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We present the results of an experimental and numerical study of the effects of
a steady magnetic field on sidewall convection in molten gallium. The magnetic
field is applied in a direction which is orthogonal to the main flow which reduces the
convection and good agreement is found for the scaling of this effect with the relevant
parameters. Moreover, qualitatively similar changes in the structure of the bulk of
the flow are observed in the experiment and the numerical simulations. In particular,
the flow is restricted to two dimensions by the magnetic field, but it remains different
to that found in two-dimensional free convection calculations. We also show that
oscillations found at even greater temperature gradients can be suppressed by the
magnetic field.

1. Introduction
In crystal growth processes the temperature gradient between the melt and the solid

gives rise to buoyancy-driven convection. In most practical situations the motion so
induced is found to be highly disordered or even turbulent. It is known that these
flows can produce irregular distributions of dopant called striations in the crystallized
host material and this inhomogeneity is undesirable if one wants to grow good quality
semiconductor crystals. Hence there is considerable interest in methods of suppressing
or controlling fluid convection.

One method of controlling the convection is to apply an external magnetic field as
reviewed by Series & Hurle (1991). This induces an electromotive field which can be
non-uniform in regions in the melt. Hence electrical currents can flow, and these inter-
act with the applied magnetic field to damp the convective motion. These effects can
be calculated explicitly for simple geometries but laboratory and practical flows are
extremely complicated and require numerical computations. It is the aim of the present
study to investigate the fundamental magnetohydrodynamic interactions in a simpli-
fied crystal growth geometry using a combined experimental and numerical approach.
By doing this we hope to gain insight into the basic fluid mechanical processes and
thereby provide a platform on which to build an understanding of more practical flows.

The laboratory model we have chosen to investigate is based on a horizontal
Bridgman crystal growth geometry. In this configuration, a crucible containing the
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Figure 1. A schematic diagram of the geometry and coordinate system.

melt to be crystallized is slowly withdrawn from a hot oven so that a lengthwise
temperature gradient arises and this drives convection in the liquid phase. This
technique is not as commonly used as the Czochralski method where a seed crystal
is pulled vertically from the melt contained in a heated crucible (Langlois 1985)
but it is a technique which is of importance in growing crystals of specific form for
instance (Müller & Ostrogorsky 1993). Our laboratory system comprised a rectangular
insulated boat of square cross-section which contained liquid gallium. It was heated
and cooled in a controlled way at two opposite ends and a steady transverse magnetic
field was applied using Helmholtz coils. A schematic diagram of the geometry is
shown in figure 1. Complementary numerical investigations were performed using the
spectral element techniques developed by Ben Hadid & Henry (1997).

The pioneering experimental work on this problem was carried out by Hurle (1966)
and Hurle, Jakeman & Johnson (1974). They observe thermal oscillations in the flow
and show that a magnetic field applied orthogonal to the main convective flow can be
used to damp the time-dependence. However, a more recent investigation by McKell
et al. (1990) reports that an applied magnetic field may also promote instabilities
including low-dimensional chaos. Hence there is clearly a need for an in-depth study
of the interaction between the flowing conductor and the applied magnetic field. We
have chosen to investigate steady flows first since even here there are some interesting
fluid mechanical questions to be addressed.

The steady flow in the absence of a magnetic field has been the subject of extensive
theoretical and numerical investigations as reported in Daniels, Blythe & Simpkins
(1987) and Roux (1990). Particular attention is drawn to the article by Afrid & Zebib
(1990) since they emphasized the importance of three-dimensional effects in this flow.
More recently, a detailed experimental and numerical investigation was carried out by
Braunsfurth et al. (1997). They find good quantitative agreement between calculation
and experiment and show that the principal cellular circulation has a two-dimensional
form at modest temperature differences. However, more recent calculations and
experiments by Juel et al. (1998) have revealed that there are three-dimensional
effects ever-present in the flow field of the experiment and a full understanding of
these may be required to make progress with the magnetohydrodynamic problem.

The two main parameters which govern the MHD flow are the Grashof number, Gr,
and Hartmann number, Ha. Gr gives a measure of the relative importance of buoyancy
to viscous forces and corresponds to the non-dimensional temperature gradient. Ha
is a ratio between the Lorentz and viscous forces and is proportional to the strength
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of the imposed magnetic field. A third relevant quantity is the Prandtl number, Pr,
which is the ratio of viscous to thermal diffusivities. It is approximately zero for
gallium which is a liquid metal above 29.8 ◦C and hence heat transport principally
takes place by conduction. However, as pointed out by Braunsfurth & Mullin (1996)
the qualitative form of observed oscillatory motion can depend sensitively on its
precise value. Thus our calculations will be carried out at realistic finite values of Pr,
rather than the mathematically convenient but singular limit of zero.

There is an extensive literature on theoretical investigations of the damping of
fluid motion by a magnetic field as reviewed by Hunt & Shercliff (1971) and Moreau
(1990). At large Ha, inertia can be neglected and the flow field can be split into a
core region where shear stresses are negligible compared with Lorentz forces and
thin boundary layers. Alboussière, Garandet & Moreau (1996) derive expressions for
both the velocity and the induced current density in the presence of a transverse
magnetic field, and predict that in our geometry, these should vary as Ha−1 and Ha−2

respectively.
So called ‘Hartmann layers’ which have thickness O(Ha−1) are formed along the

boundaries which are orthogonal to the direction of the applied magnetic field, i.e.
along the two main side faces in our configuration. These interact with the core flow
and provide a path for the electric currents to circulate within the cavity, as confirmed
in the three-dimensional calculations by Ben Hadid & Henry (1994). ‘Parallel layers’
which have thickness O(Ha−1/2) are formed on those boundaries which lie parallel
to the applied field. These are the top and bottom surfaces and the endwalls in
our geometry. The parallel layers play a passive role in the problem since they are
not directly affected by the magnetic field but they may contain significant velocity
components.

Much of the modelling work on magnetohydrodynamic convection has been con-
cerned with alternative configurations to the above one. The primary interest is in
vertically and longitudinally oriented magnetic fields, i.e. parallel to gravity and to
the applied temperature gradient respectively. A substantial advantage of these con-
figurations is that they may be investigated using a two-dimensional analysis such
as that performed by Singh & Cowling (1963). A more modern example of this is
given by Oreper & Szekely (1983) who report the results of numerical calculations of
sidewall convection in a square cavity when a longitudinal uniform magnetic field is
imposed. They find that the magnetic field reduces the convective flow, but a large
field does not suppress it completely. Instead a high field breaks the coupling between
momentum and heat transport, which modifies the structure of the flow.

The effects of a vertical uniform magnetic field on a two-dimensional flow config-
uration are studied by Venkatachalappa & Subbaraya (1993) and Alchaar, Vasseur
& Bilgen (1995). Venkatachalappa & Subbaraya obtain a strong reduction of the
convective flow, where the core is quasi-stagnant and the motion is limited to thin
boundary layers by the walls. Alchaar et al. carry out a specific comparison between
their numerical result and the analytical model proposed by Garandet, Alboussière
& Moreau (1992), which is based on the assumption of a parallel core flow. They
show that the analytical model is in good agreement with the numerical results over
a limited parameter range, provided that the enclosure has an aspect ratio larger
than 3.

Ozoe & Okada (1989) report the results of a three-dimensional numerical investi-
gation of the directional effect of a steady magnetic field on side wall convection in a
cube of molten silicon (Pr = 5.4× 10−2). They find that the longitudinal orientation
of the magnetic field is the most effective for suppressing convection. The transverse
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direction is the least effective which is understandable since Ben Hadid & Henry
(1994) point out that such a field has no effect on a strictly two-dimensional flow
field. The results of an experimental study of the flow of molten gallium in a cube
are reported in Okada & Ozoe (1992) where they confirm qualitatively their earlier
numerical findings.

A numerical investigation is carried out by Ben Hadid & Henry (1996) of three-
dimensional flows of mercury (Pr = 2.6× 10−2) in a cylindrical cavity of aspect ratio
4, with different orientations of the magnetic field. They find good agreement with the
analytical estimates of Garandet et al. (1992) and Alboussière, Garandet & Moreau
(1993, 1996) for the damping of the velocity fields. This approach has been extended
more recently to a rectangular cavity geometry by Ben Hadid & Henry (1997), where
they include free-surface effects. Interesting changes in the flow structure are reported
and these appear to be closely linked to the distribution of the induced currents and
their interaction with the applied magnetic field.

Recent experiments by Davoust et al. (1995) focus on the damping of convective
flow of mercury in a horizontal cylindrical cavity of aspect ratio 10 by a uniform
vertical magnetic field. The structure of the steady flow is investigated at large values
of the Hartmann number in the light of current theoretical predictions and good
qualitative agreement is found. A study of the time-dependent convective flow is also
performed which shows in particular that damping is found to occur for small values
of the Hartmann number between 1 and 10.

Most of the numerical and theoretical work reviewed above is concerned with
the asymptotic limit of large magnetic fields which may be beyond practical im-
plementation. We have therefore chosen to investigate the flow behaviour over a
range of applied magnetic fields and to use the combined strength of numerical and
experimental approaches. We have used a transverse field since McKell et al. (1990)
showed that moderate fields with this configuration produce interesting dynamical
effects. The mathematical model and numerical methods are outlined in §2. Brief
details of the experimental investigation are given in §3 where we also discuss the
precautions required when making measurements in the presence of a magnetic field.
The numerical and experimental results are discussed in §4 where we detail both the
spanwise and lengthwise structure of the flow field. Finally we draw some conclusions
from our results and speculate on the consequences of them for the more complicated
motions found at higher temperature differences.

2. Mathematical model and numerical techniques
The numerical model consists of a rectangular cavity of square cross-section filled

with gallium, with electrically insulating boundary conditions imposed on all walls. It
has aspect ratio Ax = l/h = 4, where l is the length of the cavity and h is its height,
as shown schematically in figure 1.

The endwalls are isothermal and held at Tc and Th, where the suffixes c and h
correspond to cold and hot respectively. Thus, a horizontal temperature gradient is
applied and this drives a convective circulation within the cavity.

We will refer to different cross-sections of the cavity, in order to describe both
the numerical and the experimental flows. We denote by XY -, Y Z- and XZ-cross-
sections, the planes which are perpendicular to the z-, x- and y-axes respectively and
in addition, we indicate the coordinates of their centres. Examples of three cross-
sections, centred on x = Ax/2, y = 0 and z = 0 can be seen in figure 1. These will
commonly be referred to as the central cross-sections.
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The free convection problem is modelled by the Navier–Stokes equations coupled
to an energy equation and subject to the Boussinesq approximation (see for instance
Braunsfurth et al. 1997). The characteristic scales chosen to non-dimensionalize the
equations are h, ν/h, h2/ν, ρν2/h2 and γ = (Th − Tc)/Ax, where ν is the kinematic
viscosity and ρ the density of gallium, and they represent respectively length, velocity,
time, pressure and temperature.

A horizontal uniform magnetic field, B = B0eB , is applied in a direction transverse,
i.e. orthogonal, to the applied temperature gradient and gravity. Thus, currents are
induced within the cavity which arise from the motion of the conducting fluid through
the magnetic field lines. The high electric conductivity of the material ensures that
the induced magnetic field associated with these currents is negligible, so that the
externally applied magnetic flux density remains uniform. Also, interaction between
the induced electric currents and the applied field results in a magnetic body force,
called the Lorentz force, which is given by

F L = jd × B, (2.1)

where jd is the dimensional electric current density and B the magnetic flux density.
The electric current density, normalized by (σνB0)/h where σ is the electric conduc-
tivity of the fluid, is defined by Ohm’s law in a moving frame of reference to be,

j = −∇Φ+ u× eB, (2.2)

where j is the dimensionless electric current density, Φ is the induced electric potential
and u = (u, v, w) is the fluid velocity. Furthermore, j satisfies the continuity equation,

∇ · j = 0. (2.3)

By combining equations (2.2) and (2.3) we obtain

∇2Φ = eB · (∇× u). (2.4)

Thus, the resulting non-dimensional equations of motion are the continuity equa-
tion, the equations for the transport of momentum, the equation for the transport of
energy and equation (2.4). The following boundary conditions are imposed:

∂T/∂y = 0 on y = ±1/2, and ∂T/∂z = 0 on z = ±1/2,

T = 0 on x = 0, and T = Ax on x = Ax,

where T is the reduced temperature, and

u = 0 and ∂Φ/∂n = 0 on all boundaries.

Under these conditions, the values of the electric potential and the pressure are not
unique. Thus, their absolute value is set to zero at a convenient point within the
cavity.

The scaling of the governing equations naturally leads to expressions for the
Grashof number, Gr = βγgh3/ν2, the Hartmann number, Ha = B0h(σ/νρ)1/2 and the
Prandtl number, Pr = ν/κ, where β is the coefficient of thermal expansivity and κ the
thermal diffusivity.

It is useful to recall that the three-dimensional equations of motion associated with
the above cited boundary conditions are invariant under the following transforma-
tions:

(i) (x− Ax/2, y, z)→ (−(x− Ax/2), y, −z),
(ii) (x− Ax/2, y, z)→ (x− Ax/2, −y, z).
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The first of these two Z2 symmetries is referred to as centro-symmetry by Gill (1966)
and it expresses the fact that the flow is unchanged by a rotation of π about the
y-axis in the centre of the enclosure. It is an intrinsic property of the Boussinesq
flow, as the buoyancy term is taken to be linearly dependent on temperature and it is
unchanged by the addition of a magnetic field. The second transformation describes
a reflectional symmetry commonly referred to as left-right symmetry in convection
problems.

The governing equations were computed on a three-dimensional domain using a
spectral element method where the spatial discretization has been carried out using
31 × 15 × 15 Gauss–Lobatto–Legendre collocation points. A detailed description of
the methods and their implementation in MHD convection flows can be found in
Ben Hadid & Henry (1997). They report that the grid we have used is sufficiently
accurate for confined MHD flow and the interested reader is referred to their paper
for a detailed discussion of numerical accuracy tests.

We now consider a two-dimensional version of the convective flow such that motion
is restricted to the two directions x and z, while a magnetic field is applied along the
y-direction. It was shown explicitly by Ben Hadid & Henry (1994) that the magnetic
field applied in the transverse direction will have no effect on the flow.

In this case, the magnetic equation (2.4) can be re-written as

∇2Φ =
∂w

∂x
− ∂u

∂z
, (2.5)

since B0 is applied along the y-direction. In a two-dimensional flow, the velocity can
be expressed in terms of a stream function Ψ by setting

w = −∂Ψ
∂x

, u =
∂Ψ

∂z
, (2.6)

which yields

∇2(Φ−Ψ ) = 0. (2.7)

When the boundary conditions ∂Φ/∂n = 0 and ∂Ψ/∂n = 0 are applied this yields the
solution

Φ−Ψ = constant. (2.8)

Hence, the induced electric potential is the exact image of the stream function. The
electric current is given by (2.2) and since u× eB = u× y = ∇Ψ ,

j = −∇Φ+ ∇Ψ = 0. (2.9)

Thus, a two-dimensional convective flow is unaffected by the action of a uniform
magnetic field applied perpendicular to the plane of a cavity with electrically insulating
boundaries since the magnetic body force is zero. Hence, all calculations reported
here were performed on the full three-dimensional problem.

3. The experiment
3.1. Experimental apparatus

A schematic diagram of the apparatus is shown in figure 2. It is described in detail
in Braunsfurth & Mullin (1996) and thus we will only give a brief description of the
points pertinent to the present study.

The working section of the experiment consisted of an insulating rectangular
channel which held the liquid gallium between two thermally conducting plates.
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Figure 2. Schematic diagram of the experimental setup viewed from above.

These were made from a 1 mm thick molybdenum sheet, which is a good conductor
and is also impervious to attack by gallium. Each endwall was the side of a copper
box of capacity 0.7 l, containing silicone oil, whose temperature was held constant to
within ±0.05 ◦C by a commercial temperature controller. The experiment was further
enclosed in an air cabinet whose temperature was held constant at 32 ± 0.5 ◦C.
In particular, these precautions ensured that good uniformity and stability of the
applied temperature at the two endwalls of the container was achieved. The channel
containing the gallium was thermally insulating and was made from a machinable
ceramic called pyrophelite. Its thermal conductivity is 29 times smaller than that of
gallium and it is also electrically insulating. A non-conducting ceramic lid was fitted
on top of the gallium to form the upper boundary. Hence the four faces of the
enclosure were insulating while the endwalls were conducting.

The channel containing the gallium was centred between the 4 in. pole pieces of
an electromagnet, allowing steady fields of up to 1250 G to be reached using a 30 V,
3 A stabilized d.c. power supply. Thus, Hartmann numbers in the range 0 to 64 could
be obtained. The strength of the applied magnetic field was controlled manually by
regulating the electric current supplied to the coils of the electromagnet. The current
range was divided into steps of 0.2 A and the magnetic field was calibrated against
the applied current using a transverse probe Gaussmeter. Both positive and negative
magnetic fields were applied, as their effect on the flow was found to be identical. The
hysteresis due to the magnetization of the soft iron poles was negligible and hence
was ignored for these measurements. A residual field of approximately 20 G was
measured. This corresponds to a Hartmann number of 1 and thus the uncertainty on
the absolute value of the Hartmann number was ±1.

In addition, in order to obtain zero values of the Hartmann number for the study
of the flow in the absence of a magnetic field, the residual field was eliminated with a
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small reverse current, so that the layer of gallium was subjected to a resulting field of
less than 1 G. This corresponded to a value of the Hartmann number of Ha = 0±0.1,
which was found to have a negligible effect on the flow, as will be seen in §4.

The spatial distribution of the magnetic field within the cavity was measured for
an applied d.c. current of 3 A, which corresponded to the largest magnetic field that
could be applied with the present system. The measurements were carried out using a
Gaussmeter with a Hall-effect probe. This was held in a micro-manipulator and moved
manually along a Y Z-cross-section of the cavity on a grid of 4 × 4 measurement
points. Measurements were taken on two Y Z-cross-sections at x = 2.0 and x = 3.6.
The magnetic field was found to be uniform within ±0.3% of its mean value on each
of these two cross-sections. Further measurements were taken on the XY -plane at the
bottom of the cavity. Here, the field was found to be uniform within ±1.5% of the
measured mean value. In addition, these measurements were repeated for an applied
current of 1 A and similar results were obtained. The very good uniformity that was
achieved justifies the choice of an electromagnet with large polar pieces and rules out
the occurrence of effects due to non-uniformities in the magnetic field such as those
studied by Neubrand et al. (1995).

3.2. Experimental measurements

Temperature was measured with a type K insulated thermocouple of diameter
0.25 mm which was accurately positioned within the melt using a micromanipu-
lator. The precision achieved in the measurement of relative temperatures was better
than ±0.01 ◦C. Care was taken to ensure that the probe did not perturb the convective
flow and the experimental procedure was very similar to that reported by Braunsfurth
et al. (1997). Thus, we will only recall the essential points here.

The vertical temperature difference Θ, measured at a given location in the cavity,
is of particular interest since it reflects the amount of heat transferred by convection.
If the liquid gallium in the cavity were replaced by a solid, heat transport would
take place by conduction alone. The temperature would then simply be a function of
lengthwise position x, and there would be no vertical temperature dependence. Here,
heat transport can take place by fluid convection as well as conduction. However,
this convective heat flow is weak and is associated with motion of hot liquid in the
top half of the container, progressing from the hot end to the cold, and vice versa in
the bottom half.

In order to obtain estimates of Θ, vertical temperature profiles were recorded in the
following way. Measurements were taken at 20 different vertical positions, at x = 2.0
and y = 0. At each point the flow was allowed 60 s to settle from the disturbances
caused by the movement of the probe. Then a sample of 600 data points was taken over
a period of 60 s, and the mean, minimum and maximum were recorded. The minimum
and maximum gave an estimate of the size of the fluctuations present in the experiment
and of measurement noise, and in the present case of steady flow, indicated the size of
the error bars on the measurement points. An example of a vertical temperature profile
recorded at x = 2.9 and y = 0 is displayed in figure 3. It reflects the stable temperature
stratification within the cavity due to the buoyancy-driven convective circulation. The
vertical temperature difference was then determined by measuring the total amplitude
of the profile. In practice there is an unknown offset in all the measurements due to an
arbitrary level shift introduced by the electronics. Hence, the zero of the temperature
axis was defined to be at the mid-height of the gallium sample, as shown in figure 3.

Temperature distributions on cross-sections of the cavity orthogonal either to the
x-axis or the y-axis were also measured by recording series of vertical temperature
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Figure 3. An example of an experimentally determined vertical temperature profile.
The parameter values were set to Gr = 4.5× 104, Pr = 2.5× 10−2 and Ha = 0.

profiles on a grid pattern. In the case of the Y Z-cross-section, the measurements were
taken on a grid of 12 transverse points by 20 vertical ones. The probe was initially
placed at the bottom of the cavity along a sidewall. It was then moved upwards
in steps of 0.7 mm. At each measuring station the flow was allowed to settle for
180 s before a 3000 records long time series was sampled over a period of 10 min. The
mean, minimum and maximum values were retained similarly to the recording of the
vertical temperature profiles. When the probe reached the surface of the gallium it was
moved transversally by 1.09 mm and then lowered back down to the bottom of the
cavity and the procedure repeated for the 11 remaining transverse positions. All the
transverse measurements needed to be carried out without a lid for practical reasons.
As discussed by Braunsfurth et al. (1997) profiles are insensitive to the presence of
a lid and we believe that this has minimal effect on the flow field. For the central
XZ-cross-section, temperature was measured on a grid of 26 horizontal points by 16
vertical ones, following a procedure similar to the above, and a lid was present on
top of the gallium.

The study of the magnetohydrodynamic flow required additional precautions. As
discussed by Davoust (1996), the immersion of a small insulating object, such as the
thermocouple probe, into the layer of gallium results in the creation of parallel layers
within the core flow. The disturbance to the flow is determined by estimating their
thickness, which is of the order of the diameter of the probe over the square root
of the local Hartmann number, based on this same characteristic length scale. For
Ha = 10 it is less than 6% of the total depth of the layer and for Ha = 60 it is less
than 2%, which suggests that their effect on the flow is insignificant.

It is also worth recalling that in the experiment, the endwalls are electrically
conducting. In the presence of a transverse magnetic field, thin parallel layers are
expected to form along these walls but we do not expect them to influence the
core flow. As will be seen below, the agreement between experimental measurements
and numerical simulations performed for electrically insulating walls support these
assumptions. In addition, good uniformity of the temperature distribution on the
endwalls was found by Braunsfurth et al. (1997) and thus thermo-electric effects
between the gallium and the molybdenum are also assumed to be unimportant.
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3.3. Material properties

The accurate determination of the absolute value of the experimental parameters
relies on precise knowledge of the material properties. This is especially true if we
wish to make comparisons with the numerical calculations. The data on the physical
properties of molten gallium are sparse and their dependence on temperature is not
well known. The available data were collected from a number of sources and discussed
by Braunsfurth et al. (1997). In particular, they showed that the value of the Prandtl
number is known to within a systematic uncertainty of 16% which is essentially due to
lack of knowledge of the thermal conductivity. However, this is not a major issue here
since it has been shown by Juel et al. (1998) that the steady convective flow, which is
the focus of this study, is qualitatively the same in the absence of a magnetic field over
the entire range of Prandtl numbers studied. Also, this systematic uncertainty is of
little importance when comparing one set of experimental measurements with another,
as the reproducibility of these results over a period of several months suggests that the
sample of gallium retains its purity. However, it should be recalled that variations in
Pr can have an effect on the observed dynamical motion as reported by Braunsfurth
& Mullin (1996) and this remains a topic of further research.

4. Results: convection in the presence of a transverse uniform magnetic field
4.1. Damping of the convective circulation

A quantitative comparison between experimental results and numerical simulations
was performed using measurements of the strength of the convective flow. As discussed
in §3, the vertical temperature difference in the centre of the cavity (at x = 2.0 and
y = 0) was chosen since it is a good indicator of the convective heat transfer. The
dependence of the vertical temperature difference on the applied magnetic field was
determined experimentally by recording vertical temperature profiles at ten successive
fixed values of the Hartmann number ranging from zero up to Ha = 64. The Grashof
number was held fixed at 4.6 × 104 and the Prandtl number was 2.5 × 10−2. These
particular parameter values were chosen so that the flow was steady and of sufficient
strength to provide a good quality signal. The extracted experimental values of Θ
were compared with three-dimensional numerical data calculated for Gr = 5.0× 104

and Pr = 3.0 × 10−2. These numerical parameter values were chosen as a matter
of convenience since the absolute experimental conditions were not known precisely
at the time the calculations were performed. As will be seen below, the agreement
between experimental and numerical results is very satisfactory and we judged it
unnecessary to repeat the very expensive calculations at the precise experimental
parameter values.

The results are plotted in figure 4. It can be seen that the vertical temperature
difference is a monotonically decreasing function of Ha and thus the amount of heat
transferred by convection is reduced as the magnetic field is increased. Hence the ap-
plied magnetic field damps the convective circulation as found in other investigations.
The correspondence between the experimental and numerical results is very good
which is highly satisfactory given the uncertainty in the experimental parameters.
For sufficiently high Hartmann numbers, they both tend to follow the same scaling
law. However, the value of the scaling coefficient cannot be related to any theoretical
ones since we were unable to apply a sufficiently large magnetic field to approach an
asymptotic state. Thus, in order to investigate this regime, numerical calculations were
carried out beyond the experimental range of Hartmann numbers so that comparison
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Figure 4. Dependence of the vertical temperature difference on the Hartmann number:
comparison between experimental results and those of three-dimensional numerical calculations.

could be made with the theoretical predictions. We found that Θ and similarly the
maximum horizontal and vertical velocities in the central XZ-plane, umax and wmax,
vary approximately as Ha−1 for Ha > 100. These results are in agreement with those
obtained by Ben Hadid & Henry (1996) in a cylindrical cavity and confirm the results
of Alboussière, Garandet & Moreau (1996).

The damping of the convective circulation can be understood in terms of the
induced electric currents and potentials. The magnetic body force is given by F =
Ha2j × eB , where j represents the electric currents that arise due to the interaction
between flow and magnetic field. The currents have two distinct sources, u × eB due
to movement of the fluid through the magnetic flux lines, and −∇Φ, the electric field
which results from this reorganization and counteracts the former term. These two
contributions cancel in a purely two-dimensional configuration as discussed in §2.
In the present case, the distribution of electric currents is largely influenced by the
strong gradients of electric potential induced on the sidewalls where velocity is zero.
In the central part of the cavity, there is a weak induced current density which is
essentially vertical since u is the dominant component of the velocity there. Vectors
of induced current density which were obtained for numerical calculations performed
for Ha = 100 are plotted in figure 5(a) on the central XZ-plane. It can be seen that
they are strictly vertical in the central section of the cavity. This, in turn, results in a
magnetic body force which damps the flow. The potential iso-lines (figure 5(b)) reflect
the streamlines of the convective flow.

4.2. Alteration of the flow structure

A distinct advantage of numerical simulations is that they can be used to provide
a full and detailed picture of the model flow. This is particularly beneficial in the
present case given that we have established good agreement between calculations and
experiment. We therefore used the numerical results to investigate the modification of
the flow structure by the magnetic field and then the global effects were demonstrated
clearly in the experiment. All the numerical results presented below were calculated
for Gr = 5.0× 104 and Pr = 3.0× 10−2.

Similar agreement was found between experiment and three-dimensional model
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Figure 5. Projection of current density vectors (a) and plot of electric potential iso-lines (b) for
Gr = 5.0× 104, Pr = 3.0× 10−2 and Ha = 100 on the central XZ-plane.

(a)

(b)

Figure 6. Plot of numerical velocity vectors, calculated for Gr = 5.0× 104 and Pr = 3.0× 10−2,
on the central XZ-plane: (a) Ha = 0, (b) Ha = 100.

in the absence of a magnetic field and we refer to Juel et al. (1998) for a detailed
discussion of the structure of the free convective flow. In the following, we will only
recall the features which are essential to the present comparison.

4.2.1. Lengthwise structure of the flow

In figures 6(a) and 6(b), velocity vectors, which were calculated for Ha = 0 and
Ha = 100 respectively, are plotted on the central XZ-plane. The same scale was
chosen to represent both flows and as a result, the projection of velocity vectors of
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figure 6(a) is such that they jut over the boundaries. It is clear from this picture
that the velocity field is strongly reduced in the presence of a magnetic field. At
Ha = 0, the maximum velocity is umax = 1.13 while for Ha = 100, umax = 3.45× 10−1.
However, it can also be seen that the structure of the flow is strongly modified. In
figure 6(a), dark structures can be seen in the central part of the cavity. They reflect
the presence of three-dimensional secondary flows, which arise from the interaction
between the recirculation flows of the two end regions, as described by Juel et
al. (1998). This interaction takes place in the centre of the cavity. Thus, a three-
dimensional recirculation structure is generated, which is found to be at the origin of
the destabilization of the flow, at larger values of the Grashof number. At Ha = 100,
it can be seen that the central part of the flow is parallel and that the role of the
end regions is simply to recirculate the fluid within the cavity. Thus, the structure
of the flow is altered in the presence of a strong magnetic field, so that it becomes
increasingly uniform over the length of the cavity.

The lengthwise structure of the temperature field was investigated experimentally
by recording temperature distributions along the central XZ-plane for two values of
the Hartmann number Ha = 0 and Ha = 64, following the procedure described in
§3. A relatively large Grashof number of 1.3 × 105 was chosen in order to ensure a
relatively large amount of convection and hence obtain significant curvature of the
isotherms. As a result, we expected to observe a bigger effect of the magnetic field on
the temperature field in this case. The Prandtl number was set to Pr = 2.3×10−2. Since
the measured temperature values were relative, a zero temperature reference point
was chosen close to the cold endwall, where the temperature was lowest. Temperature
contours, calculated from the recorded data using cubic interpolation, are displayed
in figure 7(a) for Ha = 0 and in figure 7(b) for Ha = 64. At these parameter settings
the flow is time-dependent. This is evident in its general irregular appearance which
results from averaging the unsteady flow, as discussed in §3. Here, each point was
averaged for 10 min which we estimated to be long enough to capture the essential
elements of the convective flow. In figure 7(b), the isotherms are smooth over the
entire domain, which suggests that the magnetic field has a stabilizing effect on the
flow, as previously found by Hurle, Jakeman & Johnson (1974) and Davoust et al.
(1995). Furthermore, the curvature of the experimental contours is reduced between
figures 7(a) and 7(b) suggesting an overall damping of the convective heat flow. In
particular, it can be seen that the spacing between the isotherms is more uniform
for Ha = 64 than for Ha = 0. This suggests that an alteration of the lengthwise
structure of the experimental flow takes place when a transverse uniform magnetic
field is applied, in accordance with the numerical findings.

A closer inspection of the data confirmed the above conclusion. Lengthwise profiles
at z = 0.49 and z = −0.49 were extracted from the series of measurements and the
resulting profiles are displayed in figure 8(a) for Ha = 0 and 8(b) for Ha = 64.
For each profile, the mean, maximum and minimum values have been interpolated
linearly in order to highlight the regions of oscillations. At Ha = 0, the strongest
oscillations are observed in the profile at z = 0.49 towards the cold end. These are
indicated by a splitting of the maximum and minimum values in the left-hand portion
of figure 8(a). At Ha = 64, the oscillations have been damped in the bulk of the
material, although they are not entirely inhibited near the upper surface, as seen in
figure 8(b). In addition both profiles are more symmetrically disposed in the presence
of a magnetic field. This symmetry is also found in the three-dimensional numerical
model of free convection, which is centro-symmetric.

A more detailed investigation of the alteration of the experimental flow by the
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Figure 7. Experimental temperature contours plotted on the central XZ-plane: (a) Ha = 0, (b)
Ha = 64. The measurements were taken for Gr = 1.3 × 105 and Pr = 2.3 × 10−2. In each plot, the
contour situated furthest to the left corresponds to a relative non-dimensional temperature of 0.2.
Also, the temperature variation between two neighbouring contours is of 0.2. Thus, the contour
located furthest to the right in (a) corresponds to a temperature of 3.4 and in (b) of 3.6. However,
it is also worth recalling that the experimentally determined temperatures values are relative, and
that the zero of the temperature axis was defined to be at the bottom measurement point situated
closest to the cold endwall, where the lowest value was measured.

magnetic field was conducted by recording vertical profiles for Ha = 0 and Ha = 64
at different lengthwise positions. All the measurements were taken halfway along the
width of the cavity following the procedure described in §3. Results are presented
in figures 9(a), 9(b) and 9(c) of profiles sampled at x = 1.0, x = 2.0 and x =
3.0 respectively. In each plot, comparison is made between the measurements with
and without magnetic field. In all three cases, the reduction of the temperature
stratification, which takes place when the magnetic field is applied, is different in
the top half of the cavity to that in the bottom part. This is particularly obvious in
figure 9(a) where the damping is concentrated in the bottom half while the upper part
of the temperature profile remains almost unaffected. Due to the centro-symmetric
properties of the system, the vertical profiles are generally asymmetric about z = 0
except at x = xc, which is the centre of the circulation in the convective flow and
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Figure 8. Experimental lengthwise profiles at z = 0.49 and z = −0.49: (a) Ha = 0, (b) Ha = 64.

is situated at xc = 2.0 in the numerical model. However, in the experiment, Juel
et al. (1998) find that the maximum vertical temperature difference Θ is located
at approximately xc = 3.0 and thus that the centre of the convective circulation is
displaced towards the hot end of the cavity. The reasons for this discrepancy are
not at present understood, although it is thought that a Boussinesq approximation is
inadequate to model the experimental flow since the material properties of gallium are
strongly temperature dependent. Thus, the amplitude of the top half of the profiles
taken for x > xc is larger than the bottom part and vice versa for x < xc. It is
interesting to note that the asymmetric half of each profile, which has the largest
amplitude, is consistently more reduced by the magnetic field. Hence, in figure 9(b)
for x = 2.0, the bottom half of the profile is damped more heavily than the top
part and vice versa in figure 9(c) which is situated slightly beyond the centre of the
experimental circulation. Overall, the results displayed in figures 9(a), 9(b) and 9(c)
indicate that the presence of a sufficiently large magnetic field promotes symmetry
about z = 0 in the experimental profiles and thus results in a more uniform flow over
the lengthwise extension of the cavity. These results confirm the global observations
made on the temperature contours displayed in figure 7.

Finally, the dependences of the vertical temperature difference on the lengthwise
position x at Ha = 0 and Ha = 64 were compared in figure 10 in order to provide
a quantitative measurement of the effect of the magnetic field on the lengthwise
asymmetry of the flow. Each value of Θ was obtained using the procedure described
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Figure 9. Comparison between experimental vertical temperature profiles sampled for Ha = 0 and
Ha = 64. The measurements were made at different lengthwise locations for Gr = 4.6 × 104 and
Pr = 2.5× 10−2: (a) x = 1.0, (b) x = 2.0, (c) x = 3.0.
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Figure 10. Comparison between the experimental dependence of the vertical temperature difference
on the lengthwise position x at Ha = 0 and Ha = 64. The measurements were made for Gr = 9.8×105

and Pr = 2.4× 10−2.

in §3. It is clear from figure 10 that damping is most efficient around x = 3.0 where the
convective flow is the strongest. The effect increases monotonically and quasi-linearly
with x and is approximately 27% weaker at x = 2.0 and 50% weaker at x = 1.0.
These findings clearly suggest that the asymmetry of the experimental flow is reduced
in the presence of a transverse uniform magnetic field. However, it can also be seen
in figure 10 that the centre of the circulation in the experimental flow is not relocated
for Ha = 64. Thus, it appears that the reduction in amplitude of the experimental
asymmetry is simply a consequence of the increased uniformity of the flow in the
presence of the magnetic field.

4.2.2. Spanwise structure of the flow

The spanwise structure of the flow was first examined numerically in a similar
way to the study reported in §4.2.1. An investigation was carried out into the effect
of an applied magnetic field on the velocity components and vertical temperature
difference, which was calculated for the spatial location x = 2.0, y = 0. The results are
displayed as a function of Ha in figure 11. It can be seen that the vertical temperature
difference Θ varies with Ha in a similar manner to the maximum longitudinal and
vertical components of the velocity, umax and wmax. In the present case of a uniform
transverse magnetic field, the maximum value of the longitudinal velocity, umax, is
found within the core flow and its asymptotic variation is in agreement with the
theoretical predictions of Alboussière, Garandet & Moreau (1996). The maximum
value of the transverse component of the velocity, vmax, is smaller than that of the
three other quantities at Ha = 0. This is because the transverse direction y is not
a main direction of flow. The main buoyancy-driven circulation is essentially two-
dimensional, as discussed by Braunsfurth et al. (1997), although secondary, transverse
cross-flows exist at all values of the Grashof number. It is interesting to note that
vmax undergoes an initially strong reduction at intermediate values of the Hartmann
number but varies asymptotically as Ha−1. This indicates that the presence of a
moderate uniform transverse magnetic field has the effect of restricting the flow to
the two directions x and z and hence favours two-dimensional motion. These results
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numerical vertical temperature difference (Θ) on the Hartmann number.
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Figure 12. Plot of numerical velocity vectors calculated at Gr = 5.0× 104, Pr = 3.0× 10−2 and
Ha = 100 on Y Z-cross-sections at x = 1.0, 2.0 and 3.0.

are in agreement with the calculations of Ben Hadid & Henry (1994) in a rectangular
cavity in the case of Pr = 0, where predictions are limited to the velocity field.

In order to illustrate this point further, we show in figure 12 a plot of the velocity
vectors taken from a simulation at Ha = 100. They are plotted for three transverse
sections of the cavity at x = 1.0, 2.0 and 3.0. At this value of the Hartmann number,
the boundary layers on the sidewalls of the cavity are thin and the flow is reduced to
a regular two-dimensional circulation.

In the light of the above numerical results, the effect of the magnetic field on
the structure of the flow was investigated experimentally. Temperature distributions
were measured on a Y Z-cross-section in the cavity located at x = 3.0, first for
Ha = 0 then for Ha = 64, using the procedure described in §3. The Grashof number
was set to a relatively high value, Gr = 1.3 × 105, and the Prandtl number was set
to Pr = 2.3 × 10−2, so that the measured isotherms would be significantly curved,
as discussed in §4.2.1. Temperature surfaces, calculated from the resulting data, are
presented in figure 13(a) for Ha = 0 and figure 13(b) for Ha = 64. For each set of
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Figure 13. Experimental temperature distributions on the Y Z-plane at x = 3.0 (a) Ha = 0,
(b) Ha = 64. The measurements were made for Gr = 1.3× 105 and Pr = 2.3× 10−2.

measurements, the zero temperature point was set at the bottom measurement station
situated at y = 0.

In figure 13(a), the irregularity of the contours indicates that the flow is unsteady
as discussed in §4.2.1. The vertical temperature difference was strongest at y = 0 and
although the flow was time-dependent, the distribution is left-right symmetric. When a
magnetic field is applied corresponding to Ha = 64, it alters the temperature distribu-
tion shown in figure 13(b). It can be seen that the three-dimensional character of the
temperature is strikingly reduced so that the transverse structure of the temperature
distribution is flattened and the variation of the temperature essentially restricted to
the z-direction. Also, a substantial reduction of the vertical temperature stratification
reflects the damping of the convective flow as discussed in §4.1. Similar measurements
to those presented in figure 13(a) were also taken at the lower Grashof number of
Gr = 9.8× 104. They showed a weaker vertical temperature stratification than those
displayed in figure 13(b) in the presence of a magnetic field. However, the temperature
distribution was strongly three-dimensional suggesting that the modification to the
flow field by the applied magnetic field is more than a simple reduction of convection,
which could equally be obtained by reducing Gr. It should also be noted that the
magnetic field damps the temperature oscillations, as previously mentioned in §4.2.1.
This raises the question of whether the damping of the oscillatory flow is due to the
modification of the averaged base flow or to a direct interaction between the magnetic
field and the three-dimensional unsteady flow. This is a topic of current research.

4.3. Comparison between the magnetohydrodynamic flow and the
two-dimensional free convective circulation

We showed in §4.2.2 that the three-dimensional convective circulation is restricted
to two-dimensional motion in the x- and z-directions at high Hartmann numbers.
It is interesting to compare and contrast the magnetohydrodynamic flow with the
two-dimensional model of free convection.

We show velocity vector plots obtained from the numerical simulations of the
two different configurations in figure 14. Those obtained from a three-dimensional
simulation of magnetohydrodynamic flow at Ha = 100 are shown plotted in the
central XZ-plane in figure 14(a) while those from the two-dimensional free convection
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Figure 14. Comparison between the magnetohydrodynamic flow and the two-dimensional free
convection model at Gr = 5.0×104 and Pr = 3.0×10−2: (a) three-dimensional numerical simulations
at Ha = 100, (b) two-dimensional numerical simulations.
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Figure 15. Vertical temperature difference versus the Grashof number: comparison between experi-
mental measurements at Ha = 0, Ha = 32 and Ha = 64 and two-dimensional simulations performed
at Pr = 3.0× 10−2.

solution are presented in figure 14(b). In the two-dimensional case, the flow consists
of a large tilted convection cell which is centro-symmetric. Thus, it can be seen that
the two flows obtained at the same fixed Gr and Pr are qualitatively different.

The remaining investigation focuses on whether the heat transfer characteristics
of the magnetohydrodynamic flow are similar to those of the free convection model
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over a range of Grashof numbers. We carried this out by measuring the experimental
dependence of the vertical temperature difference Θ in the centre of the cavity
(x = 2.0, y = 0) for Ha = 0, Ha = 32 and Ha = 64 and comparing them with
two-dimensional numerical results previously reported in Braunsfurth et al. (1997).
The results are displayed in figure 15. It is immediately clear that the experimental
flow in the presence of a uniform transverse magnetic field remains qualitatively
different from the two-dimensional model since all three experimental curves show
systematic differences with the numerical one. Finally, it is interesting to note that at
these relatively small temperature differences, an applied magnetic field has a strong
effect on the temperature distribution. However, this does not necessarily indicate a
similar effect on the flow, as the Prandtl number of gallium is small.

5. Conclusion
It has been known for more than thirty years that magnetic fields can be used

to suppress oscillations in liquid metal flows. Despite this, there is little use of this
technique in the crystal growth industry. Perhaps one reason that this approach has
not advanced is the lack of detailed knowledge of the fundamental fluid mechanics
of the MHD processes involved. We have shown using the powerful combination
of experimental and numerical techniques that the base flow state in our model
of a crystal growth facility is modified into a new two-dimensional configuration.
Oscillations are thereby suppressed and it remains an interesting challenge to theory
to test the stability of this new state. We believe this will provide important insight
into mechanisms for selectively controlling flows using modest magnetic fields instead
of attempting to suppress convection completely. An example of this has already been
provided by McKell et al. (1990) who showed that low-dimensional chaos could be
promoted using a small field. The converse of this may also be true.

The work of A.J. was supported by a studentship funded by DERA Malvern and
the collaborative research is supported by the British Council under the Alliance
Program.
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