(y). We will use it repeatedly in the proof of Theorem 2.6. More precisely, we are
interested in the following stationnary equation:

λ = (c(y) + L+Mp[v](y)) |p+∇yv| on RN . (59)

Lemma 7.2. The function H
0

satisfies:

H
0
(p, L) = max{λ : there exists a 1-periodic subsolution of (59)}

= min{λ : there exists a 1-periodic supersolution of (59)}. (60)

Remark 7.3. Such a characterization is classical in the context of homogenization of Hamilton-Jacobi
equation. See for instance [21] for such a characterization for local Hamilton-Jacobi equations.

Proof. We first remark that we can construct λ− and λ+ such that v = 0 is respectively a sub- and a
supersolution of (59) so that the sets at stake in (60) are not empty. Let λmin and λmax denote respectively
the maximum and the minimum defined in (60). The fact that the infimum and the supremum defining
λmin and λmax are attained is a consequence of the stability of viscosity solutions and L∞ a priori bounds
(that are easy to obtain).

Let w be the solution of (55) and consider the upper relaxed limit v∞ as n goes to infinity (resp. the

lower relaxed limit v∞) of vn(τ, y) = v(τ + n, y) with v(τ, y) = w(τ, y) − H0
(p, L)τ . Then consider the

suppremum in time of v∞ (resp. the infimum in time of v∞). This allows us to construct a subsolution

(resp. a supersolution) of (59). This implies that H
0
(p, L) ≤ λmin (resp. λmax ≤ H0

(p, L)).
Now let v− be a periodic subsolution of (59) for λmin. Since (59) does not see the constants, we can

assume that v− ≤ 0. We have that v− + λminτ is a subsolution of (55). By comparison principle, we
deduce that

w ≥ v− + λminτ

where w is the solution of (55). Dividing by τ and sending τ → ∞, we get that H
0
(p, L) ≥ λmin. The

proof that λmax ≥ H0
(p, L) is similar. This ends the proof of the lemma.

The second technical lemma we need in the proof of Theorem 2.6 is the construction of sub- and
supercorrectors of (59) with some monotonicity properties and with precise estimates on their oscillations.

Lemma 7.4. (Existence of sub and supercorrectors) For any p ∈ R and L ∈ R, there exists λ ∈ R,
a subcorrector v(y) and a supercorrector v(y) which are 1-periodic in y and satisfy

λ ≤ (c+ L+Mp[v]) |p+∇yv|, with p(p+∇yv) ≥ 0 on R,

λ ≥
(

c+ L+ M̃p[v]
)

|p+∇yv|, with p(p+∇yv) ≥ 0 on R

such that
max v −min v ≤ |p| and max v −min v ≤ |p|. (61)

There exists a discontinuous corrector v which satisfies

λ = (c+ L+Mp[v]) |p+∇yv| on R, (62)

max v −min v ≤ 2|p| and |v|∞ ≤ |p|.
The unique solution w of (55) satisfies for all τ ≥ 0

|w(τ, y)− λτ |∞ ≤ 2|p|. (63)
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Proof. When p = 0, we observe that (59) is satisfied with λ = 0 and v = 0. Hence (61) is clearly satisfied.
Let us now assume that p > 0 since the case p < 0 is similar.

Step 1. Consider the solution w of (55), i.e., the solution w of (31) with α = 0. The proof of Theorem
5.1 in the case N = 1 implies that ṽ(τ, y) = w(τ, y)− λτ satisfies

|ṽ(τ, y)− ṽ(τ, z)| ≤ |p| and p(p+∇y ṽ) ≥ 0

and so
max

y
ṽ −min

y
ṽ ≤ |p|.

Step 2. Consider the upper relaxed limit v∞ as n goes to infinity (resp. the lower relaxed limit v∞) of
vn(τ, y) = ṽ(τ +n, y) Then consider the supremum in time of v∞ (resp. the infimum in time of v∞). This
allows us to build a subsolution v (resp. a supersolution v) of (62) that satisfies the expected properties.

Step 3. Finally, we have v + osc v ≥ v and v + osc v is still a supersolution of (62). Then the Perron’s
method allows us to build a discontinuous periodic corrector v which satisfy osc v ≤ 2p. Moreover, since
the equation does not see constants, we have that v(y)−K is solution of (62) and so we can assume that
|v|∞ ≤ |p| for a good choice of the constant K.

To prove that the solution w of (55) satisfies |w−λτ |∞ ≤ 2|p|, it suffices to remark that v+ osc v+λτ
(resp. v + osc v + λτ) is supersolution (resp. subsolution) of (55) and to use the comparison principle for
equation (55). This ends the proof of the lemma.

7.3 Proof of Theorem 2.6

We now turn to the proof itself.

Proof of Theorem 2.6.
1. When c ≡ 0, notice that λ = L|p| and v = 0 do satisfy (59).

2. This is a consequence of (34).

3. Using the monotonicity of H
0
(L, p) in L (see Corollary 5.4) we only need to prove that H

0
(0, p) = 0.

Thanks to Lemma 7.2, it is enough to construct a sub- and a supersolution of:

0 = c+Mp[v].

Let us consider the solution v of:






∂τv = c(y) +Mp,δ[v(τ, ·)](y) in R+ × R

v(0, y) = 0 in R

with

Mp,δ[v](y) =

∫

R

dz J(z)
{

Eδ (v(y + z)− v(y) + p · z)− p · z
}

where Eδ is a smooth approximation of E, such that Eδ(z) − z is 1-periodic, Eδ(−z) = −Eδ(z) and Eδ

is increasing. From the 1-periodicity of c1, we deduce the 1-periodicity of v. It is also easy to prove (by
adaptating the proof of Lemma 7.1) that v is Lipschitz continuous in space and time for all finite time.
Let us consider p = P/Q with P ∈ Z, Q ∈ N\ {0} and dropping for a while the dependence on τ , we set
u(y) = v(y) + p · y. Assuming temporarily that J decays to zero at infinity sufficiently quickly, recalling

26



that J is even and using the fact that v(y) is 1-periodic in y, we compute:
∫

(−Q/2,Q/2)

dy

∫

R

dz J(z)
{

Eδ (v(y + z)− v(y) + p · z)− p · z
}

=

∫

(−Q/2,Q/2)

dy
∑

k∈Z

∫

((k−1/2)Q,(k+1/2)Q)

dz J(z)
{

Eδ (u(y + z)− u(y))
}

= K +

∫

(−Q/2,Q/2)

dy
∑

k∈Z

∫

(−Q/2,Q/2)

dz J(z + kQ)
{

Eδ (u(y + z)− u(y))
}

where

K =

∫

(−Q/2,Q/2)

dy

∫

(−Q/2,Q/2)

dz
∑

k∈Z

kQJ(z + kQ)

=P

(

∫

(−Q/2,Q/2)

dz
∑

k∈Z

(z + kQ)J(z + kQ)−
∫

(−Q/2,Q/2)

dzJQ(z)

)

=P

∫

R

dz̄ z̄J(z̄)

=0.

Hence, with the notation

JQ(z) =
∑

k∈Z

J(z + kQ) = JQ(−z),

we get
∫

(−Q/2,Q/2)

dy

∫

R

dz J(z)
{

Eδ (v(y + z)− v(y) + p · z)− p · z
}

=

∫

(−Q/2,Q/2)

dy

∫

(−Q/2,Q/2)

dz JQ(z)
{

Eδ (u(y + z)− u(y))
}

=

∫

(−Q/2,Q/2)

dz JQ(z)

∫

(z−Q/2,z+Q/2)

dx
{

Eδ (u(x)− u(x− z))
}

=

∫

(−Q/2,Q/2)

dz JQ(z)

∫

(−z−Q/2,−z+Q/2)

dx
{

Eδ (u(x)− u(x+ z))
}

= −
∫

(−Q/2,Q/2)

dz JQ(z)

∫

(−z−Q/2,−z+Q/2)

dx
{

Eδ (u(x+ z)− u(x))
}

= −
∫

(−Q/2,Q/2)

dz JQ(z)

∫

(−Q/2,Q/2)

dx
{

Eδ (u(x+ z)− u(x))
}

(the last line is obtained by using the 1-periodicity of u(x+ z)− u(x) in x). Finally comparing the second
line and the last one of the previous equality, we deduce that:

∫

(−Q/2,Q/2)

dy

∫

R

dz J(z)
{

Eδ (v(y + z)− v(y) + p · z)− p · z
}

= 0.

By taking a limit, we deduce that this is still true without assuming that J has strong decay at infinity.
Using now the fact that the equation is satisfied almost everywhere (because the solution is Lipschitz

continuous) we get by integration of the equation and the fact that
∫

(0,1)
c = 0:

∂τ

(

∫

(−Q/2,Q/2)

dy v(τ, y)

)

= 0.
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We deduce (by periodicity of v) that

∫

(0,1)

dy v(τ, y) = 0 for any τ ≥ 0

for any rational p. We conclude that this is true for any p ∈ R (just by taking a limit). On the other hand,
we deduce as in the proof of Theorem 5.1 in the case N = 1 that

max
y

v(τ, y)−min
y
v(τ, y) ≤ |p|.

and similarly that
|v(τ, y)| ≤ C(p).

Considering the semi-relaxed limits of v(τ, y) with the supremum (resp. the infimum) in time, we build a
subsolution v (resp. a supersolution v) of the following equation

0 = c+Mp,δ[v].

Taking now the limit as δ goes to zero, we build a subsolution v (resp. a supersolution v) of the limit
equation

0 = c+Mp[v]

and the proof of H
0
(0, p) = 0 is complete.

4. The monotonicity of H
0
(L, p) in L is a straightforward consequence of the comparison principle.

We next consider L2 > L1 > 0 with λi = H
0
(Li, p) for i = 1, 2 and λ1 > 0 and p 6= 0. The other cases

can be treated similarly. From Lemma 7.4, we get a subcorrector v1 satisfying

0 < λ1 ≤ |p+∇yv1| (c+ L1 +Mp[v1])

such that (61) holds true. Therefore

Mp[v1] ≤
∫

R

dz J(z)[E(|p|+ p · z))− p · z] ≤
(

|p|+ 1

2

)

‖J‖L1

and we get:
0 ≤ c+ L1 +Mp[v1] and 0 < δ ≤ |p+∇yv1|

for some constant δ ≥ λ1/(L1 + Cp) > 0 with Cp = ‖c‖∞ +
(

|p|+ 1
2

)

‖J‖L1 . And then

λ1 + δ(L2 − L1) ≤ |p+∇yv1| (c+ L2 +Mp[v1])

which implies by Lemma 7.2 that λ2 ≥ λ1 + δ(L2 − L1), i.e.

λ2 − λ1

L2 − L1
≥ λ1

L1 + Cp
.

More generally, we have for L2L1 > 0, |L2| > |L1| and for some universal constant C > 0

H
0
(L2, p)−H

0
(L1, p)

L2 − L1
≥ |H

0
(L1, p)|

|L1|+ Cp
.

Similarly, let us consider a supercorrector v1 given by Lemma 7.4 which satisfies:

λ1 ≥ |p+∇yv1|
(

c+ L1 + M̃p[v1]
)

. (64)
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As soon as L1 > Cp, we get again that

c+ L1 + M̃p[v1] > 0

from which we deduce
λ1

L1 − Cp
≥ |p+∇yv1|. (65)

Next, using (64) and (65), write:

λ1 + (L2 − L1)
λ1

L1 − Cp
≥ λ1 + (L2 − L1)|p+∇yv1|

≥ |p+∇yv1| (c+ L2 +Mp[v1])

and deduce from Lemma 7.2 that:

λ2 ≤ λ1 + (L2 − L1)
λ1

L1 − Cp
.

This implies the result.

5. Let T > 0. The function w denotes the solution of (12) and w′ denotes the solution of

{

∂τw
′ = (c(y) + L+ L′ +Mp[w′(τ, ·)](y))|p+∇w′| in (0,+∞)× R

w(0, y) = 0 on R (66)

We set λ = H
0
(L, p) and λ′ = H

0
(L + L′, p). Since |p + ∇yw(τ, ·)|∞ ≤ |p|eT‖∇c‖∞ for τ ∈ [0, T )

(Lemma 7.1), we get that w(τ, y) + τL′|p|eT |∇c|∞ is a supersolution of (66) on (0, T ] × R. Hence, the
comparison principle implies

w′(τ, y) ≤ w(τ, y) + L′|p|TeT‖∇c‖∞ on (0, T )× R.

Using the fact that |w(τ, y) − λτ |, |w′(τ, y) − λ′τ | ≤ 2|p| and that H
0
(L, p) is nondecreasing in L, we

get that

0 ≤ (λ′ − λ)T ≤ |p|
(

L′TeT |∇c|∞ + 4
)

and so

|λ′ − λ| ≤ |p|
(

L′eT |∇c|∞ +
4

T

)

.

Taking T = | ln L′|
2‖∇c‖∞

, we get the result for 0 ≤ L′ ≤ 1
2 .

6. The following arguments must be adapted by using sub and supercorrectors in order to use Lemma 7.2.
However, we assume for the sake of clarity that there exist correctors for any (L, p). Hence, we have with

λ = H
0
(L, p):

λ = |p+∇yv| (c+ L+Mp[v]) .

Therefore v(y) = −v(y + a) satisfies:

−λ = | − p+∇yv(y)|
(

−c(y + a)− L+ M̃−p[v](y)
)

and −c(y + a) = c(y) by assumption. Hence H
0
(−L,−p) = −λ.

7. We have with λ = H
0
(L, p):

λ = |p+∇yv| (c+ L+Mp[v]) .
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Therefore v̌(y) = v(−y + a) satisfies (because J(−z) = J(z)):

λ = | − p+∇y v̌(y)| (c(−y + a) + L+M−p[v̌](y)) .

By assumption, c(−y + a) = c(y), hence: H
0
(L,−p) = H

0
(L, p).

8. Analysis for small p. From the construction of sub/super/correctors satisfying p(p+∇yv) ≥ 0 (see
Lemma 7.4), we know that on one period we have for p > 0 (the analysis is similar for p < 0)

0 ≤ p · z + v(z + y)− v(y) ≤ p for z ∈ [0, 1].

Therefore max v(z) − min v(z) ≤ p in general. We will now estimate Mp[v] for small p. If 0 < p < 1
and for |z| < b1/pc − 1, using the periodicity of v and the monotonicity of v(y) + py, we deduce that
|p · z + v(z + y)− v(y)| ≤ p(b1/pc − 1) < 1 and then

Mp[v](y) =
∫

|z|>b1/pc−1
J(z) {E (v(y + z)− v(y) + p · z)− p · z}

=
∫

|z|>b1/pc−1
J(z) {E (v(y + z)− v(y) + p · z)− (v(y + z)− v(y) + p · z)}

+
∫

|z|>b1/pc−1
J(z) {v(y + z)− v(y)}

which implies that

|Mp[v]| ≤
(

∫

|z|>b1/pc−1

J(z)

)

(

1

2
+ max v −min v

)

−→ 0 as p→ 0.

Therefore for L and p small enough we see that L + c(y) + Mp[v](y) changes sign if c changes sign. This
gives a contradiction for the existence of sub and supercorrectors with non-zero λ.

9. Analysis for large p. We first consider the periodic solution v (with zero mean value) of

0 = c(y) +M∞[v](y)

with

M∞[v](y) =

∫

R

dz J(z)(v(y + z)− v(y))

which satisfies
|v|∞ ≤ C|c|∞, |v′|∞ ≤ C|c′|∞, |v′′|∞ ≤ C|c′′|L∞ .

To get this result, it is sufficient to study the periodic solutions of

αvα = c+M∞[vα]

that can be obtained by the usual Perron’s method. The comparison principle (together with the properties
of J) gives the bounds on the oscillations of vα, independent on α. This implies similar bounds on the
derivatives of vα, which gives enough compactness to pass to the limit as α→ 0.

For clarity, we assume that y = 0 and v(y) = 0. The other cases can be treated similarly. Let us set

u(z) = v(z) + p · z

and let us estimate for p > 0 large

M0 =

∫

R

dzJ(z) (E(u(z))− u(z)) .

Because u′(z) = v′(z) + p > 0 for p > 0 large enough, we can define u−1 by u−1(u(x)) = u(u−1(x)) = x.
We can then rewrite with ū = u(z)

M0 =

∫

R

dū

u′(u−1(ū))
J(u−1(ū)) (E(ū)− ū) .
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We set

G(ū) =
J(u−1(ū))

u′(u−1(ū))

and write

M0 =
∑

k∈Z

∫ k+1/2

k−1/2

dū G(ū) (E(ū)− ū)

and set
Ik = [u−1(k − 1/2), u−1(k + 1/2)].

We get for ū ∈ [k − 1/2, k + 1/2]
G(ū) = G(k) + gk(ū)

with

|gk(ū)| ≤ sup
z∈Ik

∣

∣

∣

∣

J ′(z)

u′(z)
− J(z)u′′(z)

u′2(z)

∣

∣

∣

∣

· sup
ū∈[k−1/2,k+1/2]

|(u−1)′(ū)| · 1/2.

By definition of u, we also have

∣

∣

∣

∣

u−1(k ± 1/2)− k ± 1/2

p

∣

∣

∣

∣

≤ |v|∞
p

.

Therefore for p large enough

|gk(ū)| ≤ 1/2 ·
(

h1(k/p)

(p− |v′|∞)2
+ |v′′|∞

h0(k/p)

(p− |v′|∞)3

)

and then, since
∫ k+1/2

k−1/2
dū(E(ū)− ū) = 0 and |E(ū)− ū| ≤ 1

2 , we get

|M0| ≤ 1/2
∑

k∈Z

∫ k+1/2

k−1/2
du |gk(u)|

≤ 1/4
(

p
(p−|v′|∞)2

(

∑

k∈Z

1
ph1(k/p)

)

+ p|v′′|∞
(p−|v′|∞)3

(

∑

k∈Z

1
ph0(k/p)

))

.

This implies that
|M0| ≤ C/p for p large enough

with C depending on ‖c‖W 2,∞ , ‖h0‖L1 and ‖h1‖L1 . More generally, we get the same estimate for

M(y) =

∫

R

dz J(z) (E(v(y + z)− v(y) + p · z)− (v(y + z)− v(y) + p · z)) .

We now compute

(p+∇yv)(L+ c+Mp[v]) ≥ (p+∇yv)(L+ c+M∞[v]− C/p)
≥ (p− |v′|∞)(L− C/p).

This implies that

H
0
(L, p) ≥ (p− |v′|∞)(L− C/p) > 0

for p > 0 large enough, if L > C/p. The case L < 0 can be treated similarly.

The proof of Theorem 2.6 is now complete.
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8 Application: homogenization of a particle system

8.1 The general case

This section is devoted to the proof of Theorem 2.11. It is a consequence of Theorem 2.5 and of the
following result:

Theorem 8.1 (Link between the system of ODEs and the PDE). Assume that V0 is 1-periodic, that V ′
0

is Lipschitz continuous and that V satisfies (H). If we have y1(0) < ... < yNε
(0) at the initial time, then

the cumulative distribution function ρ defined in (14) is a discontinuous viscosity solution (in the sense of
Definition 4.1) of

∂τρ = (c (y) +M [ρ(τ, ·)] (y)) |∇ρ| in (0,+∞)× R, (67)

with
c(y) = V ′

0(y)− F and J = V ′′ on R\{0}. (68)

Conversely, if u is a bounded and continuous viscosity solution of (67) satisfying for some time T > 0 and
for all τ ∈ (0, T )

u(τ, y) is increasing in y,

then the points yi(τ), defined by u(τ, yi(τ)) = i− 1
2 for i ∈ Z, satisfy the system (9) on (0, T ).

Before presenting the proof of this theorem, let us explain how to derive Theorem 2.11.

Proof of Theorem 2.11. By construction, we have

(ρε
0)∗(y) = ρε

0(y) ≤ u0(y) ≤ (ρε
0)∗(y) + ε.

Using the fact that ρε is a discontinuous viscosity solution of (1) (except for the initial condition) and the
comparison principle (see Theorem 4.4), we deduce that (with uε the continuous solution of (1))

ρε(τ, y) ≤ uε(τ, y) ≤ (ρε)∗(τ, y) + ε

and so
uε(τ, y)− ε ≤ ρε(τ, y) ≤ uε(τ, y). (69)

Sending ε→ 0, we get that ρε → u0 which gives the result.

We now turn to the proof of Theorem 8.1.

Remark that under Assumption (H), V ′ is not differentiable at 0 and in order to be sure that the
solution of (9) exists and is unique, we need to prove that the distance between two particles is bounded
from below. Precisely, we prove:

Lemma 8.2 (Lower bound on the distance between particles). Assume that the potential V ′
0 is Lipschitz

continuous and V satisfies (H). Let yi, i = 1, .., Nε be the solution of (9). Then, the distance d(τ) between
two particles is bounded from below by

d(τ) := min{|yi(τ)− yj(τ)|, i 6= j} ≥ d0e
−‖V ′′

0 ‖∞τ ,

where d0 is the minimal distance between two particles at initial time: d0 = d(0).

Proof of Lemma 8.2. Let di be the distance between yi and yi+1: di(τ) = yi+1(τ) − yi(τ). At τ = 0,
d(0) > 0. Hence consider the first time τ ∗ for which d(τ∗) = 0 and choose i such that d(τ) = di(τ) in a
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neighbourhood of τ∗. Let us denote by d̄j−i = dj − di ≥ 0. We then have

ḋ = −(V ′
0(yi+1)− V ′

0(yi))−





∑

j 6=i+1

V ′(yi+1 − yj)−
∑

j 6=i

V ′(yi − yj)





= −(V ′
0(yi+1)− V ′

0(yi))−
{ i−1
∑

k=0

V ′((1 + k)d+ d̄0 + ..+ d̄−k)−
Nε−i−2
∑

k=0

V ′((1 + k)d+ d̄1 + ..+ d̄k+1)

−
i−2
∑

k=0

V ′((1 + k)d+ d̄−1 + ..+ d̄−k−1) +

Nε−i−1
∑

k=0

V ′((1 + k)d+ d̄0 + ..+ d̄k)

}

.

We set
a−k = (1 + k)d+ d̄0 + ..+ d̄−k ≥ 0, a+

k = (1 + k)d+ d̄0 + ..+ d̄k.

We then get (since d̄0 = 0)

ḋ = −(V ′
0(yi+1)− V ′

0(yi))−
{ i−2
∑

k=0

(V ′(a−k )− V ′(a−k + d̄−k−1)) +

Nε−i−2
∑

k=0

(V ′(a+
k )− V ′(a+

k + d̄k+1))

+ V ′(a−i−1) + V ′(a+
Nε−i−1)

}

.

Since V ′ ≤ 0 and V ′ is nondecreasing, we deduce that

ḋ ≥ −d‖V ′′
0 ‖∞

which gives the result.

It remains to prove Theorem 8.1.

Proof of Theorem 8.1. Theorem 8.1 is a consequence of the following lemma.

Lemma 8.3 (Link between the velocities). Assume that V ′
0 is Lipschitz continuous and V satisfies (H).

Assume that (yi(τ))i=1,...,Nε
solves the system of ODEs (9) with y1 < ... < yNε

at the initial time. Then
for all i = 1, ..., Nε, we have

−ẏi = c(yi) +M [u(τ, ·)](yi) (70)

where c and J are defined by (15) and u(τ, y) is a continuous function such that:







u(τ, y) = ρ∗(τ, y) for y = yj(τ), j = 1, .., Nε

0 < u < Nε

u is increasing in y
(71)

where ρ is defined by (14).

Proof of Lemma 8.3. To simplify the notation, let us drop the time dependence.

M [u](yi0) =

∫

dzJ(z)E(u(yi0 + z)− u(yi0))

= −
(∫

dzJ(z)

)

(i0 − 1) +

∫

dzJ(z)ρ(yi0 + z)

= −(2V ′(0−))(i0 − 1) + J ? ρ(yi0).
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We now compute J ? ρ.

(J ? ρ)(yi0) = −1

2

∫

R

J(z)dz +

Nε
∑

i=1

∫

J(z)H(yi0 − z − yi)dz

=
∑

i<i0

∫ +∞

yi−yi0

J(z)dz +
∑

i>i0

∫ +∞

yi−yi0

J(z)dz

= (i0 − 1)(V ′(0−)− V ′(0+))−
∑

i6=i0

V ′(yi − yi0)

= 2(i0 − 1)V ′(0−)−
∑

i6=i0

V ′(yi − yi0).

This finally gives

M [u](yi0) = −
∑

i6=i0

V ′(yi − yi0).

The proof is now complete.

The fact that ρ is a discontinuous solution of (67) is a straighforward consequence of Lemma 8.3 and
of Definition 4.1.

We prove the converse. Use Proposition 4.8 and conclude that ρ = E∗(u) (resp. ρ∗ = E(u)) is a
viscosity supersolution (resp. subsolution) of

∂τρ = c̃(τ, y) ∂yρ with c̃(τ, y) = c(y) +M [u(τ, ·)](y) = c(y) + M̃ [u(τ, ·)](y)

where c̃ is in fact a prescribed velocity for ρ. Using the fact that u is increasing in y, we define yi(τ) =
inf{y, u(τ, y) ≥ i − 1/2} = (u(τ, ·))−1(i − 1/2) and we consider the functions τ 7→ yi(τ). They are
continuous because u is increasing in y and is continuous in (τ, y).

We next show that yi are viscosity solutions of (9). To do so, consider a test function ϕ such that
ϕ(τ) ≤ yi(τ) and ϕ(τ0) = yi(τ0). Define next ϕ̂(τ, y) = i− 1/2 + (y − ϕ(τ)). It satisfies:

ϕ̂(τ0, yi(τ0)) = ρ∗(τ0, yi(τ0)) and ϕ̂(τ, y) ≥ ρ∗(τ, y) for yi(τ)− 1 < y.

This implies, with c̄i = c̃(·, yi), that

ϕτ (τ0) ≥ −c̄i(τ0) = F − V ′
0(yi)−

∑

j 6=i

V ′(yi − yj).

This proves that yi are viscosity supersolutions of (9). The proof for subsolutions is similar and we skip
it. Moreover, since c̄i is continuous, we deduce that yi is C1 and it is therefore a classical solution of

ẏi(τ) = −c̄i(τ) = F − V ′
0(yi)−

∑

j 6=i

V ′(yi − yj).

This ends the proof of the theorem.

Remark 8.4. In the case of particles, we have formally the microscopic energy for ρ = ρmicro

Emicro =

∫

R

1

2
(V micro ? ρy)ρy + V micro

0 ρy

with V micro = V and V micro
0 = V0 − F · y. After a rescaling, we get at the limit a formal macroscopic

energy for ρ = ρmacro

Emacro =

∫

R

1

2
(V macro ? ρx)ρx + V macro

0 ρx

where V macro = −g0 ln |x| only keeps the memory of the dislocation part of V micro (the long range
interactions), and V macro

0 = −F · x+
∫

R/Z
dyV0(y).

34



8.2 Extension to the dislocation case V (x) = − ln |x|
This subsection is devoted to the proof of Theorem 2.14.

Proof of Theorem 2.14.
Step 1: approximation of V . For δ > 0, let the regularization Vδ of the potential V (x) = − ln |x| be
such that Vδ ∈ C0(R) ∩ C1(R\{0}) and defined by

Vδ =

{

− ln |x| if |x| > δ
linear if x ∈ (−δ, δ)\{0}

We can easily check that Vδ satisfies assumptions (H) with g0 = 1. Using the fact that the distance
between two particles is bounded from below, we deduce that ρ defined in (14) satisfies

∂tu = (c(x) + L+M [u(t, ·)](x)) |∇u| on (0, T )× R. (72)

with
c(y) = V ′

0(y)− F and J = V ′′
δ on R\{0} (73)

as soon as δ ≤ δ(T ) := d0e
−|V ′′

0 |∞T . Indeed, Since Lemma 8.2 implies that for all t ∈ [0, T ], we have
d(t) ≥ d0e

−|V ′′
0 |∞T , we can replace the potential V with Vδ for δ ≤ d0e

−|V ′′
0 |∞T and the ODEs system

remains equivalent.

In the sequel, we use the following functions

Jδ(z) =

{

V ′′
δ (z) for z ∈ R\{0}

0 for z = 0

Mp,δ[U ](x) =

∫

R

dz Jδ(z) {E(U(x+ z)− U(x) + p · z)− p · z}

and H
0

δ denotes the effective Hamiltonian associated with Jδ.

Step 2: estimate for the approximate effective Hamiltonian.

Lemma 8.5 (Lipschitz continuous sub/supercorrectors). Let v denote the solution of

H
0

δ = (c(x) + L+Mp,δ[v]) |p+∇v| in R

and consider

vε(x) = sup
y

(

v(y)− |x− y|
2

2ε

)

, vε(x) = inf
y

(

v(y) +
|x− y|2

2ε

)

.

There then exists a constant C(p) depending only on |p| such that for δ, η ∈ (0, C(p)
√
ε), we have

H
0

δ(L, p) ≤
(

c(x) + L+ C(p)
√
ε‖∇c‖∞ +Mp,η[vε]

)

|p+∇vε|, (74)

H
0

δ(L, p) ≥
(

c(x) + L− C(p)
√
ε‖∇c‖∞ + M̃p,η[vε]

)

|p+∇vε|. (75)

Proof. We just make the proof for vε and we assume that

vε(x) = v(xε)− |x− xε|2
2ε

.

It is classical that vε is Lipschitz continuous and

‖∇vε‖∞ ≤
C√
ε

(76)
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where the constant C depends only on ‖v‖∞ ≤ 2|p|. Hence C = C(p). Moreover, for any q ∈ D1,+vε(x),
it is classical that q ∈ D1,+v(xε), q = x−xε

ε and |x − xε| ≤ C(p)
√
ε, where the constant C depends on

‖v‖∞. We thus deduce that

H
0

δ(L, p) ≤ (c(xε) + L+Mp,δ[v](xε)) |p+ q|
≤
(

c(x) + L+ C(p)
√
ε‖∇c‖∞ +Mp,δ[vε](x)

)

|p+ q|

where we have used that
v(xε + z)− v(xε) ≤ vε(x+ z)− vε(x).

Now using (76), we can replace Mp,δ[vε](x) with Mp,η[vε](x) for η, δ ∈ (0, C(p)
√
ε). Indeed, for |z| ≤ δ or

|z| ≤ η, we have
|vε(x+ z)− vε(x)− p · z| ≤ (C(p)ε−1/2 + |p|) max(δ, η) < 1

as soon as max(δ, η) ≤ C̃(p)
√
ε and we obtain

∫

|z|≤max(δ,η)

dz Jδ(z)E∗(vε(x+ z)− vε(x)− p · z) =

∫

|z|≤max(δ,η)

dz Jη(z)E∗(vε(x+ z)− vε(x)− p · z) = 0.

This implies (74).

We derive from the previous lemma the convergence of H
0

δ towards H
0

0. We even get an error estimate:

Lemma 8.6 (Limit of H
0

δ). There exists H
0

0(L, p) such that

∣

∣

∣H
0

δ(L, p)−H0

0(L, p)
∣

∣

∣ ≤ C(p)

ln 1
δ

(77)

for δ small enough.

Proof. We deduce from Lemma 8.5 that H
0

δ(L, p) ≤ H
0

η(L + L′, p) for η, δ ∈ (0, C(p)
√
ε) and with

L′ = C
√
ε‖∇c‖∞. Since the constants are independent on L, L′, we deduce that

H
0

δ(L− L′, p) ≤ H0

η(L, p) ≤ H0

δ(L+ L′, p) for all η, δ ∈ (0, C(p)
√
ε).

Setting H
0

0(L, p) = lim supη→0H
0

η(L, p) and using Theorem 2.6, point 5, we then get (77).

One can now check that H
0

0 satisfies Theorem 2.6 excepted the point 4 and point 9. We now turn to
the proof of convergence itself.

Step 3: the proof of convergence. Let us consider T > 0 and try to prove that ρε converges towards
u0 on (0, T ) × R. In order to do so, choose for any ε > 0 a δ = δ(ε) such that ρε is a (discontinuous)
solution of (1) with J replaced with Jδ(ε). We still have (69) but now uε is associated with Jδ(ε) instead of
a fixed J . We need to check that the convergence proof of Theorem 2.5 can be adapted. This is possible

thanks to (77), that permits to pass from the exact effective Hamiltonian H
0

to the approximate one H
0

δ(ε),
and thanks to Lemma 8.5 that permits to prove that Lemma 6.1 is still satisfied by using a regularized
supercorrector vε. Let us give more details. We first prove that the initial condition is satisfied. Since u0

is Lipschitz continuous, we get that

Mε
δ

[

u0(·) + Ct

ε

]

=

∫

|z|> 1
‖∇u0‖∞

dz Jδ(z)E

(

u0(x+ εz)− u0(x)

ε

)

is independent of δ if δ ≤ 1
‖∇u0‖∞

, and so (29) remains true with a constant C independent of ε and δ.
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We now turn to the equation. The idea is to use Lipschitz continuous sub/supercorrectors to control
the distance between particles. Using notation of Section 6 we now prove by contradiction that u is a
subsolution of (7). Hence we assume that

∂tφ(t0, x0) = H
0

0(L0, p) + θ′ = H
0

δ(L0, p, 0) + θ

for δ small enough and where we have used (77). Moreover, we can replace (47) with

∂tφ(t0, x0) = H
0

δ(L0 + 2β, p, α) +
θ

2
.

We now replace the bounded corrector of Section 6 with a Lipschitz continuous supercorrector. More
precisely, we consider the solution v of

λ =
(

c(y) + L+Mα
p,δ[v](y)

)

|p+∇yv|

and we set

vε(x) = inf
y

(

v(y) +
|x− y|2

2ε

)

= v(xε) +
|x− xε|2

2ε

where L = L0 + 2β and λ = Hδ(L0, p, 0). By Lemma 8.5, we deduce that vε is a supersolution of

λ ≥
(

c(y) + L− C√ε‖∇c‖∞ + M̃α
p,δ[vε](x)

)

|p+∇vε|

for δ ≤ C(p)
√
ε. We now consider ε such that C

√
ε‖∇c‖∞ ≤ β and we get that vε is a supersolution of

λ ≥
(

c(y) + L0 + β + M̃α
p,δ[vε](x)

)

|p+∇vε|.

Using the fact that vε is Lipschitz continuous, we get that M̃α
p,δ[vε] is independent of δ for δ ≤ C(p)

√
ε

and so the rest of the proof is exactly the same as the one of Theorem 2.5 with J replaced with Jδ.
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