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We prove consistency of four different approaches to formalizing the idea of minimum average edge-length in a path linking some infinite subset of points of a Poisson process. The approaches are (i) shortest path from origin through some m distinct points; (ii) shortest average edge-length in paths across the diagonal of a large cube; (iii) shortest path through some specified proportion δ of points in a large cube; (iv) translation-invariant measures on paths in R d which contain a proportion δ of the Poisson points. We develop basic properties of a normalized average length function c(δ) and pose challenging open problems.

Introduction

Fix dimension d ≥ 2 and let (ξ i ) be a Poisson point process of rate 1 per unit volume in R d . "Volume" means d-dimensional Lebesgue measure.

To start with an analogy, one can informally describe the critical value for continuum percolation as the smallest c such that there exists some infinite sequence ξ j 1 , ξ j 2 , ξ j 3 , . . . of distinct points such that max i≥1 |ξ j i+1ξ j i | ≤ 2c. Here | • | denotes Euclidean distance. What we study in this paper can analogously be described informally as the smallest c such that there exists some path through an infinite sequence ξ j 1 , ξ j 2 , ξ j 3 , . . . of distinct points whose average edge-length lim n→∞ n -1 n i=1 |ξ j i+1 -ξ j i | ≤ c. One could formalize this directly by e.g. replacing lim by lim sup, requiring the property to hold almost surely and then taking the inf of such c. But such a definition seems neither elegant nor convenient. Our purpose in this paper is to study four indirect approaches to this formalization question and show that they lead to the same constant, which we call c(0+). Along the way we introduce a function c(δ) which plays a role analogous to the percolation function. Our results are collected in Theorem 1.

Conceptually, this topic seems intermediate between first passage percolation and the random traveling salesman problem (TSP). Regarding the former, our c(0+) differs (informally speaking) from a continuum analog of the time constant in first passage percolation [START_REF] Howard | Models of first-passage percolation[END_REF][START_REF] Kesten | First-passage percolation[END_REF] because we use "distance along a path" in place of "end-to-end Euclidean distance" (nonetheless we use "continuum first passage percolation" as a descriptor of one of our approaches below). Regarding the latter, take n random points in a d-dimensional cube of volume n. Let L n (1) be the length of the shortest cycle through all n points, i.e. the length of the solution of the TSP. Almost 50 years ago, Beardwood-Halton-Hammersley [START_REF] Beardwood | The shortest path through many points[END_REF] proved there exists a constant c(1) such that EL n (1) ∼ c(1)n as n → ∞. Subsequent work on related problems is described in the monographs by Steele [13] and Yukich [START_REF] Yukich | Probability Theory of Classical Euclidean Optimization Problems[END_REF]. Another of our approaches modifies the TSP by considering cycles through some specified proportion δ of the Poisson points. Additional motivation for the current paper comes from work on such problems in the "mean-field" setting, described in section 2.2.

Challenging problems for future research are listed in section 2.1. One of our techniques -subadditive analysis of optimal cost/reward ratios -seems potentially applicable in other contexts, as briefly discussed in section 4.1.

The equivalence theorem

Approach 1 Continuum first passage percolation from the origin. For each m ≥ 1 define a random variable T m as the minimum, over choices {ξ j 1 , . . . , ξ jm } of m distinct points of the Poisson process on R d , of

|ξ j 1 | + m i=2 |ξ j i -ξ j i-1 |.
Comment. One certainly expects that T m /m should converge to a constant, but we see no easy argument. In particular we don't see how to apply subadditivity arguments directly to study T m .

Approach 2 Continuum first passage percolation across a diagonal. For s > 0 define a random variable W s as the minimum, over all m ≥ 1 and all choices {ξ j 1 , . . . , ξ j m-1 } ⊂ [0, s] d of m -1 distinct points of the Poisson process, of

m -1 m i=1 |ξ j i -ξ j i-1 | (1) 
where ξ j 0 = (0, . . . , 0) and ξ jm = (s, . . . , s).

Comment. Here we can attempt subadditivity analysis, based on splitting the cube of side 2s into 2 d subcubes of side s, though because of the "ratio" form of (1) we are not in the usual format for the subadditive ergodic theorem.

Approach 3 TSP on sparse subsets of the cube.

Let C n = [0, n 1/d ] d be the cube of volume n in R d . Put n random (independent, uniformly distributed) points (ζ j ) into C n . Fix 0 < δ ≤ 1. Let L n (δ) be the minimum, over all choices of cycles (ζ j 1 , ζ j 2 , . . . , ζ jm , ζ j m+1 = ζ j 1 ) through m = ⌈δn⌉ disjoint choices from the random points, of the cycle length m i=1 |ζ j i+1 -ζ j i |. Comment.
Here subadditivity can be applied in familiar ways. Note that, in contrast to continuum percolation where definitions are in terms of the process on infinite space R d , the approaches above all envisage taking limits over finite regions. For the record we give a final approach which does work directly on infinite space, as "the n = ∞ analog of Approach 3", though we admit it does not seem very useful.

Approach 4 Translation invariant distributions on infinite paths through Poisson points. Consider a locally finite set (x i ) of points in R d , together with a set E of edges whose endpoints are in (x i ), where the edges form a collection of doubly-infinite paths, each point of (x i ) appearing either once or never in the paths. Write S for the space of such points-and-paths configurations. The Euclidean translation group acts naturally on S, so one can define a probability distribution µ on S to be invariant if it is invariant under the action of the Euclidean translation group. Let M be the set of invariant distributions on S under which the distribution of the points (ξ i ) is the Poisson point process of rate 1. Informally, a µ ∈ M is just a way of collecting some subsets of the Poisson points into paths using a rule which doesn't depend on the location of the origin. For µ ∈ M there is a constant δ(µ) ∈ [0, 1] specified informally as "the proportion of points which are in some infinite path" and defined formally via the formula: for every cube

C ⊂ R d , E µ (number of points ξ i ∈ C which are in some infinite path) = δ(µ) volume(C).
Similarly there is a constant ℓ(µ) interpreted as "mean edge-length over all edges in the paths of µ" and formally via the formula: for every cube

C ⊂ R d , E µ (length of E ∩ C) = δ(µ)ℓ(µ) volume(C) (here we regard E as a subset of R d ). Finally define c(δ) := inf{ℓ(µ) : µ ∈ M, δ(µ) = δ}.
Theorem 1

(a) For 0 < δ ≤ 1 there exists a constant c(δ) such that Ln(δ) δn → c(δ) in L 2 as n → ∞.

(b) The function c(δ) is non-decreasing and continuous on (0, 1], the function δc(δ) is convex, and the limit c(0+) := lim δ↓0 c(δ) is strictly positive.

(c) W s → c(0+) a.s. as s → ∞.

(d) c(δ) = c(δ), 0 < δ ≤ 1. (e) m -1 T m → c(0+) in probability.
From (a) we see c(1) is the constant in the Beardwood-Halton-Hammersley [START_REF] Beardwood | The shortest path through many points[END_REF] theorem. Monte Carlo simulations [START_REF] Jacobsen | The traveling salesman problem, conformal invariance, and dense polymers[END_REF] give (for d = 2) c(1) ≈ 0.7119 but no close rigorous bounds are known.

Discussion

The function c(δ), 0 < δ ≤ 1 seems worthy of study as a analog of the classical percolation function from lattice percolation theory [START_REF] Grimmett | Percolation[END_REF]:

f (p) := P (origin is in some infinite component)
in bond percolation with edge-probability p. In particular one can ask whether there exists a scaling exponent 0 < α < ∞, that is whether

c(δ) -c(0+) ≍ δ α as δ ↓ 0. ( 2 
)
For the record we state the (probably very hard)

Open Problem 1 Prove (2) holds for some α. Or give bounds on the possible values of α.

The next question may be easier. The facts that c(δ) is nondecreasing and that δc(δ) is convex imply: either (i) c(δ) is strictly increasing on 0 < δ < 1; or (ii) c(δ) is constant on 0 < δ < δ 0 , for some 0 < δ 0 ≤ 1. But the latter seems implausible.

Open Problem 2 Prove that c(δ) is strictly increasing on 0 < δ < 1.

Getting reasonable bounds on the numerical value of c(0+) seems difficult.

Standard methods (comparison with branching random walk: section 3.3) give an explicit lower bound [START_REF] Kesten | First-passage percolation[END_REF], which in d = 2 is 1/(2πe) ≈ 0.0585. But we don't see any simple way to get an interesting upper bound. Even Monte Carlo methods seem difficult to code convincingly; for the record we write

Open Problem 3 In d = 2 study the numerical value c(0+) and the presumed scaling exponent α via Monte Carlo methods.

The variation in which (in d = 2) we restrict to "upward oriented" paths, that is edges (x i , y i ) → (x i+1 , y i+1 ) are required to have y i+1 > y i , is easier to study via simulation; our small-scale simulations suggest the analog of c(0+) in this variation is ≈ 0.62, which would be an a priori upper bound for our original c(0+).

Another question concerns variances. Take d = 2 here. For the basic traveling salesman problem, that is for L n (1), it is known that var(L n (1)) is order n; precisely,

lim inf n n -1 var(L n (1)) > 0, lim sup n n -1 var(L n (1)) < ∞.
The upper bound is explicit in Steele [START_REF] Steele | Complete convergence of short paths and Karp's algorithm for the TSP[END_REF] and the lower bound follows from a corresponding large deviation lower bound in Rhee [START_REF] Rhee | On the fluctuations of the traveling salesperson problem[END_REF]. On the other hand, for first-passage percolation it has long been conjectured [START_REF] Durrett | Harry Kesten's publications: a personal perspective[END_REF] that variance grows as the 2 3 power of expectation, though little has been proved rigorously [START_REF] Benjamini | First passage percolation has sublinear distance variance[END_REF].

Open Problem 4 Prove var(T m ) ≍ m 2/3 . Or just prove var(T m ) = o(m).

We will not even venture a conjecture for the asymptotic behavior of var(L n (δ)).

As a small rewriting of the definition of L n (δ), let L(n, m) be the minimum, over all choices of cycles (ζ j 1 , . . . , ζ jm , ζ j m+1 = ζ j 1 ) through some chosen m of the random points, of the cycle length m i=1 |ζ j i+1 -ζ j i |. Theorem 1 implies that, if m n /n → 0 sufficiently slowly, then L(n, m n )/m n → c(0+). However it seems plausible this also holds for smaller values of m n .

Open Problem 5 Prove that L(n, m n )/m n → c(0+) in probability whenever m n /n → 0 and mn log a n → ∞ ∀a < ∞. In other words, for fixed c < c(0+) consider Poisson points in a cube of volume n; is it true that any cycle with average edge-length ≤ c can have at most poly-log(n) edges? This would be an analog of the fact that subcritical percolation cluster size distribution has a geometrically-decreasing tail [START_REF] Grimmett | Percolation[END_REF].

The mean-field model

Instead of the Euclidean model in this paper, one can consider a "meanfield" model on n points for which the n 2 inter-point links are assumed to have independent random lengths with Exponential (mean n) distribution. Within this model one can define the function c(δ) analogous to c(δ). Mézard-Parisi [START_REF] Mézard | A replica analysis of the travelling salesman problem[END_REF] used the non-rigorous replica method of statistical physics to argue n -1 EL n (1) → c(1), where c(1) ≈ 2.04 is derived from numerical solution of a certain fixed point equation. Using probabilistic reformulations of these statistical physics ideas, Aldous [START_REF] Aldous | Percolation-like scaling exponents for minimal paths and trees in the stochastic mean-field model[END_REF] gave a (still non-rigorous) analysis of the whole function c(δ), exhibited in Figure 1 of [START_REF] Aldous | Percolation-like scaling exponents for minimal paths and trees in the stochastic mean-field model[END_REF], which suggests c(δ) -c(0+) ≍ δ 1/3 as δ ↓ 0. So one might conjecture that the scaling exponent 1 3 also holds in the Euclidean case. Note that the subadditivity arguments we use in the Euclidean case to prove Theorem 1 rest upon the "boundary effects are negligible" property of R d . In the mean-field model, the limit analog of the Poisson process is a certain infinite random tree, for which boundary effects are not negligible and subadditivity arguments cannot be used. Indeed, Approach 4 was developed in the mean-field setting as a substitute for subadditivity.

Proofs

We start with Approach 3 and prove part (a) of Theorem 1 in 3.1; then we prove part (b) of Theorem 1 in 3.2 and give a lower bound on c(0+) in 3.3. Sections 3.4, 3.5, 3.6 contain the proofs of the remaining parts (c), (d), (e) of Theorem 1. Part (e) seems hardest, for reasons explained at the start of section 3.6.

TSP on sparse subsets

We rely on subadditivity arguments as in [START_REF] Steele | Probability Theory and Combinatorial Optimization[END_REF][START_REF] Yukich | Probability Theory of Classical Euclidean Optimization Problems[END_REF]. These monographs develop general results for sub-or superadditive Euclidean functions satisfying regularity properties. Unfortunately functionals like L n (δ) lack the monotonicity property ([13] equation (3.5)) and it is not clear whether the smoothness property ([14] section 3.3) is both valid and exploitable. We will use the inequality in (b) below as a substitute for monotonicity.

Write A 1 , A 2 , . . . for constants depending only on dimension d ≥ 2. We start with a purely deterministic lemma (note that by scaling the case of general s is equivalent to the case s = 1).

Lemma 2 Let {x 1 , . . . , x n } be arbitrary points in the cube [0, s] d and let L(m) be the length of the shortest cycle through some m ≤ n of these points. 

L(n) ≤ A 1 sn (d-1)/d . ( 3 
) (b) For 1 ≤ m 1 < m 2 ≤ n, L(m 1 ) m 1 ≤ L(m 2 ) m 2 + sd 1/2 m 1 . (c) [Geometric subadditivity] Let k ≥ 2 and let (C j , 1 ≤ j ≤ k d ) be the natural partition of [0, s] d into k d subcubes of side s/k.
Suppose that, for each j, there exists a cycle of length l j through some subset S j ⊂ {x i } ∩ C j . Then there exists a cycle through ∪ j S j of length at most j l j + A 2 sk d-1 .

Proof. Parts (a) and (c) are standard ([13] sections 2.2 and 2.3). For (b), let y 1 , y 2 , . . . , y m 2 , y m 2 +1 = y 1 be a minimum-length cycle attaining L(m 2 ). Then there exists k such that (interpreting

k + i modulo m 2 ) 1 m 1 m 1 i=1 |y k+i+1 -y k+i | ≤ L(m 2 ) m 2
because the right side equals the average of the left side as k varies. To make a cycle on {y k , . . . , y k+m 1 -1 } replace edge (y k+m 1 -1 , y k+m 1 ) by edge (y k+m 1 -1 , y k ), whose length is at most the diameter sd 1/2 of the cube [0, s] d .

Remark. Lemma 2(a) implies that the worst-case cycle length is the same order of magnitude as the average-case lengths we will be studying. This has the pleasant consequence that events of probability tending to zero will make asymptotically negligible contributions to expectation of length, and so can be ignored: we use this uniform boundedness property several times later.

We start analysis of the probability model by making definitions to which subadditivity arguments can easily be applied. Recall (ξ i ) denotes a Poisson point process of rate 1 per unit volume in R d . Let N (s) be the number of points of (ξ i ) in [0, s] d . Define L(s, δ) as the length of the minimum-length cycle through at least some ⌈δN (s)⌉ of the points of (ξ i ) ∩ [0, s] d . By the triangle inequality, replacing "at least ⌈δN (s)⌉" by "exactly ⌈δN (s)⌉ points" changes nothing. We will start by using the next lemma as a definition of c(δ), and later show this agrees with the limit in Theorem 1(a).

Lemma 3 For fixed 0 < δ ≤ 1 there exists a constant c(δ) such that L(s, δ) δs d → c(δ) in L 2 as s → ∞.
Proof. First note s → EL(s, δ) is continuous, from the representation

EL(s, δ) = ∞ n=0 s nd n! e -s d sa n (δ),
where a n (δ) is the expected length of the shortest cycle through some [δn] of n uniform random points in the unit cube [0, 1] d . Next, given s > 0, we can write any x > 0 as x = ks + t with integer k and t ∈ [0, s). Geometric subadditivity (Lemma 2(c)) then implies

EL(x, δ) ≤ k d EL(s + t/k, δ) + A 2 (s + t/k)k d-1 .
Taking x → ∞ while keeping s fixed lim sup

x→∞ x -d EL(x, δ) ≤ inf ε>0 sup τ ∈[0,ε] s -d EL(s + τ, δ).
So by the continuity property

lim s→∞ s -d EL(s, δ) = inf s>0 s -d EL(s, δ) = δc(δ), say (4) 
with 0 ≤ c(δ) < ∞.

Once again by geometric subadditivity, temporarily abbreviating L(s, δ) to L s ,

EL 2 ks ≤ k d EL 2 s + k d (k d -1)(EL s ) 2 + A 2 sk 2d-1 EL s + (A 2 sk d-1 ) 2 .
By the uniform boundedness property (3)

EL 2 s ≤ A 2 1 s 2 EP 2(d-1) d (s d ) ≤ A 2 1 s 2 • A 3 s 2(d-1) = A 2 1 A 3 s 6 ,
where P (s d ) has Poisson(s d ) distribution and where the second inequality holds for some A 3 for all s ≥ 1. Combining the two displayed inequalities and (4) gives lim sup

x x -2d EL 2 x = (δc(δ)) 2 ,
and finally

s -d L(s, δ) → δc(δ) in L 2 .
Remark. More sophisticated modern proofs ([13] sec. Fix small ε > 0 and consider, in C n , a Poisson process of rate 1 -ε per unit volume. By standard properties of the Poisson process, for each n we can couple this to the process of n i.i.d. uniform points in C n in such a way that, with probability → 1 as n → ∞, each point of the Poisson process is a point of the uniform process. Call this the inclusion coupling. There is a similar inclusion coupling between the uniform process on C n and the Poisson process of rate 1 + ε. Now write L λ (s, δ) to mean the quantity L(s, δ) applied to a Poisson process of rate λ; and write N λ (s) for the number of points of that Poisson process in [0, s] d . When the inclusion couplings hold and when

δ 1 + 2ε N 1+ε (n 1/d ) ≤ δn ≤ δ 1 -2ε N 1-ε (n 1/d )
then we have

L 1+ε (n 1/d , δ 1+2ε ) ≤ L n (δ) ≤ L 1-ε (n 1/d , δ 1-2ε ). ( 5 
)
This holds because, in informal language, for each ≤ we have more points to choose from, and a weaker constraint on minimum number of points in the cycle. Now by scaling

L 1-ε (n 1/d , δ 1-2ε ) = (1 -ε) -1/d L((1 -ε) -1/d n 1/d , δ 1-2ε ),
and similarly

L 1+ε (n 1/d , δ 1+2ε ) = (1 + ε) -1/d L((1 + ε) -1/d n 1/d , δ 1+2ε ).
Taking limits in (5), using Lemma 3 and the uniform boundedness property, we get lim sup

n n -1 EL n (δ) ≤ (1 -ε) -1-1/d δ 1-2ε c( δ 1-2ε )
and similarly

(1 + ε) -1-1/d δ 1+2ε c( δ 1+2ε ) ≤ lim inf n n -1 EL n (δ).
Letting ε ↓ 0 and using continuity of c(δ) (which we prove independently in the next subsection) we see that for 0 < δ < 1

L n (δ) δn → c(δ) in L 1 .
The case δ = 1 is similar, but of course is already part of the usual proof [START_REF] Steele | Probability Theory and Combinatorial Optimization[END_REF] of the Beardwood-Halton-Hammersley theorem, so we omit it.

Properties of c(δ)

Next we prove part (b) of Theorem 1.

Proposition 4 c(δ) is non-decreasing on 0 < δ ≤ 1. Proof. Fix 0 < δ 1 < δ 2 ≤ 1. By Lemma 2(b) L(s, δ 1 ) ⌈δ 1 N (s)⌉ ≤ L(s, δ 2 ) ⌈δ 2 N (s)⌉ + sd 1/2 ⌈δ 1 N (s)⌉ and so L(s, δ 1 ) δ 1 s d ≤ R s L(s, δ 2 ) δ 2 s d + sd 1/2 δ 1 s d
where

R s = ⌈δ 1 N (s)⌉/δ 1 ⌈δ 2 N (s)⌉/δ 2 .
Since R s is uniformly bounded and R s → 1 as s → ∞, using Lemma 3 we deduce c(δ 1 ) ≤ c(δ 2 ).

Proposition 5 δc(δ) is convex on 0 < δ ≤ 1. Proof. Fix 0 < δ 1 < δ 2 ≤ 1 and 0 < λ < 1. Let (C j , 1 ≤ j ≤ k d ) be the partition of [0, s] d into k d equal subcubes.
Let N j be the number of points of (ξ i ) in the j-th subcube and let ℓ j (s) (resp. lj (s)) be the length of the shortest cycle through some ⌈δ 1 N j ⌉ (resp. ⌈δ 2 N j ⌉) points in C j . Take any δ < λδ 1 + (1 -λ)δ 2 . The event

⌈λk d ⌉ j=1 ⌈δ 1 N j ⌉ + k d j=⌈λk d ⌉+1 ⌈δ 2 N j ⌉ ≥ ⌈δN (s)⌉
has probability → 1 as s → ∞, and on this event we have by Lemma 2(c)

L(s, δ) ≤ ⌈λk d ⌉ j=1 ℓ j (s) + k d j=⌈λk d ⌉+1 lj (s) + A 2 sk d-1 .
Taking expectations, letting s → ∞ and using Lemma 3 we obtain 6) holds for all λ < λ ′ and hence for λ = λ ′ , proving convexity.

δc(δ) ≤ ⌈λk d ⌉ k d δ 1 c(δ 1 ) + k d -⌈λk d ⌉ k d δ 2 c(δ 2 ), and letting k → ∞ δc(δ) ≤ λδ 1 c(δ 1 ) + (1 -λ)δ 2 c(δ 2 ). ( 6 
) If δ = λ ′ δ 1 + (1 -λ ′ )δ 2 then (
Proposition 6 c(δ) is continuous on (0, 1].

Proof. Convexity of δc(δ) implies continuity of δc(δ), and hence continuity of c(δ), on the open interval 0 < δ < 1. Continuity at δ = 1 requires a separate argument. Take δ < 1. The cycle attaining L n (δ) passes through ⌈nδ⌉ points in [0, n 1/d ] d . By Lemma 2(a) there exists a cycle through the remaining q = n -⌈nδ⌉ points with length at most

A 1 n 1/d q (d-1)/d ≤ A 1 n(1 -δ) (d-1)/d .
By joining the two cycles we find

L n (1) ≤ L n (δ) + A 1 n(1 -δ) (d-1)/d + 2n 1/d d 1/2 . Letting n → ∞ c(1) ≤ δc(δ) + A 1 (1 -δ) (d-1)/d
and this implies continuity as δ ↑ 1.

A lower bound on c(0+)

We start by noting a one-sided bound relating the T k in Approach 1 to c(0+). In the context of Theorem 1(a), the cycle attaining length L n (δ) can be converted into a path from the origin by replacing some edge (ζ, ζ ′ ) by the edge from the origin to ζ ′ . It follows that

lim k P (k -1 T k ≤ c(δ) + ε) = 1 ∀ε > 0 and thus lim k P (k -1 T k ≤ c(0+) + ε) = 1 ∀ε > 0. (7) 
We can now use a standard argument. Consider branching random walk on R + , starting with one individual at the origin in generation 0, and where each individual in each generation (at position x, say) has children at positions (x + |ξ j |, j ≥ 1) where (ξ j ) forms a Poisson point process of rate 1 in R d . Write θ k (•) for the mean measure for the positions of the generation-k individuals (Y k,i , i ≥ 1):

θ k (•) = i P (Y k,i ∈ •).
This is exactly the same measure as the mean measure for lengths of k-step paths from the origin through the Poisson points:

θ k (•) = (j 1 ,...,j k ) P |ξ j 1 | + k i=2 |ξ j i -ξ j i-1 | ∈ •
where the sum is over ordered distinct k-tuples. So for T k as defined in Approach 1, and for c > 0, λ > 0 The inf λ>0 ( • ) is now attained at λ = (d -1)/c and we finally find

P (T k ≤ ck) ≤ θ k [0, ck] (Markov's inequality) ≤ e λck
c(0+) ≥ e -1 (d -1) (v d Γ(d + 1)) - 1 d-1 (8)
and of course v d = π d/2 /Γ(1 + d/2). In particular, for d = 2 we find c(0+) ≥ (2πe) -1 .

The limit for W s

We now turn to Approach 2. Here we consider the rate-1 Poisson process (ξ i ) on R d . Let Π 0,s be the set of paths π across the diagonal of C s ; that is, of paths (0, . . . , 0) = ξ j 0 , ξ j 1 , . . . , ξ j m-1 , ξ jm = (s, . . . , s)

where {ξ j 1 , . . . , ξ j m-1 } are distinct points of {ξ i } ∩ [0, s] d . Write ℓ(π) = m i=1 |ξ j i -ξ j i-1 |; m(π) = m
for the length and number of edges in the path π and

w(π) = ℓ(π)/m(π)
for the average edge-length of π. By considering diagonally-adjacent unit cubes and picking (where possible) one point from each, we see there exists a path π greedy ∈ Π 0,s such that m(π greedy ) -1 has Binomial (⌊s⌋, 1 -e -1 ) distribution;

ℓ(π greedy ) ≤ A 4 ⌈s⌉ (9) 
for some constant A 4 . Recall the definition

W s := min π∈Π 0,s ℓ(π) m(π) .
Applying to π greedy and using [START_REF] Meester | Continuum Percolation[END_REF] we see

lim sup s W s ≤ A 4 /(1 -e -1 ) a.s. (10) 
Similarly one can check that s/m(π greedy ) is uniformly integrable as s → ∞ and so

(W s , 0 < s < ∞) is uniformly integrable. ( 11 
)
While subadditivity is not applicable directly to W s , the proof below is an easy indirect application. Proposition 7 W s → β a.s. and in L 1 as s → ∞, for some constant 0 ≤ β < ∞.

Proof. For c ≥ 0 define

X (c) 0,s = min π∈Π 0,s (ℓ(π) -cm(π) + c).
We shall prove the Proposition for

β := sup{c : EX (c) 0,s ≥ 0 ∀s > 0}.
For s < t write Π s,t for the set of paths across the diagonal of [s, t] d and define X (c) s,t analogously to X (c) 0,s . Given a path π 1 ∈ Π 0,s and a path π 2 ∈ Π s,t , their concatenation gives a path π ∈ Π 0,t , for which

ℓ(π) ≤ ℓ(π 1 ) + ℓ(π 2 ); m(π) = m(π 1 ) + m(π 2 ) -1. (12) 
In such a concatenation, the last edge of π 1 and the first edge of π 2 are replaced by a single edge and the inequality for ℓ(π) arises only from the triangle inequality for this replacement. Consider first a value c such that EX (c) 0,s < 0 for some s. For this s let π be the random path in Π 0,s such that E(ℓ(π) -cm(π) + c) = EX (c) 0,s < 0. So by the concatenation property [START_REF] Steele | Complete convergence of short paths and Karp's algorithm for the TSP[END_REF] and the strong law of large numbers we can construct random paths π k in Π 0,ks such that lim sup

k→∞ ℓ(π k ) m(π k ) -1 ≤ Eℓ(π) Em(π) -1 < c a.s.
and it easily follows that lim sup s→∞ W s < c a.s.

From choice of c and definition of β we deduce lim sup s→∞ W s ≤ β a.s.

On the other hand consider a value of c such that EX (c) 0,s ≥ 0 for all s > 0. The process (X (c) s,t ) is subadditive by [START_REF] Steele | Complete convergence of short paths and Karp's algorithm for the TSP[END_REF]. A routine application of the subadditive ergodic theorem shows that there exists a constant γ(c) ≥ 0 such that lim

s→∞ s -1 X (c) 0,s = γ(c) a.s. ( 13 
)
Now W s = ℓ(π s )/m(π s ) for some random π s in Π s , and

X (c) 0,s ≤ ℓ(π s ) -cm(π s ) + c, implying W s -c ≥ X (c) 0,s -c m(π s ) . ( 14 
)
Combining ( 13) with ( 14) gives lim inf

s (W s -c) ≥ γ(c) • lim inf s s m(π s ) ≥ 0 a.s.
and consequently lim inf

s W s ≥ c a.s.
From choice of c and definition of β we deduce lim inf s→∞ W s ≥ β a.s.

completing the proof of a.s. convergence in Proposition 7. Finally, note β < ∞ by [START_REF] Mézard | A replica analysis of the travelling salesman problem[END_REF], and note that L 1 convergence follows from [START_REF] Rhee | On the fluctuations of the traveling salesperson problem[END_REF].

We use concatenation constructions based on ( 12) several times later, and here is a rather technical formulation of the results of such constructions, designed to replace the use of the expectations Eℓ(π s ) and Em(π s ) by using truncation. By "adjacent cubes" we mean disjoint cubes in which we can choose diagonals to form a connected path (e.g. as in Figure 1 below).

Lemma 8 (Concatenation argument) Let π s be a random path across the diagonal of the cube [0, s] d , and let w 0 ∈ (0, s). Then there exist paths π sn through the Poisson points in n adjacent cubes of side s each, such that

lim sup n w(π sn ) ≤ w 0 + w 0 + sd 1/2 P (w(π s ) > w 0 ) (sd 1/2 /w 0 -1)P (w(π s ) ≤ w 0 ) a.s. ( 15 
)
and

lim n m(π sn ) n ≥ (sd 1/2 /w 0 -1)P (w(π s ) ≤ w 0 ) a.s.
Proof. Given a random path π s across the diagonal of the cube [0, s] d , consider the modified path πs = π s on the event w(π s ) ≤ w 0 , ր s otherwise, where ր s is a shortcut path consisting of a single edge from (0, . . . , 0) to (s, . . . , s). By concatenating n independent copies of πs we get a path π ns such that, using [START_REF] Steele | Complete convergence of short paths and Karp's algorithm for the TSP[END_REF],

w(π ns ) ≤ n i=1 ℓ(π (i) s ) n i=1 m(π (i) s ) -(n -1) ≤ w 0 n i=1 m(π (i) s ) + sd 1/2 k n i=1 m(π (i) s ) -(n -1) ≤ w 0 + w 0 (n -1) + sd 1/2 k n i=1 m(π (i) s ) -(n -1) (16) 
where k = #{i : w(π

(i) s ) > w 0 . By definition of πs either m(π s ) ≥ sd 1/2 /w 0 , or m(π s ) = 1, so that m(π sn ) = n i=1 m(π (i) s ) -(n -1) ≥ (n -k)(sd 1/2 /w 0 ) + k -(n -1) ≥ (n -k)(sd 1/2 /w 0 -1). ( 17 
)
Since k/n → P (w(π s ) > w 0 ) a.s. as n → ∞, combining ( 16) with ( 17) gives (15) and the second inequality of the lemma follows from (17).

Proposition 9 β = c(0+).

Proof. Given a cycle through m points in [0, s] d , one can make a path from (0, . . . , 0) to (s, . . . , s) through these m points using extra length at most 2sd 1/2 . So for any δ > 0 we have, setting s = n 1/d and m = ⌈δn⌉,

W n 1/d ≤ L n (δ) + 2n 1/d d 1/2 ⌈δn⌉ + 1 .
Letting n → ∞ and using Proposition 7 and Theorem 1(a), we see β ≤ c(δ).

So β ≤ c(0+).

For the converse, consider the cube [0, Ks] d for even K, partitioned into K d equal subcubes. In each subcube choose a diagonal path π (i) s attaining the minimum W s , so that concatenating these paths forms a cycle through the large cube (see Figure 1).

Fix ε > 0. By Proposition 7, for s = s(ε) large enough the random paths π (i)

s satisfy P (w(π (i) s ) > β + ε) ≤ ε. Then by Lemma 8 applied with w 0 = β + ε we can construct cycles π K d in [0, Ks] d such that P w(π K d ) > β + ε + β + ε + sd 1/2 ε (1 -ε)(sd 1/2 /(β + ε) -1) + ε → 0 as K → ∞.
(18) By taking s sufficiently large this simplifies to

P (w(π K d ) > β + 2ε + 2βε) → 0 as K → ∞. (19) 
Also from Lemma 12 there exists δ s > 0 such that On this event we have, for δ < δ s ,

P ( m(π K d ) s d K d ≥ δ s ) → 1 as K → ∞.
L(Ks, δ) ≤ w(π K d )m(π K d ). So as K → ∞ P (L(Ks, δ) ≤ (β + 2ε + 2βε)s d K d δ s ) → 1
and then by Lemma 3

δc(δ) ≤ (β + 2ε + 2βε)δ s .
Letting δ ↑ δ s then implies c(0+) ≤ β + 2ε + 2βε, so that letting ε ↓ 0 gives the desired inequality c(0+) ≤ β.

Propositions 7 and 9 establish part (c) of Theorem 1. For later use we record a small variation. Given ε > 0 we can choose s = s(ε) < ∞ sufficiently large that

P (π ′ s = π s ) < ε
(because ηs = 2s d will likely exceed the Poisson(s d ) number of points in [0, s] d ) and P (w(π s ) > c(0+) + ε) < ε by Propositions 7 and 9. So

P (w(π ′ s ) > c(0+) + ε) < 2ε.
Applying Lemma 12 to π ′ s and w 0 = c(0+) + ε gives the upper bound in

β(2s d-1 ) ≤ lim sup k w(π ′ sk ) ≤ c(0+) + ε + c(0+) + ε + sd 1/2 2ε ( sd 1/2 c(0+)+ε -1)(1 -2ε)
and the lower bound follows from the construction in Lemma 12. Taking ε → 0, so that s = s(ε) → ∞,

lim η→0 β(η) ≤ c(0+).

Translation invariant distributions in the infinite model

Here we prove part (d) of Theorem 1 by relating Approach 4 to Approach 3. Fix 0 < δ ≤ 1 and recall (ξ i ) denotes a Poisson point process of rate 1 per unit volume in R d . Recall from section 3.1 the definition of L(s, δ). Write E(s, δ) and V(s, δ) for the edge-set and the vertex-set of a cycle attaining length L(s, δ). For a cube C, vertex-set V and edge-set E, write |V ∩ C| for the number of vertices of V in C, and write len(E ∩ C) for the total length of edges of E restricted to C. Write U s for a uniform random position in [0, s] d , and write ξ(s) i = ξ i -U s for the positions of the Poisson points relative to the "random origin" U s ; then write E(s, δ) for the corresponding set of relative positions of edges of the tour attaining L(s, δ):

E(s, δ) = {( ξ(s) i , ξ(s) j ) : (ξ i , ξ j ) ∈ E(s, δ)}.
Now the pair ( ξ(s) i ), E(s, δ) takes values in the space S * of point-sets and paths defined as the space S in section 2, except that for S * we allow cycles in addition to doubly-infinite paths.

There is a natural metric topology on S * obtained by regarding it as a space of marked point processes. For each s the point process ( ξ(s) i ) is exactly a Poisson process. By letting s → ∞ through some subsequence we can define a limit

( ξ(s) i ), E(s, δ) d → ((ξ i ), E(δ)) on S *
where E(δ) is an edge set on some subset V(δ) of vertices of the Poisson point process (ξ i ). It is easy to check that the edge-set forms doubly-infinite paths (rather than finite cycles) and so the right side has some distribution µ on S. From the uniform distribution for U s it is easy to check that µ is translation invariant. We will show (in the notation of section 2) By weak convergence, letting s → ∞ through a subsequence,

δ(µ) = δ; ℓ(µ) ≤ c(δ)
E len(E b (δ) ∩ C 1 ) = lim s E len(E b (s, δ) ∩ (U s + C 1 )) = lim s s -d E len(E b (s, δ)).
Since δc(δ) = lim s s -d E len(E(s, δ)), we can let b → ∞ and use Fatou's lemma to conclude ℓ(µ) ≤ c(δ).

For the converse, let µ be a translation invariant distribution attaining c(δ). That is, µ specifies an edge-set E on a vertex-subset V ⊂ (ξ i ) such that (i) E|V ∩ C r | = δr d ∀r > 0; (ii) E len(E ∩ C r ) = δc(δ)r d ∀r > 0. Now consider large s and small η > 0. The intersection of E and C s consists of a set of paths, each of which enters C s at some point on some face, and exits at some point on some face. Consider the subset of paths which intersect [ηs, (1-η)s] d , and write E s,η for the edges in this subset, truncating an edge which crosses a face at the crossing point. We extend this edge-set into a cycle in C s as follows. Suppose the number of crossing points on each face is some even number (otherwise add superfluous edges, making no asymptotic difference); let D be the total number of crossing points. On each face create a tour (in the face) of the crossing points; by Lemma 2(a) this has length at most A 1 sD (d-2)/(d-1) . Within each such tour replace alternate edges by double edges. The collection of these within-face edges, and the paths through the interior of C s , form a connected graph where each vertex has even degree, so we can find a Eulerian cycle; write F s,η for the edges in this cycle. So 1) .

E len(F s,η ) ≤ δc(δ)s d + (4d)A 1 s (ED) (d-2)/(d-
(20)

Because each crossing point is associated with some path-segment of length ≥ ηs from the face of C s to the face of [ηs, (1 -η)s] d , we have

Dηs ≤ len(E ∩ C s )
and so by (ii) ED ≤ (ηs) -1 δc(δ)s d .

Substituting into (20) gives lim sup

s s -d E len(F s,η ) ≤ δc(δ). (21) 
Now the cycle F s,η goes through all the vertices V ∩ [ηs, (1 -η)s] d . By (i) 

E V ∩ [ηs, (1 -η)s] d = δ(1 -2η)
Chebyshev's inequality implies

P ( number of vertices in G ks,η ≤ δ(ks) d ((1 -2η) d -η) ≤ 2k d s 2d (δk d s d η) 2 = 2δ -2 η -2 k -d .
Taking k = k(s) → ∞ sufficiently slowly, (22) remains true, so by definition of c(•) and the uniform boundedness property

δ((1 -2η) d -2η) c(δ((1 -2η) d -2η)) ≤ δc(δ).
Letting η → 0 and using continuity of c(•) shows c(δ) ≤ c(δ).

The limit for T m

Recall the definition (Approach 1) of T m . If we could prove a sublinear growth property, that the optimal path stays within a ball of radius o(m), then part (e) of Theorem 1 would follow easily from the other parts. Because we cannot prove this property we use a more circuitous method which eventually (Lemma 14) compares a general path from the origin with either a cycle through the origin (Lemma 13) or a path between diagonals of a cube (Lemma 12).

Recall Lemma 10 on linear diagonal percolation. We need a stronger result. Given a realization of the Poisson point process in [0, s] d , first remove some µs points, then look for the optimal diagonal path through at most ηs of the remaining points. We show that the same constant β(η) appears in the limit.

Lemma 11 Given the points of the Poisson process in [0, s] d , for any η > 0, µ > 0 let

W (η,µ) s := max ∆ min π:π∩∆=∅ ℓ(π) m(π)
where the maximum is taken over all subsets ∆ of points with size at most µs and the minimum over all paths π ∈ Π 0,s through at most ηs points that exclude ∆. Then lim s→∞ W (η,µ) s = β(η) a.s.

Proof. We consider the two-dimensional case. The same proof works for dimension d ≥ 3 without significant changes. Consider the square [0, k 2 s] 2 , partitioned into subsquares of side s. Consider the 2k + 1 subsquares (S i , 1 ≤ i ≤ 2k + 1) whose lower left corners are (k, 0), (k, 1), (k -1, 1), (k -1, 2), . . . , (1, k), (0, k). For each i consider the "staircase" consisting of k 2 -k diagonally-adjacent subsquares starting with S i . Note that all these subsquares are distinct. See Figure 2.

For each such staircase consider a joint path π

k , obtained by concatenation of k 2 -k paths each attaining W (η) s in its own subcube. Given η > 0 and ε > 0, using Lemma 8 and Lemma 10 we can choose large s so that lim sup k w(π

(i) k ) ≤ β(η) + ε,
thus with probability → 1 as k → ∞ we can choose at least 3k/2 staircases i satisfying m(π

(i) k ) ≤ ηk 2 s, w(π (i) k ) ≤ β(η) + 2ε. (23) 
Figure 2: 2k + 1 diagonal paths in a large square For any subset of points ∆ of size at most µk 2 there are at least k staircases containing no more than µk points of ∆ each. Thus with probability 1, for all sufficiently large k and all such ∆ we can find some π (24)

It is enough to show this cannot happen. Let π s be the optimal path for W (η) s . There exists a constant ρ such that π s is contained inside [-ρs, s + ρs] d a.s. for large s. In the cubes [-ρs, 0] d and [s, s + ρs] d take two diagonal paths π 1 s , π 2 s with no more than ηρ steps each, that attain minimal step length while avoiding the points of π s . By Lemma 11 the average edge-length in π 1 s and in π 2 s is asymptotically β(η). Then the concatenated path {π 1 s , π s , π 2 s } satisfies the constraints in Lemma 10 for a diagonal path across and within the large cube [-ρs, (ρ + 1)s] with at most η(1 + 2ρ)s points. On the event in (24) this path has average step length less than some β ′′ < β(η). So (24) contradicts the conclusion of Lemma 10.

Lemma 13 (free cycle) Let L m (0) be the minimum length over all cycles on m points of the Poisson process that pass through the origin. Then Remarks. Such a cycle contains two edges from the origin to points of the Poisson process. Our results ultimately imply the inequality is really an equality, but we won't need to prove that now. Proof. Assume, to get a contradiction, that for some c < c(0+) But this implies lim η→∞ β(η) = -∞, which is impossible.

We can finally prove part (e) of Theorem 1.

Lemma 14 (free path) Let T m be the minimal length over all paths through m points of the Poisson process starting at the origin. Then 

  (a) [Uniform boundedness]

  2.4; [14] sec. 4.1) of the TSP case (δ = 1) use concentration inequalities to obtain almost sure convergence; we have not investigated concentration inequalities or a.s. convergence for L(s, δ). Now we proceed with the proof of Theorem 1(a) with c(δ) defined by Lemma 3. Proof of Theorem 1(a). Recall the definition of L n (δ). Let C n = [0, n 1/d ] d be the cube of volume n in R d . Put n random (independent, uniformly distributed) points (ζ j ) into C n . Fix 0 < δ ≤ 1. Let L n (δ) be the minimum, over all choices of cycles (ζ j 1 , ζ j 2 , . . . , ζ jm , ζ j m+1 = ζ j 1 ) through any chosen m = ⌈δn⌉ of the random points, of the cycle length m i=1 |ζ j i+1 -ζ j i |. Again by the triangle inequality, this is the same as saying "any m ≥ ⌈δn⌉ of the random points".

∞ 0 e 1 .

 01 -λx θ k (dx) (large deviation inequality) = e λc ∞ 0 e -λx θ 1 (dx) k by the structure of branching random walk. Comparing with (7) we see c(0+) ≥ sup c : inf λ>0 e λc R d e -λ|y| dy < Writing v d for the volume of the unit ball in R d , R d e -λ|y| dy = v d Γ(d + 1) λ d-1 .

Figure 1 :

 1 Figure 1: A cycle built from subcube diagonals in the 6x6 cube

Lemma 10 (

 10 linear diagonal percolation) For η > 0 let W average edge-length over paths across the diagonal of [0, s] d through at most ηs points. Then there exists a function β(η) such that lim s→∞ W (η) s = β(η) a.s., β(η) ↓ c(0+) as η ↑ ∞. Proof. The subadditivity argument used in Proposition 7 applies unchanged to W (η) s , giving the first limit. The function η → β(η) is a priori nonincreasing, and lim η→∞ β(η) ≥ β = c(0+) by Proposition 9. Given s < ∞ let π s be a path attaining W s π ′ s be a path attaining W (η) s for η = 2s d-1 .

  which immediately implies c(δ) ≤ c(δ). With a little extra effort we could prove ℓ(µ) = c(δ), but this doesn't help.From the fact that V(s, δ) contains exactly ⌈δN (s)⌉ of theN (s) Poisson points in [0, s] d , it is clear that for fixed r > 0 lim s→∞ E |V(s, δ) ∩ (U s + C r )| = δr dand therefore E |V(δ) ∩ C r | = δr d , the interchange of limits being justified by the fact that the total number of Poisson points in U s + C r has fixed distribution. This tells us that δ(µ) = δ. Now fix b < ∞ and let E b (δ) and E b (s, δ) be the subsets of E(δ) and E(s, δ) obtained by taking only edges of length ≤ b. By translation invariance E len(E b (δ) ∩ C r ) = δG(b)r d for some G(b), and then ℓ(µ) = δ ∞ 0 bdG(b).

  d s d and by comparison with the total number of Poisson points in C s we get a crude bound var V ∩ [ηs, (1 -η)s] d ≤ s d (s d + 1) ≤ 2s 2d (s ≥ 1). Now consider k ≥ 2. Using geometric subadditivity (Lemma 2(c)) and independent copies of F s,η on each of the k d subcubes, we can construct a cycle G ks,η in [0, ks] d such that (21) extends to lim sup s (ks) -d E len(G ks,η ) ≤ δc(δ).

k

  contains ≤ µk points of ∆. From such a path π (i) k we create a path πk ∈ Π 0,k 2 s by first deleting the points in ∆ and then adding two edges from the path-ends to the corners to [0, k 2 s] d . These changes have asymptotically negligible effect on average edge-length, so we have shown lim k→∞ W (η,µ) k 2 s ≤ β(η) + 2ε a.s. and the result follows easily. Next we will use Lemma 11 to show that when one weakens conditions on W (η) s by allowing paths through points outside the cube [0, s] d , this doesn't affect the limit β(η). Lemma 12 (unbounded linear percolation) Let W (η) s be the minimal average step length over all paths from (0, ...0) to (s, ...s) through some points of a rate 1 Poisson point process in R d , with at most ηs steps. Then lim s W (η) s = β(η) in probability. Proof. Fix η and consider the possibility that, for some β ′ < β(η) lim sup s P ( W (η) s < β ′ ) > 0.

  lim m→∞ L m (0)/m ≥ c(0+) in probability.

m and π 2 m 1 m

 21 m (0)/m < c) > 0. (25) Let ρ > 0 be a constant such that the cycle π m attaining length L m (0) is contained inside a box [-ρm, ρm] d a.s. for large m. Fix η > 0. By Lemma 11 it's possible to choose two paths π 1across the diagonals of [-ρm, 0] d and [0, ρm] d respectively in such a way that π 1 m , π 2 m have no common points with π m except the origin, andn 1 ≤ ηρm, l 1 = β(η)n 1 + o(m) n 2 ≤ ηρm, l 2 = β(η)n 2 + o(m)where n 1 , n 2 and l 1 , l 2 denote the number of edges and the length of π and π 2 m . One can adjust a few edges around the origin to get a concatenated path{π 1 m , π m , π 2 m } with length L ′ ≤ l 1 + l 2 + L m (0) and with n ′ = n 1 + n 2 + m -2 steps, across the diagonal of the whole cube [-ρm, ρm]. Observe n 1 + n 2 + m 2ρm {L m (0)/m < c} in (25) we have l 1 + l 2 + L m (0) n 1 + n 2 + m -β(η) ≤ o(m) + L m (0) -β(η)m n 1 + n 2 + m ≤ o(m) + (c -β(η))m n 1 + n 2 + m ≤ c -β(η) 1 + 2ηρ + o(1) ≤ c -c(0+) 1 + 2ηρ + o(1)the final two inequalities because c -β(η) ≤ c -c(0+) < 0. Because of (26) we can apply Lemma 10 and deduceβ(η + 1 2ρ ) ≤ β(η) -c(0+) -c 2ηρ + 1 .

T

  m /m = c(0+) in probability.Proof. The upper boundlim k P (k -1 T k ≤ c(0+) + ε) = 1 ∀ε > 0was given at[START_REF] Jacobsen | The traveling salesman problem, conformal invariance, and dense polymers[END_REF]. For the lower bound suppose, for some c < c(0+) lim sup m P (T m /m < c) > 0. (27) Let π m be a path attaining length T m and let x m be the position of its end-point. Consider r * = sup{r : lim sup m P (|x m | > rm, T m < cm) > 0}. Clearly r * < ∞. Suppose first r * = 0. Then we can construct a free cycle from π m by adding an edge from x m to the origin, and such cycles have average length ≤ c + o(1), contradicting Lemma 13. Alternatively suppose r * > 0. Then using rotational invariance of the Poisson process, for arbitrary ε > 0 lim sup m P (x m ∈ [(r -ε)m, (r + ε)m] d and T m < cm) > 0.
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Adding an edge from x m to ((r+ε)m, . . . , (r+ε)m) gives a path between the diagonal corners of [0, (r + ε)m] d through m points with average edge length at most c + 2εd 1/2 , which contradicts Lemma 12 when ε is small (because β(η) ≥ c(0+)). So ( 27) is false and we have proved T m /m → c(0+) in probability.

Final Remarks

Subadditivity and cost-reward problems

The technique in section 3.4 seems applicable in many contexts where subadditivity is used. For instance, to modify the context of first-passage percolation on the lattice, suppose that for each edge e there is a "cost" c(e) and a "reward" r(e), so that for each path π = (e 1 .e 2 , . . . , e n ) there is a cost and a reward (c(π), r(π)) = ( i c(e i ), i r(e i )). Then one can study by the same technique

minimized over paths across the diagonal of [0, n] d . Developing a general theorem which establishes limits n -1 A n → a 0 a.s. in such settings would be a natural research project.