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2Laboratoire de Mécanique des Fluides et d’Acoustique, UMR-CNRS 5509, Ecole Centrale de
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Buoyant convection induced between infinite horizontal walls by a horizontal
temperature gradient is characterized by simple monodimensional parallel flows. In a
layer of low-Prandtl-number fluid, these flows can involve two types of instabilities:
two-dimensional stationary transverse instabilities and three-dimensional oscillatory
longitudinal instabilities. The stabilization of such flows by a constant magnetic
field (vertical, or horizontal with a direction transverse or longitudinal to the flow) is
investigated in this paper through a linear stability analysis and energy considerations.
The vertical magnetic field stabilizes the instabilities more quickly than the horizontal
fields, but the stabilization is only obtained up to moderate values of Hartmann
number Ha (before disappearance of the instabilities). Characteristic laws, given by
the critical Grashof number Grc as a function of Ha (proportional to the intensity
of the magnetic field), have been found for the initial stabilization at small Ha. They
are Grc ∼ Grc0

exp(Ha2) for the two-dimensional instabilities and Grc − Grc0
∼ Ha2

for the three-dimensional instabilities (where Grc0
is the critical Grashof number

at Ha = 0), indicating that the three-dimensional instabilities, less stabilized, will
prevail in a vertical magnetic field. It has been shown by an energy analysis that
the strong stabilization of the two-dimensional instabilities is connected to the strong
diminution of the destabilizing shear energy term when the velocity profiles are
modified by the vertical magnetic field, and affected little by the Lorentz energy term.
For the horizontal magnetic fields, the stabilization is very weak at small Ha, but
then reaches an asymptotic behaviour corresponding to Grc ∼ Ha. This asymptotic
stabilization is connected to the decrease of the destabilizing shear energy term due
to the increase of the marginal cell length in the horizontal magnetic field. In fact,
this stabilization only concerns the two-dimensional modes in the longitudinal field
and the three-dimensional modes in the transverse field.

1. Introduction
The flow created by lateral heating in a cavity is one of the classical heat and

mass transfer problems with significance for fundamental fluid mechanics as well as
for geophysical and engineering applications. Among engineering applications there
are materials processing, crystal growth, cooling systems for nuclear reactors, solar
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energy collectors, manufacturing and welding. An increased interest in this field came
from the need to understand the hydrodynamical aspects of semiconductor crystal
growth, particularly for the horizontal Bridgman technique. In the crystal growth
process the existence of spontaneous oscillations of the flow has been demonstrated
experimentally (see Pimputkar & Ostrach 1981) and these oscillations are responsible
for the occurrence of layered variations of impurities in crystals, known as striations.
Similar flow oscillations have been identified experimentally in cavities filled with
either mercury or gallium as working fluid (Hart 1983; Hung & Andereck 1988; Hurle,
Jakeman & Johnson 1974).

The dynamical behaviour of such flows driven by horizontal temperature gradients
in conducting fluids has attracted the attention of researchers for many years. In a
long cavity and for a small temperature difference, convection is characterized by a
parallel core flow (Cormack, Leal & Imberger 1974) which is susceptible to a variety
of instabilities above certain critical values of the Grashof number. First stability
studies concerned the monodimensional parallel flow obtained in an infinite layer.
The work was initiated by Hart (1972) who showed, using linear theory, that for rigid
boundaries the instability sets in either as stationary transverse cells or as oscillatory
longitudinal rolls, depending on the value of the Prandtl number. Transverse cells
have axes perpendicular to the base flow direction and then a two-dimensional flow
structure persists, whereas the axes of longitudinal rolls are aligned with the base
flow which leads to a global three-dimensional flow structure. Further work on
stability (see Pimputkar & Ostrach 1981 for an extensive review) has been performed
in this field. For example for a free-surface layer with top and bottom insulated
boundaries, it has been shown that for Prandtl numbers Pr less than 0.0045 oscillatory
transverse instabilities are the dominant mode, whereas the longitudinal oscillatory
mode dominates in the range 0.0045 � Pr � 0.41. More precisely, for the longitudinal
instability, travelling waves become the preferred mode for 0.0045 � Pr � 0.38, while
standing waves prevail for 0.38 � Pr � 0.41 (Laure & Roux 1987). Some theoretical
studies have also been performed. The onset of the longitudinal rolls was studied
by Gill (1974). He examined the stability characteristics in a qualitative way in the
small Prandtl number limit and related his findings to the oscillatory flows observed
by Hurle (1966) and Hurle et al. (1974). Note that the theory of Gill (1974) provides
results that agree within a factor two with the numerical results found by Hart (1972)
for the case of a layer between rigid boundaries.

Smith & Davis (1983) have investigated the stability of thermocapillary flows
generated by a horizontal temperature gradient imposed along a thin liquid layer of
infinite horizontal extent bounded below by an adiabatic rigid surface. They reported
on two classes of instabilities which differ by the energy transfer mechanism. The
first mode is a thermal instability which takes the form of either longitudinal rolls or
hydrothermal waves. The second mode is closely related to free-surface deformations
and involves mechanical transfer of momentum. The analysis of hydrothermal wave
instability was extended by Priede & Gerbeth (1997b) to different types of thermal
boundary conditions which are shown to have an important effect on the instability
threshold. These authors then studied the influence of uniform magnetic fields, either
coplanar to the liquid layer (i.e. horizontal) (Priede & Gerbeth 1995, 1997a) or trans-
verse (i.e. vertical) (Priede, Thess & Gerbeth 1994; Priede & Gerbeth 2000). They
have shown that the vertical field is more effective in stabilizing hydrothermal waves
(the threshold increasing asymptotically as square of the field strength), whereas the
horizontal field, which stabilizes all disturbances except those aligned with the field,
leads to the alignment of the most unstable disturbance along the magnetic flux lines.
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The stability of buoyant-thermocapillary-driven flows has been considered by Laure
& Roux (1989) for low-Prandtl-number fluids, then by Gershuni et al. (1992) and by
Parmentier, Régnier & Lebon (1993) for larger values of the Prandtl number. The
characteristics and the stability of two-dimensional buoyant-thermocapillary-driven
flows in finite shallow cavities have been investigated for low-Prandtl-number fluids
by BenHadid & Roux (1992). This study has shown the existence of complex flow
structures in the form of multicellular steady states and the transition to oscillatory
convection has been observed.

Magnetic fields can be used to control these flows of conducting materials. The
pioneering experimental work on the action of a constant magnetic field on the
flow dynamics for liquid gallium enclosed in a rectangular enclosure was carried
out by Hurle et al. (1974). He determined the effect of a constant and uniform
magnetic field (horizontal field transverse to the main flow plane) on the threshold
conditions and showed that the critical Rayleigh number increases linearly with the
square of the Hartmann number. More recent experimental investigations in similar
configurations have characterized the braking of the flow by the applied magnetic
field (Juel et al. 1999) and the stabilization of the oscillatory instabilities (Hof 2001).
Other recent experimental investigations on the action of a constant magnetic field
concern convective flows in mercury in a cylindrical cell (Davoust et al. 1999) and
the enhancement of heat transfer for natural convection in liquid gallium in a cubical
enclosure (Tagawa & Ozoe 1998a). Theoretical and numerical studies of thermal
convection under the action of a constant magnetic field were first conducted for
two-dimensional geometries (Oreper & Szekely 1983, 1984; Kim, Adornato & Brown
1988; Alboussière, Garandet & Moreau 1993; BenHadid, Henry & Kaddeche 1997).
For three-dimensional steady flows, results on the effects of a constant magnetic field
are given for circular cylinders in BenHadid & Henry (1996) and for rectangular
enclosures in Ozoe & Okada (1989), and more recently in BenHadid & Henry
(1997), Tagawa & Ozoe (1998b), Bessaih, Kadja & Marty (1999), Aleksandrova &
Molokov (2000), and Di Piazza & Ciofalo (2002). Concerning the action of the
magnetic field on time-dependent flows and triggering of instabilities, theoretical and
numerical works are very few. By means of linear theory Bojarevics (1995) studied a
particular feature of the transition to time-dependent dynamics in a constant magnetic
field. His investigation concentrated on the effect of the transverse dimension for a
rectangular cavity with infinite longitudinal extent. A recent numerical study (Gelfgat
& Bar-Yoseph 2001) is also devoted to the effect of a magnetic field on the onset
of oscillatory instability, but concerns the convective flows in a two-dimensional
rectangular cavity.

The aim of this paper is to investigate the effect of a uniform constant magnetic
field (either vertical, or horizontal with a direction transverse or longitudinal to the
flow) on the stability of buoyant flows of electrically conducting fluid. We focus on the
parallel flows induced between infinite horizontal walls by a horizontal temperature
gradient. The study is conducted through a numerical linear stability analysis that
gives the variation of the critical characteristics of the different types of instabilities
when the intensity of the magnetic field is increased. A better understanding of the
stabilizing effect due to the applied magnetic fields is then obtained through energy
considerations. These results are of fundamental interest in that they show how the
magnetic field stabilizes different types of instabilities, but they can also provide
information for more realistic finite-length situations.

The plan of the paper is as follows. Next section presents the governing equations
of the problem and the basic parallel flows, the stability of which will be studied. The
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Figure 1. Configuration studied.

numerical approach for the linear stability analysis is then introduced, before the linear
stability results for the different orientations of the magnetic field are presented. The
information obtained by energy analyses is then given: both as energy balances, but
also as energetic contributions to the critical Grashof number. Finally, the conclusion
gives a summary of what has been learned in this study and a comparison with results
obtained in finite-length cavities.

2. Governing equations and basic flow
We consider a viscous electrically conducting fluid with a constant electric

conductivity σe contained in a shallow cavity (figure 1) subject to a horizontal
temperature gradient ∇T̃ along x and an external constant magnetic field B0. The fluid
is assumed to be Newtonian with constant kinematic viscosity ν and thermal diffusivity
κ . According to the Boussinesq approximation, the fluid density is considered constant
except in the buoyancy term where it is taken as temperature dependent according to
the law ρ = ρ0(1 − β(T̃ − T̃0)) where β is the thermal expansion coefficient and T̃0 a
reference temperature. The fluid layer of height H is bounded at the bottom and at
the top by rigid surfaces.

In what follows, Gr is the Grashof number (Gr = gβ∇T̃ H 4/ν2), Pr the Prandtl
number (Pr = ν/κ) and Ha the Hartmann number (Ha = |B0|H

√
σe/ρ0ν).

The magnetic field B is the sum of the applied magnetic field B0 and the induced
field b such that B = B0 + b. Since in most laboratory experiments the magnetic
Reynolds number (Rem = µσeṼ0H where µ is the magnetic permeability and Ṽ0 a
characteristic velocity) is very small, the magnetic field remains almost unperturbed
and the induced magnetic field b is then negligible. To give an indication of how small
the magnetic Reynolds number is in experiments, consider a cavity with H = 10−2 m
filled with gallium. The electric conductivity is approximately σe = 3.87×106 (� m)−1.
The maximum intensity of the moderate magnetic fields that can be considered is
|B0| = 2 × 10−1 T, giving Ha = 88. For Gr = 104, the maximum base flow velocity
is about U = 0.3 × 10−2 m s−1. This leads to a magnetic Reynolds number of Rem �
1.5×10−4 and an induced magnetic field of approximately |b| � Rem|B0| ∼ 3×10−5 T,
which is negligible compared to the value of the applied field B0.

We consider H , H 2/ν, ν/H , ρ0ν
2/H 2, ∇T̃ H , ν|B0| and σeν|B0|/H , as scales for

length, time, velocity, pressure, temperature, induced electric potential and induced
current, respectively. The dimensionless equations are then

∇ · V = 0, (2.1)
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∂V
∂t

+ (V · ∇)V = −∇P + ∇2V + Gr T ez + Ha2 J × eB0, (2.2)

∂T

∂t
+ (V · ∇T ) =

1

Pr
∇2T , (2.3)

where the dimensionless variables are the velocity vector (V = (U, V, W )), the pressure
P and the temperature T , and eB0 is the unit vector in the direction of B0. In the
equation of motion (2.2), the body force Ha2 J × eB0 is the Lorentz force due to the
interaction between the induced electric current density J and the applied magnetic
field B0. The dimensionless electric current density J is given by Ohm’s law for a
moving fluid:

J = E + V × eB0, (2.4)

where E = −∇Φ is the dimensionless electric field and Φ the dimensionless electric
potential. Combining the continuity equation for electric current density, ∇ · J = 0,
and Ohm’s law (2.4) leads to the equation governing the electric potential, which can
be written in dimensionless form as

∇2Φ = ∇ · (V × eB0). (2.5)

The mechanical boundary conditions are no-slip conditions at the rigid horizontal
boundaries (located at z = −1/2 and z = 1/2). For both the thermal and the electric
boundary conditions, limit cases will be considered, either perfectly conducting or
perfectly insulating.

Generally, in a real situation, two opposite vertical boundaries (denoted end
boundaries) are maintained at different temperatures, T1 and T2 � T1, creating the
horizontal temperature gradient along x. This gradient drives the fluid upward near
the hot wall and downward near the cold wall, generating a global circulation inside
the cavity. In our study dealing with an infinite layer, the cavity is considered to
be infinitely long in both horizontal x- and y-directions. With this assumption, as
discussed in previous works by Hart (1983) and Cormack et al. (1974), a stationary
parallel flow solution can be found which may approximate the hydrodynamics in a
shallow cavity that is not too transversally confined.

In the presence of a constant magnetic field, (2.1)–(2.5) solved for an infinite layer
also admit a parallel flow solution. For a vertical magnetic field, this solution is
governed by the following equations:

∂3U0

∂z3
− Ha2 ∂U0

∂z
− Gr = 0, (2.6)

∂2T0

∂z2
= PrU0. (2.7)

The solution does not depend on the electric field, but it is dependent on the
mechanical and thermal boundary conditions. For a layer between rigid horizontal
walls, the analytical expressions for the basic state (similar to those found by Gershuni
& Zhukhovitsky 1976 for a vertical cavity in a horizontal field) are

U0(z) =
Gr

Ha2

(
sinh(Haz)

2 sinh(Ha/2)
− z

)
, (2.8)

T0(x, z) = x +
GrPr

Ha2

[
1

2Ha2

sinh(Haz)

sinh(Ha/2)
− z3

6
+ Kz

]
, (2.9)
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Figure 2. Basic velocity profiles for different values of Ha (Gr = 104). A curve is added
which follows the maxima of these profiles.

with

K =

(
1

24
− 1

Ha2

)
, conducting case, (2.10)

or

K =

(
1

8
− cosh(Ha/2)

2Ha sinh(Ha/2)

)
, insulating case. (2.11)

The corresponding velocity profiles are given in figure 2 for Gr = 104 and for different
values of Ha up to Ha = 30. This solution is valid in the core of a finite-length cavity,
and also representative of the flow in the cavity for not too high a vertical magnetic
field. On the other hand, for a sufficiently high field, jets will develop in the parallel
layers along the lateral boundaries and they generally will be more unstable than the
core flow.

In the case of a horizontal longitudinal magnetic field (the magnetic field is applied
along the x-direction), there is no direct effect of the field on the parallel flow in the
layer as the velocity (U0 ex) is parallel to the field direction (U0 ex × eB0 = 0). The
basic flow is then the flow without magnetic field (the limit of equations (2.8)–(2.11)
for Ha → 0), i.e.

U0(z) =
Gr

24
(4z3 − z), (2.12)

T0(x, z) = x +
GrPr

5760
(48z5 − 40z3 + 7z), conducting case, (2.13)

T0(x, z) = x +
GrPr

5760
(48z5 − 40z3 + 15z), insulating case. (2.14)

This parallel flow without the influence of the magnetic field can be obtained in a
finite-length cavity beyond a distance x ∼ Ha from the end boundaries (Alboussière
et al. 1997). This distance is the length necessary for the parallel layers developing
along the horizontal walls to merge (δ|| ∼ Ha−1/2x1/2, where δ|| is the dimensionless
parallel layer thickness). Therefore, solution (2.12)–(2.14) will be valid in the core of
a finite-length cavity only if the cavity dimension along x is � Ha. To observe this
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parallel flow solution the cavity must then be quite long in the x-direction and Ha
not too large.

In the case of a horizontal transverse magnetic field (the magnetic field is applied
along the y-direction), the basic parallel flow in the layer is still the flow without
magnetic field given by equations (2.12)–(2.14). Indeed, a transverse magnetic field
has a direct action on the fluid flow along both the x- and z-directions, which are
the directions of main flow in the cavity. But in two-dimensional situations, it is well
known that, due to the electric potential effect, the electric current and consequently
the Lorentz force vanish in the whole cavity, finally giving no effect of the field
on the flow. In fact, in finite-length cavities, the basic flow is generally different for
a transverse field (BenHadid & Henry 1994; Aleksandrova & Molokov 2000). The
reason for this difference is the three-dimensional character of the real flow without
magnetic field due to the no-slip condition at the lateral walls. Under a magnetic
field, the flow is in fact braked, becomes more two-dimensional and active Hartmann
layers develop at the lateral walls.

3. Numerical approach
The stability of the basic flow solution ((2.8)–(2.11) or (2.12)–(2.14)) is investigated

here in a general way by a linear analysis. The solution of the three-dimensional
problem is written as

(V , P , T , Φ) = (V 0, P0, T0, Φ0) + (v, p, θ, φ), (3.1)

i.e. the sum of the basic flow quantities and perturbations. Substitution into equations
(2.1)–(2.5) and linearization with respect to the perturbations yields

∇ · v = 0, (3.2)

∂v

∂t
+(V 0 · ∇)v +(v · ∇)V 0 = −∇p+∇2v +Gr θez +Ha2(−∇φ +v × eB0)× eB0, (3.3)

∂θ

∂t
+ V 0 · ∇θ + v · ∇T0 =

1

Pr
∇2θ, (3.4)

∇2φ = eB0 · (∇ × v), (3.5)

where V 0 = (U0, 0, 0) and eB0 is the direction of the magnetic field (i.e. ez when the
field is vertical, ey when it is transverse, and ex when it is longitudinal).

Only boundary conditions in the z-direction (for z = −1/2 and z = 1/2) are needed
because we will use periodic disturbances in the horizontal x- and y-directions. These
conditions are:

no-slip boundary conditions: v = 0;
conducting thermal boundary conditions: θ = 0, or adiabatic thermal boundary

conditions: ∂θ/∂z = 0;
conducting electric boundary conditions: φ = 0, or insulating electric boundary

conditions: j · ez = 0.
The linear stability study consists, for fixed values of the Hartmann number Ha

and Prandtl number Pr, of the determination of Grc, the critical value of Gr beyond
which the basic flow loses its stability. For the normal modes analysis, the set of
equations (3.2)–(3.5) is transformed using the following disturbances:

(v, p, θ, φ) = (v, p, θ, φ) (z) ei(h x+k y)+ω t , (3.6)
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where h and k are real wavenumbers in the longitudinal, x, and transverse, y,
directions, respectively, and ω = ωr + iωi is a complex eigenvalue. The real part of
ω represents an amplification rate and its imaginary part an oscillation frequency.
An eigenvalue problem is obtained: LX = ωMX, where X = (v(z),p(z),θ(z),φ(z)),
L is a linear operator depending on h, k, Pr, Gr and Ha, and M is a constant
linear operator. This generalized eigenvalue problem is solved with the spectral Tau
Chebyshev method by means of a numerical procedure using the QZ eigenvalue
solver of the NAG library. From the thresholds Gr0(Pr, Ha, h, k) (values of Gr for
which an eigenvalue has a real part equal to zero whereas all the other eigenvalues
have negative real parts), the critical Grashof number Grc can be obtained after
minimization along h and k (Grc = inf(h,k)∈R2 Gr0(Pr, Ha, h, k)).

As already mentioned in the introduction, previous works have shown that for rigid
boundaries and small Pr without a magnetic field the two instabilities which can affect
the flow in the layer are either longitudinal or transverse instabilities, corresponding
respectively to h = 0 and k = 0. Laure & Roux (1987) mentioned that due to the
symmetry properties existing for rigid boundaries, Gr0 is an even function of h and
k. This implies that a minimum can be found for (h, 0) or (0, k). They have verified
that two local minima of Gr0 are of this type and that they are the only minima of
Gr0 for small Pr.

Our objective in this work was to examine the action of the magnetic field on these
two instabilities, which are the most important for small-Pr fluids in a layer between
rigid boundaries. Grc was then obtained for perturbations where either h or k is equal
to zero. We have verified that with magnetic field also, for low Pr the same types
of instabilities with h or k equal to zero were found and that there was no other
minimum for modes with both h 	= 0 and k 	= 0.

The critical Grashof numbers were determined by expanding the variables in the
z-direction in a Chebyshev series with 20 to 30 collocation points. This was sufficient
for an accurate determination of the linear stability characteristics. Except where
otherwise stated, the results have been obtained for insulating electric boundary
conditions.

4. Linear stability results
4.1. Vertical magnetic field

The action of the vertical magnetic field on the two-dimensional and three-dimensional
instabilities is shown in figure 3(a, b) through neutral stability curves. These curves
give the evolution of the critical Grashof number Grc as a function of Pr for different
Hartmann numbers with thermal boundary conditions either conducting (figure 3a) or
insulating (figure 3b). Both figures give qualitatively similar results. A first observation
is that an increase of Ha shifts the onset of the instabilities to higher Grashof numbers
(stabilizing effect of the magnetic field), this effect appearing more efficient for the
two-dimensional instabilities. Concerning the dependence on the Prandtl number, we
find the usual behaviour. For the two-dimensional stationary modes, on increasing Pr,
the critical Grashof number first remains almost constant (at least up to Pr ∼ 0.01
for Ha � 5) and then starts to increase, whereas for the three-dimensional oscillatory
modes, Grc undergoes a rapid decrease as Pr is increased (Pr−1 dependence), then
reaches a minimum before beginning to increase. The main difference that appears
when Ha is increased is that for both modes the observed increase occurs for smaller
values of Pr. We recall that the difference in behaviours obtained in the small-Pr
limit (constant value or strong increase as Pr → 0) indicates that the two-dimensional
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Figure 3. Variation of the thresholds Grc as a function of Pr for two-dimensional and
three-dimensional instabilities and different values of Ha (vertical magnetic field). (a) Thermally
conducting boundaries; (b) thermally insulating boundaries.

instability is of dynamical origin whereas the three-dimensional instability is of
thermal origin.

From figure 3(a, b), it can also be seen that for any Ha, the curves for the
two-dimensional and three-dimensional instabilities intersect at a certain value of
the Prandtl number, denoted PrT . As shown in figure 4, PrT is found to decrease
quickly with Ha, in connection with the fact that the two-dimensional modes are
better stabilized than the three-dimensional modes. This implies that the domain
where two-dimensional modes are critical shrinks when the magnetic field is applied,
corresponding for example for the insulated case to Pr � 0.001 at Ha = 10 to be
compared to Pr � 0.034 at Ha = 0. As a consequence, for gallium experiments
(Pr = 0.026) as in Hurle et al. (1974), longitudinal rolls would be the expected
outcome once Ha � 3.
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Figure 4. Variation of PrT (transition Prandtl number between the critical domains for
two-dimensional and three-dimensional instabilities) as a function of Ha (vertical magnetic
field, case with thermally insulating boundaries).

The wavenumbers of the instabilities are given in figure 5 as a function of the Prandtl
number and for different Hartmann numbers. In the case of the two-dimensional
instability (figure 5a), it is found that the magnetic field induces a decrease of the
wavenumber hc (increase of the size of the marginal cells), also causing the decrease
of the wavenumber with Pr to occur at smaller Pr values. In the case of the three-
dimensional instability, the result is opposite, with an increase of the wavenumber
kc when Ha is increased. This last result is in agreement with what is obtained
in the Rayleigh–Bénard situation (decrease of the size of the marginal cells, see
Chandrasekhar 1961) where the instabilities are also of thermal origin. The frequency
fc of the oscillatory three-dimensional instabilities is shown in figure 6 to increase
with Ha.

The stabilizing effect of the vertical magnetic field on the different instabilities is
more precisely characterized for the thermally conducting case in figure 7 where
the instability thresholds are given as a function of Ha for different Pr, each
instability being shown up to the limit Ha value where it can be found. From
figure 7, the critical Grashof number Grc is found to vary exponentially with
Ha2 for the two-dimensional instabilities (for example Grc = Grc0

exp (0.04 Ha2)
for Pr = 0.001 and Grc = Grc0

exp (0.08 Ha2) for Pr = 0.1) and as Ha2 for the three-
dimensional instabilities (for example Grc − Grc0

= Grc0
0.0252 Ha2 for Pr = 0.02 and

Grc − Grc0
= Grc0

0.0306 Ha2 for Pr = 0.1, with Grc0
being the corresponding value

of Grc at Ha = 0). These correlations are quite good for low Hartmann numbers
(roughly up to Ha = 10) but differences appear for larger values of Ha (for example a
systematic value above the correlations is found for the three-dimensional thresholds).
In any case, they clearly confirm that the vertical magnetic field has a more significant
stabilizing effect on the two-dimensional instabilities than on the three-dimensional
instabilities. Note that for the two-dimensional instabilities the electric potential φ

vanishes in the whole cavity as the conservation of current is automatically implied
by the conservation of mass.

Figure 7 also indicates that there are limit Ha values (denoted Hal and depending
on Pr) for the existence of both instabilities. For the two-dimensional instabilities,
the value of Hal has been estimated for different Pr (integer value of Ha just before
the disappearance of the instability): Hal = 6 for Pr = 0.1, Hal = 11 for Pr = 0.02,
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Figure 5. Variation of the critical wavenumbers of the instabilities as a function of Pr for
different values of Ha (vertical magnetic field, case with thermally conducting boundaries).
(a) Wavenumber hc for the two-dimensional instabilities; (b) wavenumber kc for the
three-dimensional instabilities.

and Hal = 14 for Pr = 0.001. An illustration of how the two-dimensional instability
disappears is given in figure 8 for Pr = 0.001 in a graph showing the thresholds Gr0

as a function of the wavenumber h. The clear minimum of the curves (corresponding
to Grc) obtained for small Ha becomes less pronounced and evolves towards smaller
values of h when Ha is increased, before disappearing between Ha = 14 and Ha = 15.
These results can also be interpreted in terms of limit Pr values (denoted Prl) for the
two-dimensional instability as is suggested in figure 3 by the strong increase of the
thresholds as Pr increases: Prl will evolve from values around 0.25 for Ha = 0 to
values around 0.001 for Ha = 14, showing a strong shrinkage of the existence domain
of the two-dimensional instabilities as Ha is increased. For the three-dimensional
instabilities, two values of Hal have been estimated: Hal = 12 for Pr = 0.1 and
Hal = 32 for Pr = 0.02. In terms of the existence domain of the three-dimensional
instabilities, the shrinkage with Ha is less effective than for the two-dimensional
instabilities, Prl evolving from values around 0.4 for Ha = 0 to values around 0.02 for
Ha = 32. The scenario of the disappearance of the three-dimensional instabilities is
completely different; it is illustrated in figure 9(a, b) for Pr = 0.1 through two graphs
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Figure 7. Variation of the thresholds Grc as a function of Ha for two-dimensional and
three-dimensional instabilities and different values of Pr (vertical magnetic field, case with
thermally conducting boundaries). The points correspond to the calculated results and the
lines to well-correlated characteristic laws given in the text.

giving the threshold Gr0 as a function of k for Ha = 12 and the real part of the leading
eigenvalue (larger real part) as a function of Gr for k = 1.6 and different Ha. The
eigenvalue corresponding to the three-dimensional instability evolves as a function
of Gr as a bell curve (figure 9b). The maximum of this curve, which is positive for
Ha = 0, decreases as Ha is increased and becomes negative beyond a certain value
of Ha leading to the suppression of the critical transition for this three-dimensional
mode. Figure 9(a, b) shows that for Ha = 12 there is an isolated domain of instability
which will finally disappear for a slightly higher Ha. This type of behaviour which
leads to hysteresis phenomena can also be found in Gelfgat & Bar-Yoseph (2001) for
two-dimensional rectangular cavities. The fact that the instability disappears through
a maximum of the eigenvalue curve (horizontal tangent in figure 9b) explains the
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Figure 8. Disappearance of the two-dimensional instabilities for a vertical magnetic field.
Variation of the threshold Gr0 as a function of the wavenumber h for different values of Ha
(case with thermally conducting boundaries, Pr = 0.001).

strong increase in the thresholds found for the three-dimensional instability before
its disappearance. All these results on the disappearance of the instabilities when
Ha is increased are summarized in figure 10 by curves in a (Pr,Ha)-plane, giving
rough approximations of the limits of existence of the two-dimensional and three-
dimensional instabilities. It is clear from this figure that the domain of existence of
both instabilities diminishes, but that two-dimensional instabilities are much more
affected.

To conclude this part, we make some general comments about the boundary
conditions. The influence of the thermal boundary conditions may be summarized
as follows: (Grc)conducting < (Grc)insulated for the two-dimensional instabilities and
(Grc)conducting > (Grc)insulated for the three-dimensional instabilities. This can be
explained by the fact that for the two-dimensional instabilities of dynamical origin
the temperature fluctuations which are favoured by the insulated conditions stabilize
the flow. On the contrary, for the three-dimensional instabilities of thermal origin
the temperature fluctuations destabilize the flow. A consequence is that the value
of PrT is smaller in the insulated case than in the conducting case. The electrical
boundary conditions have no effect on the two-dimensional instabilities for which
the electric potential φ plays no role (φ = 0 everywhere). For the three-dimensional
instabilities, it has been found that electrically conducting boundary conditions are
more stabilizing, which can be explained by the fact that potential effects which limit
the stabilization are less important in this case as loops of current can close in the
conducting boundaries. This improved stabilization still corresponds to characteristic
laws for the critical thresholds varying as Grc − Grc0

∼ Ha2.

4.2. Horizontal magnetic field

4.2.1. Transverse magnetic field

The transverse magnetic field only has an effect on the three-dimensional
instabilities. The two-dimensional instabilities are not affected by the transverse field
which is perpendicular to the plane of these instabilities because the electric current
and the Lorentz force vanish in the whole cavity, as it was the case for the basic
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flow (see § 2). The thresholds for these two-dimensional instabilities thus remain those
obtained for Ha = 0 (figure 3a, b).

The results for the three-dimensional oscillatory instabilities are given in figures 11–
13. The stability diagram is presented in the Grc–Ha parameter space for the range
0.005 � Pr � 0.1 (figure 11). It is found that the stabilization by the transverse
magnetic field is less efficient than by the vertical field (small variations of Grc in
the small-Ha domain), but it occurs up to large Ha (no limit Ha values) with an
asymptotic increase Grc ∼ Ha beyond a certain value of Ha, this value increasing
roughly from 20 to 60 as Pr decreases from 0.1 to 0.005. The dependence on Pr
is globally not much changed when Ha is increased and is close to that found for
Ha = 0 (Pr−1 dependence for small Pr).

The wavenumber kc (figure 12) also remains almost constant for small Ha before
decreasing asymptotically as Ha−1 for larger values. Note that unlike the case of a
vertical magnetic field, it is found here that the size of the marginal cells for these
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Figure 11. Variation of the threshold Grc as a function of Ha for the three-dimensional
instabilities and different values of Pr (horizontal transverse magnetic field, case with thermally
conducting boundaries).

three-dimensional instabilities increases with Ha, in agreement with the expected effect
of lengthening of the convective cells in the direction of the magnetic field. Finally,
the frequency of these three-dimensional instabilities also presents different domains
as Ha is increased (figure 13): it remains almost constant for small Ha, then increases
significantly beyond Ha = 1, before reaching a constant asymptotic value for large
Ha. The plateau values and the length of the increase zone depend quite strongly on
Pr.

4.2.2. Longitudinal magnetic field

The longitudinal magnetic field only has an effect on the two-dimensional
instabilities. The three-dimensional instabilities are not affected by the longitudinal
field, because the field is perpendicular to the main plane of these instabilities (there is
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conducting boundaries).

no electric current in this yoz-plane) and is parallel to the other velocity component
along x (no current induced by this component). The thresholds for these three-
dimensional instabilities thus remain those obtained for Ha = 0 (figure 3a, b).

The results for the two-dimensional stationary instabilities in a longitudinal
magnetic field (given in figures 14 and 15) look qualitatively similar to those obtained
for the three-dimensional instabilities in a transverse field. As Ha is increased, Grc and
the wavenumber hc remain almost constant for small Ha and then show asymptotic
behaviours beyond Ha = 20, Grc increasing as Ha and hc decreasing as Ha−1. The
variation of hc still corresponds to the lengthening of the convective cell in the
direction of the magnetic field. The dependence on Pr is mainly characterized by
constant values for small Pr. For larger Pr, the dependence of Grc seems not much
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thermally conducting boundaries).

changed as Ha is increased, whereas that of hc (which is small) presents an inversion
beyond Ha = 10. Finally, note that the vertical magnetic field was found to be more
efficient in stabilizing these two-dimensional instabilities.

5. Energy analyses
A deeper physical understanding of the instability mechanisms and of the

stabilization effects in these situations with an applied magnetic field can be gained by
energy analyses. From the linear stability equations (3.3) and (3.4), energy equations
for the fluctuating kinetic energy and thermal energy can be derived: equation (3.3)
is multiplied by v∗, the complex conjugate of v, equation (3.4) by θ∗, and after
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integration along z, the real parts of the resulting equations are taken (Re is used to
denote the real part). Having in mind that v and θ are perturbations satisfying (3.6)
and after some transformations to eliminate zero terms such as the pressure integral
(cases with no inflow or outflow), the following relationships for the rate of change
of the fluctuating kinetic energy K and the fluctuating thermal energy Θ are then
obtained:

Re

(
∂K

∂t

)
= ωr

∫
z

vv∗ dz = Kf + Kd + Kb + Km, (5.1)

with

Kf = −Re

(∫
z

w
∂U0

∂z
u∗ dz

)

the production of fluctuating kinetic energy by shear of mean flow,

Kd = Re

(∫
z

∇2v v∗ dz

)

the viscous dissipation of fluctuating kinetic energy,

Kb = Re

(
Gr

∫
z

θ w∗ dz

)

the production of fluctuating kinetic energy by buoyancy forces,

Km = Re

(
Ha2

∫
z

[(−∇φ + v × eB0) × eB0] v∗ dz

)

the dissipation of fluctuating kinetic energy by magnetic forces, and

Re

(
∂Θ

∂t

)
= ωr

∫
z

θθ∗ dz = Θf 1 + Θf 2 + Θd (5.2)

with

Θf 1 = −Re

(∫
z

w
∂T0

∂z
θ∗ dz

)

the production of fluctuating thermal energy by vertical transport of temperature,

Θf 2 = −Re

(∫
z

u
∂T0

∂x
θ∗ dz

)

the production of fluctuating thermal energy by horizontal transport of temperature,

Θd = Re

(
1

Pr

∫
z

∇2θ θ∗ dz

)

the dissipation of fluctuating thermal energy by conduction.
In the above definitions, the term dissipation is used for the contributions which are

by nature stabilizing (negative values), whereas the term production is used for the
contributions which are by nature destabilizing (positive values) or for those which
can be either stabilizing or destabilizing depending on the type of flow studied. The
numerical accuracy in the calculation of the different terms of (5.1) and (5.2) is very
good, as the balances expressed by (5.1) and (5.2) (respectively normalized by |Kd | and
|Θd |) are satisfied to within 10−10. It is interesting to note that if the imaginary parts
were taken in place of the real parts in the kinetic energy balance, an expression for
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the pulsation ωi could be obtained. The imaginary parts associated with dissipation
and magnetic terms are zero (global negative real contributions in the kinetic energy
analysis). Denoting imaginary parts (associated with the real parts previously defined)
by Im, we obtain

ωi = (Im(Kf ) + Im(Kb))

/∫
z

vv∗ dz, (5.3)

indicating that the pulsation ωi is the sum of two terms normalized by the kinetic
energy of the perturbation, one connected to the shear of the mean flow and the other
to buoyancy.

The results of the energy analyses are given in the following for the two-dimensional
and three-dimensional instabilities at their critical thresholds (ωr = 0) for thermally
conducting boundary conditions. They are presented in two ways: as energy balances
and as energetic contributions to the critical Grashof number.

5.1. Energy balances

Energy balances can be obtained from (5.1) and (5.2) for any instabilities at their
critical thresholds by estimating right-hand-side terms with the corresponding critical
eigenvector. Critical eigenvectors being defined to within a multiplicative constant, the
terms in equations (5.1) and (5.2) are also defined to within a multiplicative constant.
It is then useful to define ratios whose values will be well-defined and meaningful.
Following the conventional approach, we will scale equations (5.1) and (5.2) by the
dissipation terms |Kd | and |Θd |, respectively. The scaled terms are now denoted with
a prime. This leads to

K ′
f + K ′

b + K ′
m = 1, (5.4)

Θ ′
f 1 + Θ ′

f 2 = 1. (5.5)

The values of these different terms are given in tables 1–4 as a function of Ha for the
two-dimensional and three-dimensional instabilities, and for different Pr and different
orientations of the magnetic field.

To compare the kinetic energy contributions to the thermal energy contributions,
the ratio Rd of the respective dissipation terms Kd and Θd is also given. Comparisons
will be made for a dimensionless form giving similar coefficients for the buoyancy
term of (3.3) and the transport terms of (3.4) (Joseph 1976). The ratio Rd is thus
defined as

Rd =
Kd

Grc Θd

.

As can be checked from tables 1–4 for Ha = 0, this ratio is large (more than 1) for
the two-dimensional instabilities of dynamical origin, and small (less than 1) for the
three-dimensional instabilities of thermal origin.

5.1.1. Magnetic contributions

The magnetic contribution K ′
m can be split into two contributions K ′

mB and K ′
mφ

(K ′
m = K ′

mB +K ′
mφ), respectively coming from the directly induced current v × eB0 and

the potential current −∇φ. Interesting information on these magnetic contributions
can be obtained by simple considerations. The expression for the induced electric
current can be written in a general form as

j
σe

= E + v × B. (5.6)
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Ha K ′
f K ′

b K ′
m = K ′

mB Θ ′
f 1 Θ ′

f 2 Rd

(a) 0 1.0012 −0.0012 0 0.0032 0.9968 519.6
3 1.1106 −0.0018 −0.1088 0.0039 0.9961 352.5
5 1.2870 −0.0032 −0.2838 0.0052 0.9948 193.9
7 1.4830 −0.0062 −0.4768 0.0084 0.9916 91.56
9 1.5594 −0.0120 −0.5473 0.0172 0.9828 43.53

10 1.5361 −0.0163 −0.5198 0.0271 0.9729 31.93
11 1.4987 −0.0220 −0.4767 0.0442 0.9558 23.32
12 1.4497 −0.0302 −0.4195 0.0758 0.9242 17.06
13 1.4021 −0.0424 −0.3597 0.1341 0.8659 12.26
14 1.3656 −0.0611 −0.3044 0.2346 0.7654 8.407

(b) 0 1.0336 −0.0336 0 0.0816 0.9184 22.10
3 1.1598 −0.0523 −0.1075 0.1022 0.8978 14.34
5 1.3806 −0.1049 −0.2756 0.1529 0.8471 7.032
7 1.6816 −0.2656 −0.4160 0.3028 0.6972 2.374
9 1.9137 −0.5753 −0.3384 0.7007 0.2993 0.563

10 1.9192 −0.6153 −0.3040 0.7920 0.2080 0.256
11 1.9042 −0.6396 −0.2646 0.8249 0.1751 0.088

Table 1. Energy analysis for the two-dimensional modes with vertical magnetic field at
(a) Pr = 0.001 and (b) Pr = 0.02 (K ′

mφ = 0).

Ha K ′
f K ′

b K ′
m K ′

mB K ′
mφ Θ ′

f 1 Θ ′
f 2 Rd

(a) 0 0.9520 0.0480 0 0 0 −0.0169 1.0169 0.458
3 1.0694 0.0689 −0.1383 −0.2432 0.1049 −0.0200 1.0200 0.374
5 1.2646 0.1144 −0.3790 −0.6933 0.3143 −0.0256 1.0256 0.282
7 1.5208 0.1998 −0.7206 −1.3848 0.6642 −0.0338 1.0338 0.209
9 1.7946 0.3369 −1.1315 −2.2874 1.1559 −0.0446 1.0446 0.159

10 1.9251 0.4267 −1.3518 −2.7981 1.4463 −0.0509 1.0509 0.141
15 2.4169 1.0731 −2.4899 −5.6108 3.1208 −0.0899 1.0899 0.093
20 2.6643 1.9551 −3.6195 −8.4073 4.7878 −0.1362 1.1362 0.073
25 2.8016 2.9542 −4.7558 −10.9512 6.1954 −0.1748 1.1748 0.060
32 3.1024 4.5804 −6.6828 −13.9831 7.3004 −0.1191 1.1191 0.033

(b) 0 0.8206 0.1794 0 0 0 −0.0854 1.0854 0.465
3 0.8974 0.2423 −0.1397 −0.2578 0.1181 −0.1011 1.1011 0.400
5 1.0125 0.3642 −0.3767 −0.7020 0.3252 −0.1269 1.1269 0.324
7 1.1449 0.5588 −0.7038 −1.3259 0.6221 −0.1594 1.1594 0.254
9 1.2732 0.8184 −1.0916 −2.0639 0.9723 −0.1862 1.1862 0.195

10 1.3357 0.9681 −1.3038 −2.4534 1.1496 −0.1898 1.1898 0.167
12 1.4911 1.3228 −1.8139 −3.2632 1.4493 −0.1342 1.1342 0.098

Table 2. Energy analysis for the three-dimensional modes with vertical magnetic field at
(a) Pr = 0.02 and (b) Pr = 0.1.

The scalar product of (5.6) with j gives after integration over the volume Ω

∫
Ω

j E dΩ =

∫
Ω

j 2

σe

dΩ +

∫
Ω

v ( j × B) dΩ, (5.7)

which can be written as

Pe = Pj + Pm. (5.8)
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Ha K ′
f K ′

b K ′
m K ′

mB K ′
mφ Θ ′

f 1 Θ ′
f 2 Rd

0 0.9520 0.0480 0 0 0 −0.0169 1.0169 0.458
3 0.9991 0.0516 −0.0506 −0.2351 0.1844 −0.0182 1.0182 0.433
7 1.1661 0.0641 −0.2302 −1.2840 1.0538 −0.0232 1.0232 0.360

10 1.3205 0.0754 −0.3959 −2.6229 2.2269 −0.0279 1.0279 0.310
20 1.7603 0.1072 −0.8675 −10.477 9.6094 −0.0421 1.0421 0.202
50 2.1840 0.1382 −1.3222 −65.300 63.977 −0.0572 1.0572 0.092
80 2.2597 0.1439 −1.4036 −167.08 165.68 −0.0601 1.0601 0.059

100 2.2781 0.1453 −1.4234 −261.04 259.61 −0.0609 1.0609 0.047
500 2.3104 0.1477 −1.4582 −6524.6 6523.2 −0.0621 1.0621 0.010

1000 2.3111 0.1478 −1.4589 −26099. 26097. −0.0622 1.0622 0.005

Table 3. Energy analysis for the three-dimensional modes with transverse magnetic field at
Pr = 0.02.

Ha K ′
f K ′

b K ′
m = K ′

mB Θ ′
f 1 Θ ′

f 2 Rd

0 1.0012 −0.0012 0.0000 0.0032 0.9968 519.6
3 1.0502 −0.0013 −0.0489 0.0034 0.9966 484.6
7 1.1984 −0.0016 −0.1968 0.0041 0.9959 380.5

10 1.2988 −0.0019 −0.2969 0.0045 0.9955 306.1
20 1.4421 −0.0024 −0.4398 0.0054 0.9946 163.7
50 1.4824 −0.0027 −0.4798 0.0057 0.9943 63.58
80 1.4856 −0.0027 −0.4829 0.0057 0.9943 39.47

100 1.4863 −0.0027 −0.4835 0.0057 0.9943 31.52
500 1.4874 −0.0028 −0.4846 0.0057 0.9943 6.286

1000 1.4874 −0.0028 −0.4847 0.0057 0.9943 3.143

Table 4. Energy analysis for the two-dimensional modes with longitudinal magnetic field at
Pr = 0.001 (K ′

mφ = 0).

This expression indicates that the electric power Pe is the sum of the power dissipated
by Joule effect Pj and the power developed by the Lorentz force Pm. Replacing E by
−∇φ, Pe can be expressed as

Pe = −
∫

Ω

div(φ j ) dΩ +

∫
Ω

φ div( j ) dΩ, (5.9)

both terms of this expression being equal to zero because of the electric boundary
conditions and the continuity of the electric current. The electric power Pe is thus
zero, and from (5.8), Pj > 0 gives Pm < 0. If we now multiply (5.6) by E, we obtain
after integration over the volume Ω

Pe =

∫
Ω

σe E2 dΩ −
∫

Ω

σe v (E × B) dΩ = 0, (5.10)

indicating that the second term of the right-hand side, Pmφ , is positive. As Pm =
PmB + Pmφ , we obtain that PmB is negative (with |PmB | > |Pm|) which can be proved
directly as this term corresponds to (σe(v × B) × B) v = −σe(v × B)2. Finally, we can
conclude that

(K ′
m < 0) = (K ′

mB < 0) + (K ′
mφ > 0),
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i.e. the dissipation K ′
m coming from the Lorentz force can be decomposed into a

dissipative part from the directly induced current, K ′
mB , and a production part from

the potential current, K ′
mφ .

5.1.2. Other contributions

From tables 1–4, general considerations on the different contributions can be made.
(i) K ′

f and Θ ′
f 2 are positive terms corresponding to destabilizing contributions.

These terms, respectively connected to the shear of the mean flow and to the horizontal
transport of temperature, are in many cases dominant in their respective energy
balance and so at the origin of the instabilities, K ′

f for the two-dimensional instabilities
of dynamical origin, and Θ ′

f 2 for the three-dimensional instabilities of thermal origin.
(ii) K ′

b and Θ ′
f 1 have opposite signs (connected to the fact that ∂T0/∂z is mainly

positive), the buoyancy term K ′
b being stabilizing for the two-dimensional instabilities

due to the stable vertical stratification created by ∂T0/∂z, and destabilizing for the
three-dimensional thermally induced instabilities.

(iii) Rd decreases with the increase of the magnetic field intensity which indicates
a more important thermal influence. This can be related to the systematic increase of
|K ′

b| and |Θ ′
f 1| with Ha, and to the fact that both instabilities are limited to smaller

values of Pr as Ha is increased.

5.1.3. Energy balances for the different instabilities

It is interesting to analyse the influence of the magnetic field on the energy
balances for the different instabilities. In the following, when considering the different
stabilizing and destabilizing terms of the energy balances, we will refer to their increase
or decrease with regard to their absolute values.

Two-dimensional instabilities in a vertical magnetic field (table 1)

The kinetic energy balance which is dominant for two-dimensional instabilities is
not strongly modified by the vertical magnetic field. There is a relatively moderate
increase of the stabilizing magnetic term K ′

m = K ′
mB independently of Pr (this term

even decreasing for large enough Ha), whereas the stabilizing buoyancy term K ′
b

increases too, but achieves significative values only for not too small Pr values
(Pr = 0.02). To compensate these increases, the destabilizing shear term K ′

f increases
too, but this increase also peaks quite quickly.

In the thermal energy balance, the main effect is the strong increase of Θ ′
f 1, the

destabilizing vertical transport of temperature, this term even becoming the dominant
destabilizing term for Pr = 0.02 for large enough Ha. This last effect seems associated
with values of Rd becoming smaller than 1.

Three-dimensional instabilities in a vertical magnetic field (table 2)

The kinetic energy balance is strongly modified by the vertical field. Despite the
destabilizing potential part K ′

mφ , the stabilizing magnetic term K ′
m increases regularly

and strongly with Ha, quickly becoming the main stabilizing term. To maintain
the balance, the destabilizing shear and buoyancy terms (K ′

f and K ′
b) also increase

strongly with Ha. K ′
b increases more quickly with Ha for larger Pr (Pr = 0.1), but the

larger increase is obtained for Pr = 0.02 (calculations for large values of Ha, in the
domain where the critical curve departs from the Ha2 variation (figure 7)) where K ′

b

can become the dominant destabilizing term.
The thermal energy balance is not modified much by the vertical field. The dominant

term remains the destabilizing horizontal transport of temperature Θ ′
f 2, but, for large
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Ha 0 3 7 10 20 50 80 100

(a) K ′
mφ = −K ′

mB 0 0.1647 0.8965 1.8296 7.3183 45.739 117.09 182.96
(b) K ′

mφ = −K ′
mB 0 0.0083 0.0450 0.0919 0.3675 2.2969 5.8800 9.1875

Table 5. Magnetic contributions in the energy analysis for (a) the two-dimensional modes with
transverse magnetic field at Pr = 0.001, and (b) the three-dimensional modes with longitudinal
magnetic field at Pr = 0.02.

Pr (Pr = 0.1), the stabilizing vertical transport of temperature Θ ′
f 1 begins to become

significant with increasing Ha.

Three-dimensional instabilities in a transverse magnetic field (table 3)

The results can be compared with those obtained in the same situation in a vertical
magnetic field (table 2a). The modifications induced by the transverse magnetic field
on the kinetic energy balance are less important than those by the vertical field. For
the two orientations of the magnetic field, the stabilizing direct magnetic terms K ′

mB

have comparable values, but it is the more important destabilizing potential part
K ′

mφ in the transverse case which explains the slow increase with Ha of the global
stabilizing magnetic term K ′

m. The destabilizing terms K ′
f and K ′

b of the kinetic energy
balance also increase more slowly in the transverse case. In fact, these modifications
are necessarily limited as an asymptotic behaviour corresponding to well-defined
energy balances independent of Ha is found for large Ha. If the asymptotic thermal
energy balance is not very different from the balance at Ha = 0 with a dominant
term Θ ′

f 2, the asymptotic kinetic energy balance is somewhat modified: there is a
clear increase of K ′

m and K ′
f , but small increase of K ′

b. Note that K ′
m has a well-

defined limit despite the fact that its components K ′
mB and K ′

mφ of opposite signs

both increase as Ha2. In fact, it can be observed that the magnetic term K ′
m comprises

only a small portion of K ′
mB , the potential term K ′

mφ more closely balancing K ′
mB

as Ha is increased. This will be made clearer a little later, but it can be related
to the fact that the three-dimensional perturbation fields become more invariant in
the transverse direction, the direction of the field (kc decreases as Ha−1, and so the
wavelength in this transverse direction increases as Ha). Indeed, it is known that, for
two-dimensional fields (with no variation in this transverse direction), K ′

mφ exactly
balances K ′

mB . This perfect balance for two-dimensional fields also explains why there
is no action of the transverse magnetic field on the two-dimensional instabilities. The
energy balance in this last case (with Pr = 0.001) is then similar for any Ha to that
given in table 1(a) for Ha = 0, except that K ′

m = 0 is no longer the result of the zero
values of K ′

mB and K ′
mφ , but of the perfect balance K ′

mφ = −K ′
mB . It is interesting

to see in table 5(a) that this balance occurs between very large values when Ha is
increased (this corresponds for example for Ha = 100 to values of KmB almost 183
times the values of the dissipation term Kd). Such large values explain why more
realistic situations with even a small departure from two-dimensionality are affected
by non-negligible stabilizing magnetic effects.

It has been verified from the variation of the critical eigenvectors that the asymptotic
energy balances for large Ha corresponded to clear asymptotic variations at the level
of the flow characteristics, namely u/w ∼ θ/w ∼ v/w ∼ φ/w ∼ Ha. The ratio between
v and w is directly connected to flow conservation in the yoz-plane, having in mind
that the length of the cell (along y) evolves as Ha.
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A small order of magnitude analysis can explain the details of the magnetic
contributions to the energy analysis. For the three-dimensional instabilities in a
transverse magnetic field, the Lorentz force is equal to Ha2 ((−u + ∂φ/∂z) ex − w ez),
so that there are two contributions for K ′

mB and one for K ′
mφ . From the asymptotic

variations of the flow characteristics, we find that the contribution of K ′
mB coming

from −Ha2 w scales as Ha2O(Ha−2) ∼ O(1) and is asymptotically equal to −0.0708,
a small part of K ′

m, whereas the two other contributions scale as Ha2O(1) ∼ O(Ha2).
But, from the conservation of current, −k2φ + ∂2φ/∂z2 = ∂u/∂z, we can deduce
that −u + ∂φ/∂z ∼ Ha−2φ, so that the two other contributions together scale as
Ha2O(Ha−2) ∼ O(1). The corresponding asymptotic value is 1.388 and constitutes the
main part of K ′

m. Despite the fact that the quantity −u + ∂φ/∂z goes to zero with the
lengthening of the marginal cells, the asymptotic value obtained is not zero because
this quantity only goes to zero as Ha−2.

Finally, in this case, we have used expression (5.3) to calculate contributions to
ωi , without a magnetic field (Ha = 0) and in the asymptotic domain for large Ha
(Ha = 1000). For Ha = 0, ωi = 261.09 with 252.12 coming from the shear term and
8.97 from the buoyancy term, whereas for Ha = 1000, ωi = 413.74 with 397.42 and
16.32 for the respective contributions. The main contribution always comes from the
shear term and both contributions have increased with the increase of Ha.

Two-dimensional instabilities in a longitudinal magnetic field (table 4)

The energy analysis shows that K ′
b and Θ ′

f 1 remain small and so the dissipation terms
are equilibrated by K ′

f and K ′
m in the kinetic energy balance and by Θ ′

f 2 in the thermal
energy balance. Compared to the case of the vertical magnetic field (table 1a), the
initial evolution with Ha of K ′

f and K ′
m is less pronounced. For large Ha, as for the

three-dimensional modes with transverse magnetic field, asymptotic energy balances
are found which are not very different from the balance at Ha = 0 (moderate increase
of K ′

m).
The perfect balance between K ′

mφ and K ′
mB explains why there is no action of

the longitudinal magnetic field on the three-dimensional instabilities. The values
K ′

mφ = −K ′
mB given in table 5(b) become important for large Ha but less than for the

two-dimensional instabilities in a transverse magnetic field.
Finally, in this case also, the asymptotic energy balances for large Ha correspond

to clear asymptotic variations at the level of the flow characteristics, namely u/w ∼
θ/w ∼ Ha.

5.2. Energetic contributions to the critical Grashof number

The previous analysis has shown how the energy balances between the different
production and dissipation terms evolve when a magnetic field is applied. It would
also be interesting to understand what are the main reasons for the very different
stabilizing effect obtained in the different cases studied, particularly the relative
importance of on the one hand the modification of the basic flow by the magnetic
field and on the other hand the Lorentz term. For that, it is convenient to present the
energy analysis results in a slightly different way. We know that the basic flow U0 is
proportional to Gr: U0 = Gr v0, where v0 = v0(z) is a normalized profile taking into
account the modifications due to the magnetic field. We then define kf based on v0

such that Kf = Gr kf and kb such that Kb = Gr kb, and so after division by |Kd |, we
can express (5.1) at the critical threshold as

Grc(k
′
f + k′

b) = 1 − K ′
m. (5.11)
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Pr = 0.001 Pr = 0.02

Ha R1 R2 Grc/Grc0
R1 R2 Grc/Grc0

3 1.36 1.11 1.51 1.39 1.11 1.54
5 2.25 1.28 2.88 2.46 1.28 3.14
7 4.81 1.48 7.10 7.07 1.42 10.01
9 14.79 1.55 22.88 39.22 1.34 52.49

10 28.47 1.52 43.27 88.50 1.30 115.40
11 56.54 1.48 83.48 237.58 1.26 300.44
12 115.89 1.42 164.51
13 239.76 1.36 325.99
14 491.09 1.30 640.60

Table 6. Characterization of the stabilization by a vertical magnetic field for the
two-dimensional modes at different Pr.

As K ′
m is negative, the action of the magnetic field will first increase Grc through

the increase of the right-hand side in connection with the Lorentz force. It will also
modify the v0 profile which will generate less shear, leading to a decrease of k′

f . This
time, Grc will increase in order to maintain the equality (5.11). In order to have a
better estimation of the action of the magnetic field, we will compare Grc to Grc0

, the
critical value obtained for Ha = 0. We can write

Grc0

(
kf0

+ kb0

|Kd0
|

)
= 1, (5.12)

where the values with the subscript 0 refer to the case Ha = 0, so that (5.11) can also
be expressed as

Grc

Grc0

= R1 R2, (5.13)

where

R1 =

(
k′

f0
+ k′

b0

k′
f + k′

b

)
, R2 = 1 − K ′

m. (5.14)

R1 and R2 are always larger than 1 (being equal to 1 for Ha = 0), R1 referring to
the increase mainly due to the modification of the v0 profile (the buoyancy term k′

b

is often negligible compared to k′
f , except for the three-dimensional instabilities in a

vertical magnetic field at large Ha, see K ′
b and K ′

f in tables 1–4), and R2 referring
to the increase due to the Lorentz force (R2 is directly connected to K ′

m given in
the previous tables). The results are presented in tables 6–8 where for each case the
evolutions with Ha of R1, R2 and Grc/Grc0

= R1 R2 are given.

5.2.1. Two- and three-dimensional instabilities under vertical magnetic field
(tables 6 and 7)

The results clearly show the differences between the stabilization of the two-
dimensional and three-dimensional modes in a vertical magnetic field. For the two-
dimensional modes (table 6), R2 remains rather small (the maximum values reached
are close to 1.55, the value at Ha = 9, for Pr = 0.001 and close to 1.42, the value at
Ha = 7, for Pr = 0.02) whereas R1 increases strongly and regularly with Ha, reaching
for example for Ha = 10 the values 28.47 for Pr = 0.001 and 88.5 for Pr = 0.02. For
the three-dimensional modes (table 7), R2 and R1 both increase regularly with Ha
but remain moderate, except for the largest Ha. Compared to the two-dimensional
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Pr = 0.02 Pr = 0.1

Ha R1 R2 Grc/Grc0
R1 R2 Grc/Grc0

3 1.07 1.14 1.22 1.11 1.14 1.27
5 1.16 1.38 1.60 1.30 1.38 1.79
7 1.28 1.72 2.20 1.60 1.70 2.73
9 1.42 2.13 3.02 2.08 2.09 4.35

10 1.50 2.35 3.52 2.44 2.30 5.62
12 1.68 2.80 4.72 3.98 2.81 11.19
15 2.04 3.49 7.14
20 2.89 4.62 13.34
25 4.19 5.76 24.11
32 8.81 7.68 67.67

Table 7. Characterization of the stabilization by a vertical magnetic field for the
three-dimensional modes at different Pr.

(a) (b)

Ha R1 R2 Grc/Grc0
R1 R2 Grc/Grc0

3 1.00 1.05 1.05 1.01 1.05 1.06
7 1.00 1.23 1.23 1.09 1.20 1.31

10 1.01 1.40 1.41 1.21 1.30 1.58
20 1.16 1.87 2.17 1.87 1.44 2.69
50 2.08 2.32 4.83 4.35 1.48 6.44
80 3.16 2.40 7.61 6.91 1.48 10.25

100 3.91 2.42 9.47 8.63 1.48 12.80
500 19.14 2.46 47.06 43.05 1.48 63.91

1000 38.27 2.46 94.09 86.08 1.48 127.81

Table 8. Characterization of the stabilization by (a) a transverse magnetic field for the
three-dimensional modes at Pr = 0.02, and (b) a longitudinal magnetic field for the two-
dimensional modes at Pr = 0.001.

modes, R2 is somewhat larger, reaching values around 2.3 for Ha = 10, whereas R1 is
much smaller, reaching the values 1.5 and 2.44 at Ha = 10, for respectively Pr = 0.02
and Pr = 0.1. All this indicates that the very good stabilization obtained for the two-
dimensional modes is mainly the consequence of the strong diminution of the energy
generated by shear when the velocity profiles are modified by a vertical magnetic field
(values of R1 up to 491 have been calculated at Pr = 0.001 for values of Ha as small
as 14), and only slightly connected to the stabilizing effect of the Lorentz force which
remains very weak. The stabilization is weaker for the three-dimensional modes as
the effect of shear remains moderate (the increase of R1 is even in part connected
to the increase of K ′

b), despite the fact that the Lorentz force effect is stronger. The
increase of Pr is found to increase the stabilizing effect of the magnetic field, mainly
through the term R1.

The strong stabilization of the two-dimensional modes has been connected to the
modifications induced by the vertical magnetic field on the velocity profiles. In fact, as
shown in figure 2, for the range of Ha considered (Ha � 30), the global characteristics
such as the intensity of the flow and the position of the maximum velocity do not
change very quickly with Ha (the intensity is roughly divided by 4 for Ha = 10
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Figure 16. Variation of the third derivative of the basic velocity profiles at the inflection
point (u′′′(0) = ∂3u/∂z3(0)) as a function of Ha.

and by 20 for Ha = 30, and the position evolves slowly). Having in mind that the
simple criteria for the instability of parallel two-dimensional flows in the framework
of the inviscid theory are connected to the existence of an inflection point in the
velocity profile (Rayleigh’s and Fjortoft’s theorems, see Drazin & Reid 1981), it could
be interesting to look at the second derivative u′′ = ∂2u/∂z2 in our profiles. Our
profiles are symmetric, always with an inflection point in the middle at z = 0 and a
second derivative varying from 0 at z = 0 to 5000 at the upper boundary at z = 0.5.
The key factor for the instability could be the variation of the second derivative
around the inflection point (estimated through the third derivative at the inflection
point, u′′′(0) = ∂3u/∂z3(0)) as this quantity has been found to vary very fast with Ha:
figure 16 shows that it decreases by 5 decades for Ha only changing from 0 to 30,
with a clear asymptotic variation beyond Ha = 20 as u′′′(0) ∼ exp (−0.46 Ha).

5.2.2. Three-dimensional instabilities in a transverse magnetic field (table 8a) and
two-dimensional instabilities in a longitudinal magnetic field (table 8b)

In these cases where the basic velocity (and temperature) profiles are not modified
by the magnetic field (inducing a very small initial increase of R1), the stabilizations
obtained are less effective than with a vertical field, but they grow to large Ha with
an asymptotic variation in Ha.

For the three-dimensional modes in a transverse magnetic field (table 8a), R1

remains close to 1 until Ha = 10, the observed stabilization only coming from the
Lorentz term. For larger values of Ha, despite the invariance of the basic flow,
R1 begins to increase, reaching an asymptotic Ha variation for large values of Ha,
whereas the Lorentz term levels off above Ha = 50 and reaches an asymptotic value.

For the two-dimensional modes in a longitudinal magnetic field (table 8b), the
stabilization is somewhat larger than for the transverse field. R1 evolves more quickly
for small Ha before reaching the asymptotic Ha variation for large Ha, whereas R2

evolves more slowly and reaches a smaller asymptotic value.
These asymptotic variations of Grc at large Ha can be found through an order of

magnitude analysis of the perturbation equations. We will consider the simplest case,
the two-dimensional modes in a longitudinal magnetic field, and choose the limit
Pr = 0. In that case, we have ∂v/∂t = 0, v = 0 and θ = 0. Equation (3.3) can then be
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written as

(V 0 · ∇)v + (v · ∇)V 0 = −∇p + ∇2v + Ha2 j × eB0, (5.15)

with

j = −∇φ + v × eB0. (5.16)

Similarly to Alboussière et al. (1993, 1997), the curl operator has to be applied twice
to (5.15) and once to (5.16). Direct substitution then leads to

∆2v + Ha2 (eB0 · ∇)2v = (∇ × (∇ × ((V 0 · ∇)v + (v · ∇)V 0))), (5.17)

where ∆ is the Laplacian operator (here, ∆ = ∂2/∂z2 − h2). Knowing that for
the two-dimensional transverse instabilities (V 0 · ∇)v = U0 ihu ex + U0 ihw ez and
(v · ∇)V 0 = w (∂U0/∂z) ex , the right-hand side of (5.17) can be calculated. We will
consider the real part of equation (5.17) projected on ez. With eB0 = ex (longitudinal
field), we obtain

∆2w + Ha2 ∂2w

∂x2
= −h2 ∂

∂z
(U0 u), (5.18)

or

∆2w = h2

(
Ha2 w − ∂

∂z
(U0 u)

)
. (5.19)

We assume now that Ha is large (Ha � 1), that the length of the marginal cell is
much larger than the depth of the layer (2π/h � 1 in a dimensionless form, so that
∆ ∼ ∂2/∂z2 ∼ O(1)), and that (∂(U0 u)/∂z)/w ∼ O(Ha2) (this will be verified in the
following). Equation (5.19) then leads to a scaling for h, namely

h ∼ Ha−1, (5.20)

and flow conservation for the perturbation in the xoz-plane gives

u

w
∼ Ha. (5.21)

Using (5.11), it is now possible to obtain a scaling for Grc. For the two-dimensional
instabilities in a longitudinal magnetic field, the Lorentz force is reduced to −Ha2w ez,
so that

Km = Ha2 Re

(∫
z

−ww∗ dz

)
. (5.22)

Knowing that

Kd ∼ Re

(∫
z

∂2u

∂z2
u∗ dz

)
(5.23)

and

kf = −Re

(∫
z

w
∂v0

∂z
u∗ dz

)
, (5.24)

and using relation (5.21) and the fact that ∂v0/∂z ∼ O(1), K ′
m and k′

f can be estimated.
We obtain

K ′
m =

Km

Kd

∼ O(1) (5.25)

and

k′
f =

kf

Kd

∼ Ha−1. (5.26)
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Using the fact that k′
b = 0 for Pr = 0, equation (5.11) leads to the scaling for Grc

Grc ∼ Ha. (5.27)

It can be checked that the hypothesis (∂(U0 u)/∂z)/w ∼ O(Ha2) is verified well as it
is found that (∂(U0 u)/∂z)/w ∼ Gr u/w ∼ Ha2. From this analysis, it is shown that
the asymptotic variation of the threshold for the two-dimensional instabilities in a
longitudinal magnetic field is driven by the increase of the length of the marginal cells.
The key factor is the decrease of the main destabilizing shear energy term k′

f connected
here to the decrease of the vertical component of the velocity perturbation compared
to the horizontal component, and not to the mean flow which is unchanged. A similar
but more complex analysis could be done for the three-dimensional instabilities in a
transverse magnetic field.

6. Concluding remarks
We have characterized the stabilization of buoyant parallel flows (flows generated

between infinite horizontal walls by a horizontal temperature gradient) by a uniform
magnetic field (vertical, or horizontal with a direction transverse or longitudinal to the
flow) through a linear stability analysis and energy considerations. The main results
can be summarized as follows:

(i) The vertical magnetic field (for which the basic flow profiles are modified by
the field) stabilizes the instabilities more quickly than the horizontal fields, but the
stabilization is only obtained up to moderate values of Ha (before the disappearance
of the instabilities) whereas for the horizontal fields the stabilization is effective up to
large values of Ha.

(ii) The vertical magnetic field strongly stabilizes the two-dimensional instabilities
of dynamic origin, giving initial variations of the critical Grashof number Grc at
small Ha as Grc0

exp(Ha2). This is due to the strong decrease of the main destabilizing
term k′

f (connected to fluctuating energy generated by shear of the mean flow) when
the velocity profiles are modified by the vertical magnetic field. On the other hand,
the stabilizing effect of the Lorentz force remains very weak. The wavenumber hc

associated with these instabilities decreases with Ha. The kinetic energy balance is
only slightly modified, whereas the thermal energy balance clearly changes.

(iii) The vertical magnetic field stabilizes the three-dimensional instabilities of
thermal origin less quickly than the two-dimensional instabilities, giving initial
variations of Grc at small Ha as Grc − Grc0

∼ Ha2. As a result, as Ha increases, the
range of Prandtl numbers over which the three-dimensional oscillatory instabilities are
the preferred modes extends progressively towards lower values of the Prandtl number.
For these three-dimensional instabilities, the effect of shear remains moderate, but
the Lorentz force effect is stronger. The wavenumber kc is found to increase with Ha,
the opposite of the case of two-dimensional instabilities. The kinetic energy balance
is strongly modified, whereas the thermal energy balance is only slightly changed.

(iv) Asymptotic behaviour of Grc as Grc ∼ Ha is found for the horizontal fields.
These asymptotic increases are due to the decrease of the main destabilizing shear
energy term k′

f and connected to the asymptotic increase of the marginal cell length

(decrease of the wavenumbers hc or kc as Ha−1). The energy balances evolve towards
well-defined asymptotic balances, with more important changes for the kinetic energy
balances.

(v) Somewhat larger stabilization is found for the two-dimensional modes in a
longitudinal field than for the three-dimensional modes in a transverse field, connected
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to a stronger decrease of k′
f . The stabilizing action of the Lorentz term is stronger

for the three-dimensional modes, despite the fact that destabilizing potential effects
are present in this case.

Comparisons can be made between this infinite-layer model and more realistic
finite-length situations. First, concerning the infinite-layer parallel flow solution, it has
been suggested that in a magnetic field this solution may be representative of the
longitudinal main flow only at moderate Ha, principally for the vertical field, but also
for the longitudinal field if the cavity is quite long in this longitudinal direction. Then,
concerning the stabilizing effect of the magnetic field, numerical results in a two-
dimensional rectangular cavity (Gelfgat & Bar-Yoseph 2001) as well as experimental
results in a parallelepipedic cavity (Hof 2001) have shown a very strong increase
of the instability thresholds for all directions of the magnetic field. In Hof (2001),
the increase is explicitly given as exponential variations, whereas in Gelfgat & Bar-
Yoseph (2001) the increase (first increase from Ha = 0) is not characterized by the
authors but also looks exponential. In both studies, the instabilities are connected to
shear effects in the longitudinal main flow, and this flow is modified by the magnetic
field, whatever its direction. This is similar to what occurs in the layer for the two-
dimensional instabilities in a vertical magnetic field, a situation where an exponential
stabilizing effect has also been found.
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