
HAL Id: hal-00140540
https://hal.science/hal-00140540v1

Preprint submitted on 6 Apr 2007 (v1), last revised 12 Apr 2007 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

New blow-up rates for fast controls of Schrödinger and
heat equations

Gerald Tenenbaum, Marius Tucsnak

To cite this version:
Gerald Tenenbaum, Marius Tucsnak. New blow-up rates for fast controls of Schrödinger and heat
equations. 2007. �hal-00140540v1�

https://hal.science/hal-00140540v1
https://hal.archives-ouvertes.fr


New blow-up rates for fast controls of

Schrödinger and heat equations

G. Tenenbaum & M. Tucsnak
Institut Élie Cartan

Université Henri Poincaré Nancy 1, BP 239
54506 Vandœuvre-lès-Nancy, France

(version 6/4/2007, 16h20)

Abstract: We consider the null-controllability problem for the Schrödinger and heat
equations with boundary control. We concentrate on short-time, or fast, controls. We
improve recent estimates (see Miller [14], [15],[16] [17]) on the norm of the operator
associating to any initial state the minimal norm control driving the system to zero.
Our main results concern the Schrödinger and heat equations in one space dimension.
They yield new estimates concerning window problems for series of exponentials as
described in Seidman, Avdonin and Ivanov [22]. These results are used, following [17],
to deal with the case of several space dimensions.
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1 Introduction

In this work we consider the boundary control of systems governed by the Schrödinger or
by the heat equation. These systems can be written as an abstract infinite-dimensional
linear control system described by the equations

(1.1) ẇ = Aw +Bu, w(0) = ψ,

where w denotes the state. Here, a dot denotes differentiation with respect to the time t, A
is the generator of a strongly continuous operator semigroup on the state space X, B is an
admissible control operator for this semigroup (the notion of admissible control operator
will be recalled in Section 2) and ψ ∈ X is the initial state of the system. The system
receives the input function (also called control function) u.

Assume the linear system (1.1) is null-controllable in arbitrarily small time, i.e., for every
T > 0 and every initial state ψ, the set UT,ψ, composed of all controls in L2([0, T ]) such
that the corresponding state trajectory satisfies w(T ) = 0, is not empty. Then, as shown in
Section 2, UT,ψ contains a unique minimal norm element, which we denote by u(T, ψ). The
null-controllability operator in time T , denoted by FT , is defined by FTψ = u(T, ψ). It is
clear that the norm of FT (sometimes called the controllability cost, as in Zuazua [28] and
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2 Control costs of Schrödinger and heat equations

Miller [14], [15]) must increase unboundedly when the available time decreases to zero. We
make the terminological choice of calling control cost the norm of the null-controllability
operator. Thus, we write

(1.2) CT := ‖FT ‖

and consider the natural question of studying the blow up of CT as the control time T
tends to zero. In the case of finite dimensional systems, this question has been investigated
by Seidman [21] and Seidman–Yong [23], who showed that, as T tends to zero, CT behaves
like 1/T k+1/2, for suitable k ∈ N. In the infinite dimensional case, a similar analysis has to
be limited to systems which are null-controllable in arbitrarily small time, such as systems
governed by the Schrödinger or by the heat equations—clearly, delay systems or systems
governed by hyperbolic partial differential equations cannot be considered from the above
perspective. In the case of the boundary control for the one dimensional heat equation
with constant coefficients on the space interval [0, 1], it has been shown by Güichal [10]
that

α∗ := lim inf
T→0

T lnCT > 0.

This result has been extended and made more precise in [14] and [16], where it is shown
that, for the constant coefficients Schrödinger and heat equations on the interval [0, a], we
have

(1.3) α∗ > 1
4a

2.

On the other hand, Seidman showed in [20] that

α∗ := lim sup
T→0

T lnCT <∞.

More recently (see, for instance, Seidman, Avdonin and Ivanov [22] and Miller [14], [15],
[16]) the above estimate on α∗ has been extended to the Schrödinger and heat equations
with variable coefficients and effective upper bounds have been provided. To our knowledge,
the best upper bound for α∗ in the case of the one dimensional Schrödinger equation has
been obtained in [15] and can be stated as

(1.4) α∗ 6 4
(

36
37

)2
µ,

where µ is a constant depending only on the space interval in which the Schrödinger
equation holds and on its coefficients: in the case of constant coefficients, µ reduces to the
square of the length of the interval.

For systems governed by a variable coefficients heat equation with boundary control, the
upper bound in (1.4) becomes (see [14])

(1.5) α∗ 6 2
(

36
37

)2
µ.

Although originally dealing with partial differential equations in space dimension one, the
above mentioned results have been used in [28], [14], [15] and [16] to derive similar estimates
for the Schrödinger and heat equations in several space dimensions.

Our main results provide new upper bounds for the control cost in the case of systems
governed by the Schrödinger or the heat equation. Precise statements require some pre-
liminaries, so they are postponed to Section 3. However, we can state at the outset that
our upper bounds for CT = ‖FT ‖ are valid for every T > 0 and imply that

(1.6) α∗ 6 3
2µ,
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for the Schrödinger equation in one space dimension, and

(1.7) α∗ 6 3
4µ,

for the heat equation, thereby improving upon (1.4) and (1.5).

The results described above yield new estimates, of independent interest, on “window
problems” for series of exponentials as described in Seidman, Avdonin and Ivanov [22].
They also imply new upper bounds for the control costs of the Schrödinger and heat equa-
tions in several space dimensions. Another contribution brought in by our work consists
in giving a new proof of the lower bound in (1.3).

The plan of this paper is as follows. In Section 2, we give some background on infinite-
dimensional systems with emphasis on the null-controllability property. Section 3 is essen-
tially dedicated to the statement of the main results. In Section 4, we establish two lemmas
which are essential for the proofs of our theorems, given in Section 5. In Section 6, we
apply the earlier obtained results to control problems in several space dimensions. Finally,
in Section 7, we provide a simple proof of (1.3).

2 Notation and preliminaries

2.1 Notation

In the sequel, we freely use, according to display convenience, Landau’s O-symbol or Vino-
gradov’s �-notation. Thus f(x) � g(x) (x ∈ X) indicates that, for all x in the set X,
the inequality |f(x)| 6 C|g(x)| holds for some suitable constant C > 0 which may depend
on some implicit parameters. In the latter case, dependence may be indicated by inserting
appropriate subscripts. We write

f(x) � g(x)

to indicate that both relations f(x) � g(x) and g(x) � f(x) hold simultaneously.

Throughout this section, U , Y and X are complex Hilbert spaces, identified with their
duals. The inner product and the norm in X are denoted by 〈·, ·〉 and ‖ · ‖, respectively.
If P ∈ L (X;Y ) then the null-space and the range of P are the subspaces of X and Y
respectively defined by

Ker P = {x ∈ X : Px = 0}, Ran P = {Px : x ∈ X}.

We denote by W = (Wt)t>0 a strongly continuous semigroup on X generated by an
operatorA : D(A)→X with resolvent set %(A). The notationX1 stands for D(A) equipped
with the norm ‖z‖1 := ‖(βI −A)z‖, where β ∈ %(A) is fixed, while X−1 is the completion
of X with respect to the norm ‖z‖−1 := ‖(βI − A)−1z‖. We use the notation A and
Wt also for the extensions of the original generator to X and of the original semigroup
to X−1. Recall that X−1 is the dual of D(A∗) with respect to the pivot space X. For
B ∈ L (U ;X−1) and T > 0 we define ΦT ∈ L (L2([0, T ], U);X−1) by

(2.8) ΦTu =
∫ T

0
WT−σBu(σ)dσ.



4 Control costs of Schrödinger and heat equations

2.2 Some background on null-controllability

Definition 2.1. With the above notation, the operator B ∈ L (U ;X−1) is called an
admissible control operator for W if Ran Φτ ⊂ X for some τ > 0.

It is known (see Weiss [25]) that, if B is an admissible control operator for W, if T > 0,
if u ∈ L2([0, T ], U) and if ψ ∈ X, then the solution of the initial value problem (1.1), viz.

(2.1) w(t) = Wtψ + Φtu,

satisfies w ∈ C ([0, T ], X) and we have

ΦT ∈ L (L2([0, T ], U);X).

Definition 2.2. Given T > 0 and B ∈ L (U ;X−1), an admissible control operator for W,
the pair (A,B) is said null-controllable in time T if, for any ψ ∈ X, there exists a u in
L2([0, T ];U) such that the solution w of (1.1) satisfies w(T ) = 0.

It is easy to see that the null-controllability of the pair (A,B) in time T is equivalent to
the property Ran ΦT ⊃ Ran WT .

Definition 2.3. For T > 0 and B ∈ L (U ;X−1), an admissible control operator for W,
the pair (A,B) is said exactly controllable in time T if Ran ΦT = X.

It is clear that if (A,B) is exactly controllable in time T then (A,B) is null-controllable
in time T . The converse is false in the general case but holds if A generates a strongly
continuous group on X— this last condition being satisfied for systems governed by a
Schrödinger equation. Therefore, in all the statements below concerning Schrödinger type
equations, one can replace the term null-controllability by exact controllability.

The next proposition is essential for defining the null-controllability operator correctly.
Since we did not find in the literature the required version valid for unbounded input op-
erators (see, for instance, [27] for the bounded case), we provide below a precise statement
and a short proof, with no claim of originality.

Proposition 2.4. Suppose that (A,B) is null-controllable in time T . Then there exists an
operator FT ∈ L (X;L2([0, T ], U)) such that

1. WT + ΦTFT = 0.

2. If u ∈ L2([0, T ], U) is a control driving the solution (2.1) of (1.1) to rest in time T ,
then

‖u‖L2([0,T ],U) > ‖FTψ‖L2([0,T ],U).

Proof. Let ψ ∈ X. Then we have −WTψ ∈ Ran WT ⊂ Ran ΦT , so there exists a unique
y ∈ (Ker ΦT )⊥ such that ΦT y = −WTψ. By setting FTψ = y, we have that WTψ +
ΦTFTψ = 0. We still have to prove that FT is bounded from X to L2([0, T ], U). Since
FT is defined on all of X, it suffices to show that FT has a closed graph. Let (ψn, yn) be
a sequence in the graph of FT such that lim(ψn, yn) = (ψ, y) in X × L2([0,∞), U), then
lim WTψn = WTψ and lim ΦT yn = ΦT y. Thus, WTψ = ΦT y and, since (Ker ΦT )⊥ is
closed, y ∈ (Ker ΦT )⊥, so FTψ = y.
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It remains to show that the minimality property in the second assertion of the proposition
also holds. If u ∈ L2([0, T ], U) is a control driving the solution w of (1.1) to rest in time
T , then

(2.2) WTψ + ΦTu = 0.

Let u = u1 + u2 be the orthogonal decomposition of u with u1 ∈ Ker ΦT and u2 ∈
(Ker ΦT )⊥. From (2.2) and the definition of FT , we deduce that u2 = FTψ, hence

‖u‖2
L2([0,T ],U) = ‖u1‖2

L2([0,T ],U) + ‖FTψ‖2
L2([0,T ],U) > ‖FTψ‖2

L2([0,T ],U),

so FT does satisfy the second required condition.

Proposition 2.4 says that, for any ψ ∈ X, FTψ is the control of minimal norm driving
the system (1.1) to rest in time T . We refer to FT as the null-controllability operator in
time T .

The admissibility and null-controllability properties of a control operator are respectively
dual to the admissibility and final state observability properties of an observation operator.
We now recall the definitions of the latter concepts.

Definition 2.5. The operator C ∈ L (X1;Y ) is called an admissible observation operator
for W if, for some T > 0, there exists a constant KT > 0 such that

(2.3)
∫ T

0
‖CWtψ‖2

Udt 6 K2
T ‖ψ‖2

X (ψ ∈ D(A)).

Definition 2.6. Let T > 0 and let C ∈ L (X1;Y ) be an admissible observation operator
for W. The pair (A,C) is final state observable in time T if there exists kT > 0 such that

‖WTψ‖2 6 k2
T

∫ T

0
‖CWtψ‖2dt (ψ ∈ D(A)).

The duality mentioned above is made precise in the following result, essentially due to
Dolecki and Russell [7].

Proposition 2.7. Suppose that B ∈ L (U ;X−1). Then B is an admissible control operator
for W if, and only if, B∗ is an admissible observation operator for W∗. The pair (A,B)
is null-controllable in time T if, and only if, the pair (A∗, B∗) is final state observable in
time T . Moreover, if (A,B) is null-controllable in time T , then the norm of the associ-
ated null-controllability operator coincides with the greatest lower bound of the set of those
numbers CT satisfying

‖W∗
Tψ‖2 6 C2

T

∫ T

0
‖B∗W∗

tψ‖2dt (ψ ∈ D(A∗)).

2.3 Systems with self-adjoint or skew-adjoint generator and one dimen-
sional input

Here, we specialize the notions and results of the two previous subsections to the case
of systems with self-adjoint or skew-adjoint generator A and with one dimensional input
space U—i.e. we take U = C.
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Let A0 : D(A0) → X be a strictly negative self-adjoint operator, with non-empty resol-
vent set %(A0) and with compact resolvents. We denote by (ϕk)k∈N∗ an orthonormal basis
of X consisting of eigenvectors of A0. For every k ∈ N∗, we denote by −λk the eigenvalue
associated to the eigenvector ϕk. Since A0 is self-adjoint, λk is real for all k ∈ N∗. We
assume that λk > 0 for every k ∈ N, so that A0 is a strictly negative operator. According
to the Lummer-Phillips theorem, A0 generates a C 0 contraction semigroup in X. This
semigroup, denoted by S = (St)t>0, acts on X according to the formula

(2.4) Stψ =
∑
k∈N∗

〈ψ,ϕk〉e−λktϕk (t > 0, ψ ∈ X).

On the other hand, the operator iA0 is skew-adjoint in X so, according to Stone’s theorem,
it generates a strongly continuous group of linear isometries in X. The action of this group,
denoted U = (Ut)t∈R, is described by the formula

(2.5) Utψ =
∑
k∈N∗

〈ψ,ϕk〉e−iλktϕk (t ∈ R, ψ ∈ X).

We introduce the scale of Hilbert spaces Xα, α ∈ R, as follows: for every α > 0, we set
Xα := D((−A0)α), equipped with the norm

‖ψ‖2
α :=

∑
k∈N∗

λ2α
k |〈ψ,ϕk〉|2 .

For α > 0, the space X−α is defined as the dual space of Xα with respect to the pivot
space X. Equivalently, X−α is the completion of X for the norm

‖ψ‖2
−α =

∑
k∈N∗

λ−2α
k |〈ψ,ϕk〉|2 .

The operator A0 and the semigroups S and U can be extended (or restricted) to each Xα,
in such a way that A0 becomes a bounded operator

A0 : Xα→Xα−1 (α ∈ R),

and U (respectively S) becomes a C 0 group of isometries (respectively a C 0 contraction
semigroup) on Xα−1 with generator iA0 (respectively A0).

Assume that the control space U is one dimensional (i.e. that U = C) and that the
control operator B ∈ L (U ;X−1) is given by

(2.6) Bu = ub (u ∈ C),

where b is a fixed element of X−1. For b as above and ψ ∈ D(A0), the notation 〈b, ψ〉
stands for the duality product of b and ψ. For every k ∈ N∗ we put

(2.7) bk := 〈b, ϕk〉.

Sufficient conditions for the admissibility of a control of the form (2.6) are given in the
result below, which is a particular case of the admissibility conditions given in Ho and
Russell [11] and Weiss [24].
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Proposition 2.8. With the above notation, assume that supk∈N∗ |bk| < ∞ and that the
sequence Λ = (λn)n∈N is regular, i.e., that

(2.8) γ = γ(Λ) := inf
m,n∈N∗
m6=n

|λm − λn| > 0.

Then B defined by (2.6) is an admissible control operator for S and for U.

The control cost can be interpreted in terms of a window problem for a sequence of
complex exponentials. More precisely we may derive from Proposition 2.7 the following
statement where, for a := (an)n∈N ∈ `2(C), we denote by fa,Λ and ga,Λ the elements of
L2

loc(R) defined almost everywhere by

(2.9)

fa,Λ(t) :=
∑
n∈N

aneiλnt,

ga,Λ(t) :=
∑
n∈N

aneλn(T−t),
(t ∈ R).

Proposition 2.9. Let Λ be a regular sequence of real numbers, let B be given by (2.6),
and assume that bk � 1 (k > 1).

For the pair (iA0, B), we have

‖FT ‖ � sup
a∈`2(C)\{0}

‖a‖`2(C)

/
‖fa,Λ‖L2([−T/2,T/2],C) (T > 0).

For the pair (A0, B), we have

‖FT ‖ � sup
a∈`2(C)\{0}

‖a‖`2(C)

/
‖ga,Λ‖L2([−T/2,T/2],C) (T > 0).

In both cases, the implicit constants depend only on inf |bk| and sup |bk|.

Proof. From (2.4) and (2.5) it follows that

(St)∗ψ =
∑
k∈N∗

〈ψ,ϕk〉e−λktϕk (t > 0, ψ ∈ X).

(Ut)∗ψ =
∑
k∈N∗

〈ψ,ϕk〉eiλktϕk (t ∈ R, ψ ∈ X).

The above relation and the fact that

B∗ψ =
∑
k∈N∗

bk〈ψ,ϕk〉 (ψ ∈ X1),

imply that
B∗(St)∗ψ =

∑
k∈N∗

bk〈ψ,ϕk〉e−λkt (t > 0, ψ ∈ X),

and
B∗(Ut)∗ψ =

∑
k∈N∗

bk〈ψ,ϕk〉eiλkt (t ∈ R, ψ ∈ X).

Since ψ 7→
(
bk〈ψ,ϕk〉)k∈N∗ maps X onto `2(N∗,C), the desired conclusions follow from the

last two formulas and Proposition 2.7.
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3 Statement of the main results

3.1 Results on Schrödinger type equations and complex exponentials

In this subsection and in the following one we use the notation introduced in the previous
sections. Recall, in particular, that X is a Hilbert space, A0 : D(A0) → X is a self-
adjoint strictly negative operator with compact resolvents and with eigenvalues (−λk)k>1,
b ∈ X−1, the sequence (bk) is given by (2.7) and that S is the semigroup generated by A0.

Our first result gives an estimate (with explicit constants) for the norm of the control
operator in the case of a system governed by an abstract Schrödinger equation.

Theorem 3.1. Assume that |bk| � 1 (k > 1), that the sequence Λ := (λn)n∈N is regular
and it satisfies

(3.1) |λn − rn2| 6 Cn (n > 1).

for some r > 0, C > 0. Then the pair (iA0, B), with B given by (2.6), is null-controllable
in time T and, for every κ > 3

2π
2, the control cost CT = ‖FT ‖ satisfies the estimate

(3.2) CT � eκ/(rT ) (T > 0),

where the implicit constant depends only on κ and Λ.

The result above can be applied for the control of the one-dimensional Schrödinger
equation with variable coefficients and with various boundary conditions. In the particular
case of Dirichlet boundary control we obtain:

Corollary 3.2. Let a > 0, p ∈ C 2([0, a],R), q ∈ C ([0, a],R). Assume that p(x) > 0 for
all x ∈ [0, a] and write µ :=

( ∫ a
0

√
p(x)dx

)2. Let α > 3
2 . Then, for every ψ ∈ H−1(]0, a[)

and every T > 0, there exists u ∈ L2[0, T ] verifying

(3.3) ‖u‖L2[0,T ] � eαµ/T ‖ψ‖H−1(]0,a[),

(the implicit constant being independent of T ) such that the solution w of

(3.4)


−i∂w

∂t
(x, t) =

∂

∂x

(
p(x)

∂w

∂x
(x, t)

)
+ q(x)w(x, t) (0 < x < a, 0 < t < T )

w(0, t) = u(t) (0 < t < T )
w(a, t) = 0 (0 < t < T )
w(x, 0) = ψ(x) (0 < x < a),

satisfies w(x, T ) = 0 for all x ∈]0, a[.

Therefore, the system (3.4) has control cost� eαµ/T for every α > 3
2 , which implies (1.6).

This improves upon Theorem 4.1 in [15], where a similar assertion is established under the
stronger condition α > 4

(
36
37

)2.

The duality viewpoint in Theorem 2.7 suggests that Theorem 3.1 can be equivalently
stated in terms of a window problem for a sequence of complex exponentials. We actually
derive the following statement where, for a := (an)n∈N ∈ `2(C), we denote by fa,Λ the
element of L2

loc(R) defined almost everywhere by

fa,Λ(t) :=
∑
n∈N

aneiλnt (t ∈ R).



G. Tenenbaum and M. Tucsnak 9

Corollary 3.3. Let κ > 3
2π

2. Assume that Λ := (λn)n∈N is a regular sequence satisfy-
ing (3.1). Then, uniformly for (an)n∈N ∈ `2(C) and T > 0, we have

∑
n>0

|an|2 � e2κ/(rT )

∫ T/2

−T/2

∣∣∣∣ ∑
n>0

aneiλnt

∣∣∣∣2 dt.

For real sequences (λn)n∈N satisfying (3.1), this yields an improvement of the constants
in the corresponding estimates of [22].

3.2 Results on heat type equations and real exponentials

The analogue of Theorem 3.1 for abstract heat equations is the following statement.

Theorem 3.4. Let κ > 3
4π

2. Then, under the assumptions in Theorem 3.1, the pair
(A0, B), with B given by (2.6), is null-controllable in any time T > 0. Moreover, for every
ψ ∈ X there exists u ∈ C [0, T ] driving the system (1.1) (with A = A0 and Bu = ub) to
rest in time T and satisfying

(3.5) ‖u‖C ([0,T ]) � eκ/(rT )‖ST/2 ψ‖ (T > 0, ψ ∈ X),

the implicit constant being independent of T . In particular, the control cost of the pair
(A0, b) satisfies

(3.6) CT � eκ/(rT ) (T > 0).

The above result can be applied to parabolic equations in one space dimension, with var-
ious boundary conditions. In the case of Dirichlet boundary control of the one-dimensional
heat equation with variable coefficients, it yields the following statement.

Corollary 3.5. Let a > 0, p, q, µ, T be as in Corollary 3.2. Let α > 3
4 . For every

ψ ∈ H−1(]0, a[), there exists u ∈ C [0, T ] verifying

‖u‖C [0,T ] � eαµ/T ‖ψ‖H−1(]0,a[),

(the implicit constant being independent of T ) and such that the solution w of

(3.7)


∂w

∂t
(x, t) =

∂

∂x

(
p(x)

∂w

∂x
(x, t)

)
+ q(x)w(x, t) (0 < x < a, 0 < t < T )

w(0, t) = u(t) (0 < t < T )
w(a, t) = 0 (0 < t < T )
w(x, 0) = ψ(x) (0 < x < a),

satisfies w(x, T ) = 0 for all x ∈]0, a[.
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The above result, implying estimate (1.7), improves Theorem 4.1 in [14], where a similar
assertion is shown to hold under the stronger hypothesis α > 2

(
36
37

)2. Another improve-
ment brought in by our Corollary 3.5 is that our estimate involves ‖u‖C [0,T ] and ‖ψ‖H−1]0,a[

instead of ‖u‖L2[0,T ] and ‖ψ‖L2[0,a] employed in [14].

The dual version of Theorem 3.4 may be stated as follows.

Corollary 3.6. Let κ > 3
4π

2. Assume that Λ := (λn)n∈N is a regular sequence satisfy-
ing (3.1). Then, uniformly for (an)n∈N ∈ `2(C) and T > 0, we have

(3.8)
∑
n>0

|an|2e−λnT � e2κ/(rT )

∫ T

0

∣∣∣∣ ∑
n>0

ane−λnt

∣∣∣∣2 dt.

Note that a direct application of Theorem 2.7 would provide only (3.8) with∑
n>0

|an|2e−2λnT

in the left-hand side.

For real sequences (λn)n∈N satisfying (3.1), this result improves the constants obtained
in [22]—see [14] for detailed comments on this issue.

4 Two lemmas

The proofs of our main results rest upon two lemmas. The first one furnishes sharp
estimates for the exponential type, and growth on the real axis, for a sequence of entire
functions defined by certain infinite products. Recall that a sequence of real numbers is
said to be regular if it satisfies (2.8).

Throughout, we denote by bxc the integer part of the real number x. Also, we use
Kronecker’s symbol

δnk :=
{

1 if n = k,
0 if n 6= k.

Lemma 4.1. Let (λn)n>1 be a regular sequence of positive real numbers satisfying

(4.1) |λn − n2| 6 Cn (n > 1),

for some C > 0. Let (an) ∈ `2(N∗,C). For n ∈ N∗, define

Φn(z) :=
∏
k 6=n

(
1− z

λk − λn

)
(z ∈ C).(4.2)

Then, for suitable B = B(C), we have, uniformly with respect to n > 1,

Φn(z) �Λ eπ
√
|z|(1 + |z|)B (z ∈ C),(4.3)

Φn(−ix− λn) �Λ (λn + |x|)Beπ
√
|x|/2 (x ∈ R).(4.4)

The implicit constants depend at most upon C and γ, as defined in (2.8).
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Proof. Let δ = δn := infk 6=n |λk − λn| > γ(Λ) := infk 6=j |λk − λj |. We have

(4.5)

ln |Φn(z)| 6
∑
k>1

ln
(
1 +

|z|
|λk − λn|

)
=

∑
k>1

∫ |z|

0

dt
t+ |λk − λn|

=
∫ |z|

0

∑
k>1

1
t+ |λk − λn|

dt =
∫ |z|

0

∑
k>1

∫ ∞

|λk−λn|

ds
(t+ s)2

dt

=
∫ |z|

0

∫ ∞

δ

Ln(s)
(t+ s)2

dsdt

with Ln(s) :=
∑

|λk−λn|6s 1. From assumption (4.1), we readily get

(4.6) Ln(s) 6
√
λn + s−

√
(λn − s)+ +O(1),

where the implicit constant depends on C.
The contribution of the term

√
λn + s−

√
(λn − s)+ to the right hand side of (4.5) is∫ |z|

0

∫ ∞

δ

√
λn + s−

√
(λn − s)+

(t+ s)2
dsdt = |z|

∫ ∞

δ

√
λn + s−

√
(λn − s)+

s(s+ |z|)
ds

6
|z|√
λn

{
U

( |z|
λn

)
+ V

( |z|
λn

)}
,

with

U(x) :=
∫ 1

0

√
1 + v −

√
1− v

v(v + x)
dv =

∫ 1

0

2 dv
(v + x)

{√
1 + v +

√
1− v

} ,
V (x) :=

∫ ∞

1

√
v + 1

v(v + x)
dv.

Since the global contribution of the term O(1) from the right hand side of (4.6) to the
right hand side of (4.5) is

� ln
(
1 + |z|/δ

)
,

the conclusion of our lemma follows provided that we show the inequality

(4.7)
√
x{U(x) + V (x)} 6 π (x > 0).

Since (4.7) can be easily verified numerically for x 6 3, we assume x > 3 henceforth.
Denote

a :=
∫ 1

0

2 dv√
1 + v +

√
1− v

b :=
∫ ∞

1

dv
v{
√
v +

√
v + 1}

·

We notice that

U(x) 6
a

x

and

V (x) =
∫ ∞

1

√
v

v(v + x)
dv +

∫ ∞

1

dv
v(v + x){

√
v +

√
v + 1}

=
1√
x

∫ ∞

1/
√
x

2 dt
1 + t2

+
∫ ∞

1

dv
v(v + x){

√
v +

√
v + 1}

6
π√
x
− 2√

x
arctan

( 1√
x

)
+

b

x+ 1

6
π√
x
− 2
x

+
2

3x2
+
b

x
− b

x(x+ 1)
·
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Therefore

(4.8)
√
x{U(x) + V (x)} 6 π +

a+ b− 2√
x

+
2

3x3/2
− b√

x(x+ 1)
.

We shall see that

a = 2
√

2− 2 ln
(
1 +

√
2
)
≈ 1.0656, b = 2 + 2 ln

(
1 +

√
2
)
− 2

√
2 ≈ 0.9343.

Thus a + b = 2 and the sum of the last two terms in (4.8) is negative for x > 3, which
yields estimate (4.7).

It remains to establish the above formulae for a and b. From the successive changes of
variables v = 1− 2(sinϑ)2 and t = tan(ϑ/2), we obtain

a = 4
√

2
∫ π/4

0

sinϑ cosϑ
sinϑ+ cosϑ

dϑ = 8
√

2
∫ 1

0

(1− t2)t
(1 + t2)2(1 + 2t− t2)

dt.

This furnishes the announced value for a after routine calculations.

Similarly, writing v = (tanϑ)2 and then t = tan(ϑ/2) yields

b =
∫ π/2

π/4

2 dϑ
(1 + sinϑ) sinϑ

= 2
∫ 1

√
2−1

1 + t2

t(1 + t)2
dt,

from which the stated formula for b stems by standard calculus.

The proof of (4.4) is similar but easier. We have

Φn(−ix− λn) :=
∏
k 6=n

( 1 + ix/λk
1− λn/λk

)
.

Now, similarly to (4.5), writing λ0 := mink>1 λk, we have∑
k>1

ln
(
1 + x2/λ2

k

)
=

∫ |z|2/λ2
0

0

M(t)
1 + t

dt

with
M(t) :=

∑
λk6|z|/

√
t

1 6
√
|x|t−1/4 +O(1).

The bounded remainder term contributes � ln(1+ |x|) and the main term does not exceed√
|x|

∫ ∞

0

dt
(t+ 1)t1/4

= π
√

2|x|,

since ∫ ∞

0

dt
(t+ 1)t1/4

=
∫ ∞

−∞

2w2 dw
1 + w4

= 2πi
{

Res(J ; eiπ/4) + Res(J ; e3πi/4)
}

= π
√

2,

with J(w) := 2w2/(1 + w4).

Thus, we have shown so far that, for a suitable constant D, we have

|Φn(−ix− λn)| � Bn(1 + |x|)Deπ
√
|x|/2

with
Bn :=

∏
k 6=n

(
1− λn/λk

)−1
.

It remains to bound |Bn| from above. We may plainly assume that n is sufficiently large.
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Put m := bCc + 1, so that (k −m)2 6 λk 6 (k +m)2 for all k > m. For n > 3m, we
have from Euler’s product formula for sin(πz) (see, for instance, Ahlfors [1, p.195])

|Bn| 6
∏

k<n−2m

( λn
(k +m)2

− 1
)−1 ∏

n−2m6k6n+2m

( λn
λn − λk

) ∏
k>n+2m

(
1− λn

(k −m)2
)−1

6 (λn/γ)4m+1
∏

16k6m

∣∣∣1− λn
k2

∣∣∣ ∏
n−m6k6n+m

∣∣∣1− λn
k2

∣∣∣ ∏
k>1

∣∣∣1− λn
k2

∣∣∣−1

�Λ λ
7m+1
n

∣∣1− λn/
⌊√

λn
⌋2∣∣√λn

sinπ
√
λn

�Λ λ
7m+2
n .

Remark 4.2. Euler’s product formula for sin(πz) shows the optimality of the exponent π
in (4.3).

In our second lemma, we construct an entire function with fast decay on the real line.
This will be essentially obtained as the Fourier transform of the C∞ function defined by

(4.9) σν(t) :=

{
exp

{
− ν

1− t2

}
if |t| < 1,

0 if |t| > 1,

where ν is a positive constant. We note straightaway that, for every η ∈]0, 1[, we have∫ 1

−1
σν(t)dt > 2η exp

{
− ν

1− η2

}
.

Selecting η := 1/
√
ν + 1 readily yields

(4.10)
2e−ν−1

√
ν + 1

6
∫ 1

−1
σν(t)dt 6 2e−ν .

The following result furnishes the required fast decay property—see Bombieri, Friedlan-
der and Iwaniec [3] and Jaffard and Micu [12] for related estimates.

Lemma 4.3. Let β > 0, δ > 0, and set ν := (π + δ)2/β. The function σν being defined as
in (4.9), put Cν := 1/‖σν‖1 and denote by Hβ the entire function defined by

(4.11) Hβ(z) := Cν

∫ 1

−1
σν(t)e−iβtz dt.

Then we have

(4.12)

(4.13)

(4.14)

(4.15)



Hβ(0) = 1,

Hβ(ix) >
eβ|x|/(2

√
ν+1)

11
√
ν + 1

(x ∈ R)

|Hβ(z)| 6 eβ|y| (z = x+ iy, x, y ∈ R),

|Hβ(x)| �
√
ν + 1 e3ν/4−(π+δ/2)

√
|x| (x ∈ R).
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Proof. Conditions (4.12) and (4.14) immediately follow from the definition of Cν .

To show (4.13), we may assume x > 0. We first note that, from(4.10), we have

(4.16) 1
2eν 6 Cν 6 3

2

√
ν + 1 eν .

Then, since σν(t) > e−ν−1 for 1
2η 6 t 6 η with η := 1/

√
ν + 1, we may write

Hβ(ix) > 1
2Cνηe

−ν−1+βxη/2 > 1
11ηe

βηx/2,

as required.

Thus, it only remains to establish condition (4.15). Since Hβ is even, we restrict to the
case x > 0. Since σν ∈ C∞(R), σν(−1) = σν(1) = 0, we obtain by partial integration

(4.17) |Hβ(x)| 6
Cν‖σ(j)

ν ‖∞
(βx)j

(x > 0, j ∈ N).

For t ∈]− 1, 1[ we set % = 1− t and z = t+ %eiϑ, with ϑ ∈]− π, π]. We have

< 2
1− z2

= < 1
1− z

+ < 1
1 + z

=
1
2%

+
1− %(sinϑ/2)2

2− 2%(2− %)(sinϑ/2)2
.

Since the last term is an increasing function of (sinϑ/2)2, we obtain

< 2
1− z2

>
1
2%

+
1
2

(|z − t| = %).

Therefore

(4.18) |σν(z)| 6 e−ν/4%−ν/4 (|z − t| = %).

Applying Cauchy’s integral formula, we obtain that

|σ(j)
ν (t)| 6 e−ν/4 sup

%>0

j!e−ν/4%

%j
(j ∈ N, t ∈ [−1, 1]),

which, in view of the elementary inequality j! > jje−j (j > 1), yields

(4.19) |σ(j)
ν (t)| 6 e−ν/4

(
2jj!

)2

νj
(j ∈ N, t ∈ [−1, 1]).

From this, (4.16), (4.17) and the fact that Hβ is even, we get that

|Hβ(x)| 6 3
2

√
ν + 1 e3ν/4

(
2jj!

)2

(βνx)j
(x > 0, j ∈ N).

Selecting j := 0 when 0 6 x 6 1 and j :=
⌊

1
2

√
βνx

⌋
otherwise, we readily check that (4.15)

holds as required. Indeed, we deduce from the above that, for x > 1,

|Hβ(x)|√
ν + 1 e3ν/4

�
(
2jj!

)2

(2j)2j
� e−2jj

� e−(π+δ)
√
x√x� e−(π+δ/2)

√
x.

This concludes the proof.
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5 Proofs of the main results

Proof of Theorem 3.1. A simple change of variables shows that it suffices to prove the re-
sult for any given special value of r. For simplicity, we choose r = 1. The proof, following
the strategy in Fattorini and Russell [8], is divided into two steps.

First step: construction of a family bi-orthogonal to (eiλnt)n>1. For n ∈ N∗, we define

Ψn(z) := Φn(z − λn) =
∏
k 6=n

(
1− z − λn

λk − λn

)
=

∏
k 6=n

( 1− z/λk
1− λn/λk

)
,

where (Φn)n∈N∗ is the sequence of entire functions constructed in Lemma 4.1. By (4.3),
we have

Ψn(z) � eπ
√
|z−λn|{1 + |z − λn|

}B
.

Let T > 0, κ > 3
2π

2, 3π2T/(4κ) < β < T/2 and select δ > 0 so small that

(5.1) ν := (π + δ)2/β 6 (4− δ)κ/(3T ).

We next define the functions

gn(z) := Ψn(−z)Hβ(z + λn),

where Hβ is the entire function constructed in Lemma 4.3. Since Ψn(λk) = δkn and
Hβ(0) = 1, we have

(5.2) gn(−λk) = δkn (k, n ∈ N∗).

Moreover, it follows from (4.3), (4.15) and (5.1) that

(5.3) |gn(x)| �Λ KT
(1 + |x+ λn|)B

e(δ/2)
√
|x+λn|

� KT

1 + |x+ λn|2
(x ∈ R),

with

(5.4) KT :=
√
ν + 1 e3ν/4 � eκ/T .

Finally, since β < T/2, we infer from (4.3) and (4.14) that

(5.5) gn(z) �n eT |z|/2 (z ∈ C).

By the Paley–Wiener theorem (see, for instance, Rudin [19, p.375]), gn is, for every n ∈ N∗,
the Fourier transform of a function fn ∈ L2(R) with support included in

[
−1

2T,
1
2T

]
, i.e.

(5.6) gn(z) =
∫ T/2

−T/2
fn(t)e−itzdt (z ∈ C).

Since (5.2) and (5.6) imply

(5.7)
∫ T/2

−T/2
fn(t)eiλktdt = δkn (k, n ∈ N∗),

we see that the sequence (gn)n>1 is, in L2[−T/2, T/2], biorthogonal to the the fam-
ily (eiλnt)n>1.
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Second step: construction of the control. Given ψ ∈ X, we define u ∈ L2[0, T ] by

(5.8) u(t) = −
∑
k∈N∗

ake−iTλk/2fk (t− T/2) (0 6 t 6 T ),

where ak := 〈ψ,ϕk〉/bk (k ∈ N). We deduce from (5.3) and (5.4) that∫ T

0
|u(t)|2dt� e2κ/T

∑
m∈N∗

∑
n∈N∗

|aman|
∫

R

dx
(1 + |x+ λm|2)(1 + |x+ λn|2)

.

Inserting the elementary inequality∫
R

dx
(1 + |x+ λm|2)(1 + |x+ λn|2)

6
4π

1 + |λm − λn|2
(m, n ∈ N∗),

yields ∫ T

0
|u(t)|2dt� e2κ/T

∑
m∈N∗

∑
n∈N∗

|aman|
1 + (λm − λn)2

.

We plainly have from (2.8), that |λm − λn| > γ|m − n| for all positive integers m, n. So
we derive from the above estimate that

(5.9) ‖u‖L2[0,T ] � eκ/T ‖ψ‖ (T > 0).

Now, (2.8) and (2.1) (with W = U), together with (2.5) and (5.8), imply that the
solution w of (1.1) (with A = iA0 and Bu = ub) satisfies

(5.10) w(T ) =
∑
k∈N∗

[
〈ψ,ϕk〉+ bk

∫ T

0
u(s)eiλksds

]
e−iλkTϕk.

We deduce from (5.7) and (5.8) that, for every k ∈ N∗, we have∫ T

0
u(s)e−iλksds = −

∑
m∈N∗

ame−iTλm/2

∫ T

0
fm (s− T/2) eiλksds = −ak.

In view of (5.10), this yields that w(T ) = 0. By (5.9), this implies in turn that the pair
(iA0, b) is null controllable in time T and that the control cost satisfies (3.2).

Proof of Corollary 3.2. It is easily checked that, without loss of generality, we may assume
q 6 0—see, for instance [15]. In order to apply Theorem 3.1, we write X := H−1(]0, a[)
and we consider the linear operator A0 : X1 → X defined by

(5.11) X1 = H1
0 (]0, a[), A0ϕ =

d
dx

(
p
dϕ
dx

)
+ qϕ (ϕ ∈ X1).

That A0 is self-adjoint and strictly negative readily follows from our assumptions on p
and q. Let U stand for the group of isometries on X generated by iA0. We select U = C
as input space and we consider b ∈ X−1 defined by

(5.12) b = δ′1,

where δ1 is the Dirac distribution supported at x = 1. The input operator B ∈ L (C;X−1)
is defined by Bu = ub for all u ∈ C. It is known (see, for instance, Curtain and Pritchard [5]
and Curtain and Weiss [6]) that the system (3.4) can be written in the form (1.1) with
X, A0 and B chosen as above and A := iA0. Therefore, in order to prove the theorem, it
suffices to show that X, A and B satisfy the assumptions in Theorem 3.1 with a suitable
constant r.
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According to classical estimates on Sturm-Liouville operators (see, for instance, Courant
and Hilbert [4, p.415]), the sequence (λk)k∈N∗ formed by the eigenvalues of −A0, is regular
and satisfies

(5.13) λn − n2π2/µ� 1 (n > 1).

Moreover, let (ϕk)k∈N∗ be an orthonormal basis in X = H−1(Ω) consisting of eigenvectors
of A0. Using standard estimates on the eigenvectors of Sturm-Liouville operators (see, for
instance, [4, Section V.5]), we can check that bk = 〈b, ϕk〉 = −ϕ′k(1) � 1. Therefore, we can
apply Theorem 3.1 (with r = π2/µ) to conclude that the system (3.4) is null-controllable
in any time T > 0 and that its null-controllability operator satisfies ‖FT ‖ � eαµ/T for
every α > 3

2 .

Proof of Corollary 3.3. Put X := `2(N,C) and let A0 : D(A0)→X be the diagonal oper-
ator defined by

D(A0) =
{
ψ ∈ `2(N,C) :

∑
k∈N(1 + |λk|2)|ψk|2 <∞

}
, (A0ψ)k = −λkψk (k ∈ N).

Note that the canonical basis (ek)k∈N of `2(N,C) is the sequence of eigenvectors of A0,
with corresponding sequence of eigenvalues (−λk). The operator A := iA0 generates a
(diagonal) group of isometries defined by

(5.14) (Utψ)k = e−iλktψk (k ∈ N, t ∈ R).

Let b ∈ X−1 be defined by
bk = 1 (k ∈ N).

The operator B ∈ L (C;X−1) corresponding by (2.6) to the above choice of b is defined by

(Bu)k = u (u ∈ C, k ∈ N),

and its adjoint B∗ ∈ L (X1; C) is given by

(5.15) B∗ψ =
∑
k∈N∗

ψk (ψ ∈ D(A)).

The operators A and B clearly satisfy the assumptions in Theorem 3.1, so the pair (A,B)
is null-controllable in any time T > 0 and the control cost CT = ‖FT ‖ satisfies (3.2) for
every κ > 3

4π. Combined to (5.14), (5.15) and to Proposition 2.7, this implies the required
conclusion.

Proof of Theorem 3.4. Arguing in a similar way than for Theorem 3.1, we first choose
r = 1 and then proceed in two steps.
First step: construction of a family of functions bi-orthogonal to (eλnt)n>1. Let T > 0 and
κ > 3

4π
2. We choose β ∈]3π2T/(4κ), T [ and δ > 0 so small that ν := (π + δ)2/β satisfies

(5.16) ν < (4− δ)κ/(3T ).

For n ∈ N∗ and z ∈ C, we set

(5.17) Gn(z) := Φn(−iz − λn)
Hβ(z/2)
Hβ(iλn/2)

,
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where (Φn)n∈N∗ is as defined in Lemma 4.1 and Hβ is the entire function constructed in
Lemma 4.3. Clearly, Gn is, for each positive integer n, an entire function. It immediately
follows from (4.2), (4.3), (4.12), (4.13) and (4.14) that

Gn ∈ L1(R) ∩ L2(R) (n ∈ N∗);(5.18)
Gn(z) �n eT |z|/2 (z ∈ C);(5.19)
Gn(iλk) = δnk (n ∈ N∗).(5.20)

Moreover, (4.4), (4.13) and (4.15) readily yield that

Gn(x) � (ν + 1)(λn + |x|)B e3ν/4−βλn/(4
√
ν+1)−(δ/2)

√
|x|/2 (x ∈ R),

so that, in view of (5.16), we plainly have

(5.21) ‖Gn‖L1(R) � λ−1
n eκ/T .

By the Paley–Wiener theorem, Gn is, for each n ∈ N∗, the Fourier transform of a function
Fn ∈ L2(R) with support included in

[
−1

2T,
1
2T

]
, i.e.

Gn(z) =
∫ T/2

−T/2
Fn(t)e−itzdt (z ∈ C).

By (5.20), this implies that, for all n, k ∈ N∗, we have

(5.22)
∫ T/2

−T/2
Fn(t)eλkt dt =

∫ T/2

−T/2
Fn(t)e−i(iλk)t dt = δnk.

The family (Fn)n>1 is therefore bi-orthogonal, in L2[−T/2, T/2], to (eλnt)n>1.

Second step: construction of the control. Given arbitrary ψ ∈ X, we define u ∈ L2[0, T ] by

(5.23) u(t) := −
∑
k∈N∗

ake−Tλk/2Fk (t− T/2) ,

with ak := 〈ψ,ϕk〉/bk (k > 1).

We claim that u satisfies (3.5). Indeed, from (5.23) and (5.21), we have

‖u‖C [0,T ] � eκ/T
∑
k∈N∗

|ak|e−Tλk/2λ−1
k ,

whence, by the Cauchy-Schwarz inequality,

(5.24) ‖u‖2
C [0,T ] � e2κ/T

∑
k∈N∗

|ak|2e−Tλk
∑
m∈N∗

λ−2
m � e2κ/T

∑
k∈N∗

|ak|2e−Tλk .

By the choice of ak and the estimate |bk| � 1, this implies that

‖u‖2
C [0,T ] � e2κ/T

∑
k>1

|〈ST/2ψ,ϕk〉|2 = e2κ/T ‖ST/2ψ‖2.

Therefore, u satisfies (3.5).
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It remains to show that u as defined in (5.23) drives the solution w of (1.1) (with A = A0

and Bu = ub) to rest in time T . From (2.8), (2.1), (2.4) and (5.23), we have

(5.25) w(T ) =
∑
k∈N∗

[
〈ψ,ϕk〉+ bk

∫ T

0
u(s)eλksds

]
e−λkTϕk.

From (5.22) and (5.23) it follows that∫ T

0
u(s)eλksds = −

∑
m∈N∗

ame−Tλm/2

∫ T

0
Fm (s− T/2) eλksds = −ak.

Substituting in (5.25) yields w(T ) = 0. Hence the control u drives the system w to rest in
time T . This implies the required conclusion.

Corollary 3.5 may be derived from Theorem 3.4 by following step by step the proof of
Corollary 3.2. We omit the details.

Proof of Corollary 3.6. Consider the operators A0 and B introduced in the proof of Corol-
lary 3.3. According to Theorem 3.4 the pair (A0, B) is null-controllable in any time T > 0.
Let u ∈ L2[0, T ] be the control given by (5.23) with bk = 1 and −ak in place of ak. Writing

h(t) := u(T − t) =
∑
k∈N∗

ake−Tλk/2Fk(T/2− t) (0 6 t 6 T ),

it follows from (3.5) that

(5.26)
∫ T

0
|h(t)|2dt� e2κ/t

∑
k>1

|ak|2e−λkT .

Put
f(t) :=

∑
n>1

ane−λnt (t > 0).

We have ∫ T

0
h(t)f(t)dt =

∑
n, k> 1

akan e−T (λn+λk)/2

∫ T

0
Fk(T/2− t)eλn(T/2−t)dt

=
∑
k>1

|ak|2e−λkT ,

where the last equality follows from (5.22). In view of (5.26), this yields the required
conclusion by the Cauchy-Schwarz inequality.

6 Results in several space dimensions

As noted in the introduction, the results of the previous sections have consequences on null-
controllability problems in several space dimensions. The passage from one dimensional
results (as Corollaries 3.4 and 3.7) to several space dimensions estimates has been studied
in [14], [15], [16] by the control transmutation method.
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Let Ω ⊂ Rn be an open bounded set and let Γ be an open non empty subset of ∂Ω. We
consider the initial and boundary value problem:

(6.1)


iẇ + ∆w = 0 (x ∈ Ω, t > 0),

w = u (x ∈ Γ, t > 0),

w = 0 (x ∈ ∂Ω r Γ, t > 0),
w(x, 0) = ψ(x) (x ∈ Ω).

We also introduce a corresponding initial and boundary value problem for the heat
equation

(6.2)


ẇ −∆w = 0 (x ∈ Ω, t > 0),

w = u (x ∈ Γ, t > 0),

w = 0 (x ∈ ∂Ω \ Γ, t > 0),
w(x, 0) = ψ(x) (x ∈ Ω).

It is classical knowledge that, under some regularity assumptions on Ω and Γ, each of
the systems (6.1) and (6.2) determines a well-posed linear system with input space L2(Γ)
and state space H−1(Ω). A sufficient condition for the null-controllability of these systems
is that Γ satisfies the generalized geodesics condition of Bardos, Lebeau and Rauch [2].
In our case, this means, roughly speaking, that any light ray travelling in Ω and reflected
according to geometrical optic laws when it hits ∂Ω, will intersect Γ (see [2] or [14] for
more details on this condition).

Proposition 6.1. Assume that Ω ⊂ Rn is a bounded domain with smooth frontier and
that Γ ⊂ ∂Ω satisfies the generalized geodesics condition. Then, the system determined by
(6.1) is null-controllable in any time T > 0 and the control cost satisfies

(6.3) lim sup
T→0

T lnCT 6 3
2L

2
Γ ,

where LΓ is the length of the longest generalized geodesic in Ω not intersecting Γ.

Proof. Consider the system with state space L2(Ω) ×H−1(Ω) and input space L2(Γ) de-
termined by the equations

(6.4)


ẅ −∆w = 0 (x ∈ Ω, t > 0),

w = u (x ∈ Γ, t > 0),

w = 0 (x ∈ ∂Ω \ Γ, t > 0),
w(x, 0) = ψ0(x), ẇ(x, 0) = ψ1(x) (x ∈ Ω).

According to [2], our assumptions imply that there exists T0 > 0 such that the system (6.4)
is exactly controllable in time T0. This fact, combined to Theorem 3.1 of [16] and to our
Corollary 3.2, implies the required result.

If Ω is the rectangle ]0, a[×]0, b[, with a, b > 0, a sufficient condition ensuring that Γ
satisfies the generalized geodesics condition is that Γ ⊃ ([0, a]× {0}) ∪ ({0} × [0, b]). The
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result in Proposition 6.1, although not directly applicable to Ω and Γ as above (since Ω
does not have a smooth boundary), suggests that the control cost satisfies

lim sup
T→0

T lnCT 6 3
2(a2 + b2).

The result below improves the above estimate inasmuch the constant a2 + b2 is replaced
by a smaller one and we obtain an effective estimate valid for every T > 0.

Proposition 6.2. Let Ω be the rectangle ]0, a[×]0, b[, with a, b > 0 and assume that
Γ ⊃ ([0, a]× {0}) ∪ ({0} × [0, b]). Denote µ := max (a2, b2) and let α > 3

2 . Then the
system (6.1) is null-controllable in any time T > 0 and the control cost satisfies the bound

CT � eαµ/T (T > 0).

Proof. Appealing to Proposition 2.7, it can be checked (see, for instance, [13]) that ‖FT ‖ =
CT is the smallest quantity satisfying

(6.5) ‖∇ψ‖2
L2(Ω) 6 C2

T

∫ T

0

∫
Γ

∣∣∣∣∂ϕ∂ν
∣∣∣∣2 dΓdt

(
ψ ∈ H2(Ω) ∩H1

0 (Ω)
)
,

where ϕ is the solution of the initial and boundary value problem

(6.6)


ϕ̇+ i∆ϕ = 0 (x ∈ Ω, t > 0),

ϕ = 0 (x ∈ ∂Ω, t > 0),
ϕ(x, 0) = ψ(x), (x ∈ Ω).

Define

ϕmn(x, y) =
2
√
ab

π
√
b2m2 + a2n2

sin
(mπx

a

)
sin

(nπy
b

)
(m,n ∈ N∗).

The above family forms an orthogonal basis in L2(Ω) and the family (∇ϕmn) is orthonormal
in L2(Ω). Let (cmn) be the components of ψ with respect to this basis so that

ψ =
∑
m,n∈N

cmnϕmn,

with (cmn) ∈ `2(C). It follows that∫ T

0

∫
Γ

∣∣∣∣∂ϕ∂ν
∣∣∣∣2 dΓdt >

4a
b

∫ T

0

∫ a

0

∣∣∣∣ ∑
m,n>1

ncmneiπ
2(m2/a2+n2/b2) t

√
b2m2 + a2n2

sin
(mπx

a

)∣∣∣∣2 dxdt

+
4b
a

∫ T

0

∫ b

0

∣∣∣∣ ∑
m,n>1

mcmneiπ
2(m2/a2+n2/b2) t

√
b2m2 + a2n2

sin
(nπy

a

)∣∣∣∣2 dydt.

The above formula, combined to the orthogonality of the family (sin (mπx/a))m>1 (respec-
tively (sin (nπy/b))n>1) in L2[0, a] (respectively in L2[0, b]), implies that∫ T

0

∫
Γ

∣∣∣∣∂ϕ∂ν
∣∣∣∣2 dΓdt

>
a

b

∑
m>1

∫ T

0

∣∣∣∣∣∣
∑
n>1

nacmneiπ
2n2t/b2

√
b2m2 + a2n2

∣∣∣∣∣∣
2

dt+
b

a

∑
n>1

∫ T

0

∣∣∣∣∣∣
∑
m>1

mbcmneiπ
2m2t/a2

√
b2m2 + a2n2

∣∣∣∣∣∣
2

dt.
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By applying Corollary 3.3 it follows that there exists CT > 0 such that CT � eαµ/T for
every α > 3

2 and

C2
T

∫ T

0

∫
Γ

∣∣∣∣∂ϕ∂ν
∣∣∣∣2 dΓdt >

∑
m,n>1

|cmn|2,

which is exactly (6.5). This ends up our proof.

Remark 6.3. It has been recently shown in Ramdani, Takahashi, Tenenbaum and Tucsnak
[18] that if Ω is a square in R2 then the system determined by (6.1) is null-controllable even
when the controlled part Γ of the boundary is arbitrarily small. It would be interesting to
prove that this property holds in arbitrarily small time and to estimate the corresponding
control cost.

The result in Proposition 6.1 has the following counterpart for the heat equation.

Proposition 6.4. Assume that Ω ⊂ Rn is a smooth bounded domain and that Γ satisfies the
generalized geodesics condition. Then, the system determined by (6.2) is null-controllable
in any time T > 0 and the control cost satisfies

(6.7) lim sup
T→0

T lnCT 6 3
4L

2
Γ ,

where LΓ is the length of the longest generalized geodesic in Ω not intersecting Γ.

Proof. The result follows directly from Corollary 7.6 and Theorem 6.2 in [17].

Proposition 6.2 also has a counterpart for the heat equation. Since the proof is identical,
we omit it.

Proposition 6.5. Let Ω, a, b > 0, Γ and µ be as in Proposition 6.2 and let α > 3
4 . Then

then the system (6.2) is null-controllable in any time T > 0 and the control cost CT satisfies

CT � eαµ/T (T > 0).

7 Lower bounds

The question of giving lower bounds of the control cost for the Schrödinger and the heat
equations has also been investigated in the literature. The first result in this direction,
due to Güichal [10], concerns the heat equation. It asserts that, for p ≡ 1 and q ≡ 0, the
control cost for the parabolic system (3.7) satisfies the condition

lim inf
T→0

T lnCT > 0.

This is extended to the heat equation in several space dimensions and with internal control
in [28]—see also Fernandez-Cara and Zuazua [9]. These results are improved in [14], where
it is shown, in particular, that for p ≡ 1 and q ≡ 0, the control cost for the system (3.7)
satisfies the condition

(7.1) lim inf
T→0

T lnCT > 1
4a

2.
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As far as we know, the only available lower bound for the control cost of the Schrödinger
equation appears in [15], where the inequality (7.1) is proved to hold also for the system
(3.4), with p ≡ 1 and q ≡ 0. Moreover, in the case of Schrödinger and heat equations
in several space dimensions (with internal control), lower bounds for the control cost are
provided in [28], [14] and [15].

In this section, we give, for both the Schrödinger and heat equations in one space dimen-
sion, a simple proof of the estimate (7.1). Moreover, we use the same method to establish
a lower bound for the Schrödinger equation in a rectangular domain in R2 (this estimate is
slightly different of that obtained in the general case). Our approach is based on classical
properties of the Jacobi theta function, while the arguments of [14] and [15] rest upon a
deep formula of Varadhan.

Proposition 7.1. Let r > 0 and let Λ := (λn) be the sequence defined by λn = rn2 for
all n ∈ N. Assume that, for every T ∈]0, 1], there is a real number KT such that the
inequality

(7.2)
∑
n>0

|an|2 6 K2
T

∫ T/2

−T/2

∣∣∣ ∑
n>0

aneiλnt
∣∣∣2dt,

holds uniformly for (an) ∈ `2(C). Then

KT �r T
1/4eπ

2/(4rT ).

Proof. We may plainly restrict to proving the result for any given special value of r. Let
us select r = π. Let ξ > 0 be a parameter which will be specified later. We choose

(7.3) a0 = 1
2 , an := (−1)ne−πn

2ξ (n > 1).

Denoting z := ξ − it, we can write

f(t) =
∑
n>0

ane−2πn2ti = 1
2

∑
n∈Z

(−1)ne−πn
2z.

We next introduce the Jacobi theta function defined by

(7.4) ϑ(z) :=
∑
n∈Z

e−πn
2z (<z > 0).

It is known (see, for instance, [26], §21.51) that ϑ satisfies the functional equation

ϑ(z) =
1√
z
ϑ
(1
z

)
,

where the square root is chosen to be positive for real positive z. Therefore

(7.5)

f(t) = 1
2

{ ∑
n∈Z

e−4πn2z −
( ∑
n∈Z

e−πn
2z −

∑
n∈Z

e−4πn2z
)}

= 1
2

{
2ϑ(4z)− ϑ(z)

}
=

1
2
√
z

{
ϑ
( 1

4z

)
− ϑ

(1
z

)}
.
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It follows that for T, ξ ∈]0, 1[, |t| 6 1
2T , we have

f(t) � e−πξ/(4ξ
2+T 2)

ξ + T

so that ∫
I
|f(t)|2 dt� T e−2πξ/(4ξ2+T 2)

ξ2 + T 2
.

Since ∑
n>0

|an|2 = 1
2ϑ(2ξ) � 1√

ξ
,

we see that by selecting ξ = T/2 that if (7.2) holds then

1√
T
� K2

T

e−π/2T

T
·

The required estimate follows immediately.

The above result yields, at least for the case λn = rn2, a lower bound for the control
cost of the system in Theorem 3.1. More precisely, we obtain the following statement as a
consequence of Propositions 2.7 and 7.1.

Corollary 7.2. Let r > 0. Put X = `2(N,C) and let A : D(A)→X be the diagonal
operator defined by

D(A) =
{
ψ ∈ `2(N,C) :

∑
k∈N(1 + k2)|ψk|2 <∞

}
, (Aψ)k = irk2ψk (k ∈ N).

Let B ∈ L (C;X−1) be the operator defined by

(Bu)k = u (u ∈ C, k ∈ N).

Then the control cost for the pair (A,B) satisfies

CT � T 1/4eπ
2/(4rT ) (0 < T 6 1).

Applying the above to the system (3.4), with p ≡ 1 and q ≡ 0 we obtain the following
lower bound for the constant α appearing in (3.3).

Corollary 7.3. Let a > 0, T ∈]0, 1[ and assume that, for every ψ ∈ H−1(]0, a[), there
exists u ∈ L2[0, T ] verifying

‖u‖L2[0,T ] � eαa
2/T ‖ψ‖H−1(]0,a[),

(the implicit constant being independent of T ) and such that the solution w of

(7.6)


−i∂w

∂t
(x, t) =

∂2w

∂x2
(x, t) (0 < x < a, 0 < t < T )

w(0, t) = u(t) (0 < t < T )
w(a, t) = 0 (0 < t < T )

w(x, 0) = ψ(x) (0 < x < a),

satisfies w(x, T ) = 0 for all x ∈]0, a[. Then α > 1
4a

2.
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In order to obtain a corresponding lower bound for the control cost of the heat equation,
we need the following counterpart for real exponentials of the estimate in Proposition 7.1.

Proposition 7.4. Let r > 0 and set λn = rn2 for all n ∈ N. Assume that, for each
T ∈]0, 1], there is a number KT such that the inequality

(7.7)
∑
n>0

|an|2e−λnT 6 K2
T

∫ T

0

∣∣∣∣ ∑
n>0

ane−λnt

∣∣∣∣2dt,
holds uniformly for (an)n>0 ∈ `2(C). Then

KT �r T
1/4eπ

2/(4rT ).

Proof. As before, we may select any convenient value for r and we pick up r = π: the
general result follows by a change of variables. Let ξ > 0 to be specified later. Consider
the the sequence (an)n>0 with an = (2− δ0n)(−1)ne−πn

2ξ, so that

(7.8)

f(t) :=
∑
n>0

ane−πn
2t =

∑
n∈Z

(−1)ne−πn
2(ξ+t)

= 2ϑ(4ξ + 4t)− ϑ(ξ + t)

=
1√
ξ + t

{
ϑ
( 1

4ξ + 4t

)
− ϑ

( 1
ξ + t

)}
.

It follows that

f(t) � e−π/(4ξ+4t)

√
ξ + t

,

and hence ∫ T

0
|f(t)|2 dt� e−π/(2ξ+2T )

T + ξ
·

Since ∑
n>0

|an|2e−πn
2T = 2ϑ(2ξ + T )− 1 � 1√

ξ + T
,

we see, by selecting for instance ξ = T 2, that

1√
T
� K2

T

e−π/{2T (1+T )}

T
� K2

T

e−π/(2T )

T
,

which implies the stated inequality.

Proposition 7.4 implies two corollaries, which are the counterparts for the heat equation
of the results in corollaries 7.2 and 7.3. More precisely, we have the following statements.

Corollary 7.5. Put X = `2(N,C) and let A : D(A)→X be the diagonal operator de-
fined by

(Aψ)k = rk2ψk, D(A) =
{
ψ ∈ `2(N,C) :

∑
k∈N(1 + k2)|ψk|2 <∞

}
.

Let B ∈ L (C;X−1) be the operator defined by

(Bu)k = u (u ∈ C, k ∈ N),

Then the control cost for the pair (A,B) satisfies the condition

CT � T 1/4eπ
2/(4rT ) (0 < T 6 1).
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Corollary 7.6. Let a > 0, T ∈]0, 1[ and assume that, for every ψ ∈ H−1(]0, a[), there
exists u ∈ L2[0, T ] verifying

‖u‖L2[0,T ] � eαa
2/T ‖ψ‖H−1(]0,a[),

(the implicit constant being independent of T ) and such that the solution w of

(7.9)



∂w

∂t
(x, t) =

∂2w

∂x2
(x, t) (0 < x < a, 0 < t < T )

w(0, t) = u(t) (0 < t < T )
w(a, t) = 0 (0 < t < T )

w(x, 0) = ψ(x) (0 < x < a),

satisfies w(x, T ) = 0 for all x ∈]0, a[. Then α > 1
4a

2.

We omit the proofs of the two above corollaries, since they are almost identical to those
of Corollaries 7.2 and 7.3.

We end up with the remark that the estimate

(7.10)
∑
n∈Z

(−1)ne−πzn
2+iπnx � e−π(1−|x|)2<z/{4|z|2}√

|z|
(|x| 6 1

2 , <z > 0),

easily established by Poisson’s summation formula, readily provides a lower bound for the
control cost of a system governed by a Schrödinger or a heat equation in a rectangular
domain. We omit the proof, which is very similar to that of Proposition 7.4.

Proposition 7.7. Let Ω be the rectangle ]0, a[×]0, b[, with a, b > 0 and assume that
Γ = ([0, a]× {0}) ∪ ({0} × [0, b]). Let µ = min (a2, b2). Then the control costs of the
systems (6.1) and (6.2) satisfy

(7.11) CT � T 1/4eµπ
2/(4T ) (0 < T 6 1).
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