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Numerical study of convection in the horizontal
Bridgman configuration under the action of a

constant magnetic field. Part 1.
Two-dimensional flow

By H A M D A B E N H A D I D, D A N I E L H E N R Y
AND S L I M K A D D E C H E

Laboratoire de Mécanique des Fluides et d’Acoustique-UMR CNRS 5509, Ecole Centrale de
Lyon/Université Claude Bernard-Lyon 1, ECL, BP 163, 69131 Ecully Cedex, France

(Received 6 December 1994 and in revised form 20 September 1996)

Studies of convection in the horizontal Bridgman configuration were performed to
investigate the flow structures and the nature of the convective regimes in a rectangular
cavity filled with an electrically conducting liquid metal when it is subjected to a
constant vertical magnetic field. Under some assumptions analytical solutions were
obtained for the central region and for the turning flow region. The validity of the
solutions was checked by comparison with the solutions obtained by direct numerical
simulations. The main effects of the magnetic field are first to decrease the strength of
the convective flow and then to cause a progressive modification of the flow structure
followed by the appearance of Hartmann layers in the vicinity of the rigid walls.
When the Hartmann number is large enough, Ha > 10, the decrease in the velocity
asymptotically approaches a power-law dependence on Hartmann number. All these
features are dependent on the dynamic boundary conditions, e.g. confined cavity or
cavity with a free upper surface, and on the type of driving force, e.g. buoyancy
and/or thermocapillary forces. From this study we generate scaling laws that govern
the influence of applied magnetic fields on convection. Thus, the influence of various
flow parameters are isolated, and succinct relationships for the influence of magnetic
field on convection are obtained. A linear stability analysis was carried out in the case
of an infinite horizontal layer with upper free surface. The results show essentially that
the vertical magnetic field stabilizes the flow by increasing the values of the critical
Grashof number at which the system becomes unstable and modifies the nature of
the instability. In fact, the range of Prandtl number over which transverse oscillatory
modes prevail shrinks progressively as the Hartmann number is increased from zero
to 5. Therefore, longitudinal oscillatory modes become the preferred modes over a
large range of Prandtl number.

1. Introduction
In this paper we focus on the flow of an electrically conducting liquid metal con-

tained in a differentially heated cavity subjected to a constant magnetic field. The flow
which develops is of both buoyancy and thermocapillary origin. Buoyancy convec-
tion arises from the thermally induced density gradients and thermocapillary-driven
flows from the thermally induced surface tension gradients at the free-liquid surface.
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The flow field in such a configuration is of interest in a number of technological
applications such as, for example, the production of crystals.

It has been recognized for many years that beyond a certain temperature difference
between the vertical walls of the container a time-dependent flow (oscillatory then
turbulent) appears. See for example Hurle, Jakeman & Johnson (1974), Carruthers
(1977), Ben Hadid & Roux (1992), Pratte & Hart (1990), Hung & Andereck (1988,
1990). These time-dependent flows give rise to a fluctuating temperature field which
in turn produces oscillatory crystal growth responsible for the microscopically non-
uniform distribution of dopant in the crystal. When a magnetic field is imposed on an
electrically conducting liquid, the liquid motion is reduced because of the interaction
between the imposed magnetic field and the induced electric current. Therefore,
the use of a magnetic field is considered to be an effective means for reducing or
eliminating these undesired effects in electrically conducting liquids (see the review
paper by Series & Hurle 1991), and thereby represents a promising method to improve
crystal quality.

There are a number of modelling results on the effect of a constant magnetic
field. Oreper & Szekely (1983, 1984), Motakef (1990) and Kim, Adornato & Brown
(1988) used numerical simulation in a vertical Bridgman–Stockbarger configuration
and demonstrated the dissipative influence of the applied magnetic field on the
intensity of convection in the melt. More recently, Alboussière, Garandet & Moreau
(1993) investigated analytically the influence of the cylinder cross-section shape on
the core flow structure at large Hartmann number and concluded that with electric
insulating walls, the magnetically damped convective velocity varies as Ha−2 when
the cross-section has a horizontal plane of symmetry, while it varies as Ha−1 for
non-symmetrical shapes. In the electrically conducting boundary case the trend of
the velocity is of order Ha−2 and does not depend on the cross-section shape. A
quantitative analysis of how an externally imposed magnetic field affects the impurities
distribution was presented by Kaddeche, Ben Hadid & Henry (1994). Baumgartl
& Müller (1992) investigated numerically the three-dimensional buoyancy-driven
convection in a cylindrical geometry subjected to a constant magnetic field. Ozoe &
Okada (1989) give numerical results for a differentially heated cubic box under the
action of external magnetic fields.

The general equations governing the magnetohydrodynamic (MHD) flow are de-
veloped in §2 where particular mention is made of the Lorentz force term. In order to
understand the full two-dimensional MHD flow behaviour a numerical model based
upon the solution of the two-dimensional Navier–Stokes equations is adopted. The
full set of MHD equations are nonlinear and prevent any sort of analytical progress
being made on them. However, if certain simplifying assumptions are made, then it
should be possible to find solutions which will exhibit realistic flow behaviour. The
analytical model presented in §3 does serve to elucidate the likely behaviour of a
fully developed flow in the case of an extended cavity A�1 (A = length/height). An
analytical treatment for the turning flow region is also proposed. A scaling analysis
is presented in §4. In §5 the dependence of the velocity on the governing parameters
(i.e. Grashof number Gr, Hartmann number Ha, and Reynolds number Re) is exam-
ined by use of direct numerical simulation and comparisons are made with derived
analytical results. Finally, a résumé of the results obtained from the stability analysis
of the extended cavity approximation is provided in §6.
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2. Mathematical model and boundary conditions
2.1. Governing equations

A brief summary of the relevant equations used to describe laminar magnetohy-
drodynamic flow in a Bridgman configuration is now presented. The motion of an
electrically conducting liquid in the presence of a magnetic field will give rise to a
Lorentz force which acts on the fluid so that an extra body force term F appears
in the Navier–Stokes equation. The Lorentz force term F in such a flow is given as
follows:

F = ρeE + J × B, (2.1)

where ρe is the electric charge density of the fluid, E = −∇φ the electric field intensity,
φ the electric field potential, J the electric current density and B the magnetic field.
On the other hand, the electric current density is described by Ohm’s law for a moving
medium:

J = ρev + σe(−∇φ+ v × B), (2.2)

where σe is the electric conductivity and v the fluid velocity vector. In addition to
the applied magnetic field B0, there is an induced magnetic field produced by the
electric currents in the liquid metal. We assume in the following that the walls of the
cavity are electric insulators and that the magnetic Reynolds number Rem = PrmRed
is sufficiently small that the induced magnetic field is negligible with respect to
the imposed constant magnetic field B0. Red is the dynamic Reynolds number,
Prm = µσeν the magnetic Prandtl number, µ the magnetic permeability and ν the
kinematic viscosity. As ρe is very small in liquid metal, we can neglect the terms ρeE
and ρev. For a Newtonian fluid the equations of motion and heat transport assuming
the Boussinesq approximation may be written as:

∇ · v = 0, (2.3)

∂v

∂t
+ (v · ∇)v = − 1

ρ0

∇p+ ν∇2v − [1− β(T − T0)]gez +
1

ρ0

J × B0, (2.4)

∂T

∂t
+ (v · ∇)T = κ∇2T , (2.5)

where p denotes the pressure, β is the coefficient of thermal volumetric expansion, κ
the thermal diffusivity and T0 a reference temperature. Note that in equation (2.5) the
viscous dissipation and Joule heating are neglected. Finally, from the conservation of
electric current it follows that

∇ · J = 0. (2.6)

Equations (2.2) and (2.6) give an equation for φ:

∇2φ = ∇ · (v × B0). (2.7)

2.2. The two-dimensional model

We consider a rectangular finite cavity of height H and length L (figure 1) filled with
a low-Prandtl-number fluid of high conductivity. The upper horizontal boundary
can be rigid, free or subject to a surface tension gradient. The flow developed in
the fluid due to the horizontal thermal gradient resulting from differentially heated
sidewalls is laminar. The surface tension on the free surface is a linear function of
temperature and is given by σ = σ0[1− γ(T − T0)] where γ = −(1/σ0)(∂σ/∂T ). In a
two-dimensional formulation, if B0 is parallel to the plane of the cavity, (2.7) gives
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Figure 1. Schematic of the rectangular cavity. The left-hand and right-hand sidewalls are
respectively cooled and heated.

∇2φ = 0, valid in the melt as well as in the neighbouring solid media. Since there is
always somewhere around the enclosure an electrically insulating boundary on which
(∂φ/∂n) = 0, the unique solution is ∇φ = 0, which implies that the electric field
vanishes everywhere. Then J reduces to σe(v×B0) and the Lorentz force corresponds
to a damping factor F = σe(v × B0)× B0.

The two-dimensional conservation equations of momentum and heat as used in
the numerical procedure are made dimensionless using H , H2/ν, ν/H and ∆T/A
as scale quantities for, respectively, length, time, velocity and temperature. In these
expressions, A = L/H is the aspect ratio and ∆T = Th − Tc the difference in
temperature between the vertical sidewalls where Th and Tc are the temperatures
of the hot and cold walls, respectively. The dimensionless temperature θ is then
θ = A(T − Tc)/∆T , the vertical coordinate z is taken between −0.5 and 0.5 and the
applied magnetic field is considered as purely vertical. The governing dimensionless
equations in the melt in terms of a vorticity and stream function (ζ and ψ) formulation
are

∂ζ

∂t
+

[
u
∂ζ

∂x
+ w

∂ζ

∂z

]
=

[
∂2ζ

∂x2
+
∂2ζ

∂z2

]
− Gr

∂θ

∂x
−Ha2 ∂u

∂z
, (2.8)[

∂2ψ

∂x2
+
∂2ψ

∂z2

]
− ζ = 0, (2.9)

with

u =
∂ψ

∂z
, (2.10)

w = −∂ψ
∂x
. (2.11)

The heat transport equation is then

∂θ

∂t
+

[
u
∂θ

∂x
+ w

∂θ

∂z

]
=

1

Pr

[
∂2θ

∂x2
+
∂2θ

∂z2

]
. (2.12)

The associated boundary conditions are

x = 0 : ψ =
∂ψ

∂z
=
∂ψ

∂x
= 0, θ = 0, (2.13a)
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x = A : ψ =
∂ψ

∂z
=
∂ψ

∂x
= 0, θ = A, (2.13b)

z = −0.5 : ψ =
∂ψ

∂z
=
∂ψ

∂x
= 0, (2.13c)

and, for the rigid-rigid case,

z = 0.5 : ψ =
∂ψ

∂z
=
∂ψ

∂x
= 0, (2.13d)

whereas for the free surface case with surface tension effects,

z = 0.5 : ψ =
∂ψ

∂x
= 0, ζ =

∂2ψ

∂z2
= −Re

∂θ

∂x
. (2.13e)

On the horizontal boundaries we consider two kinds of thermal conditions, either
θ = x (conducting) or (∂θ/∂z) = 0 (insulating).

The dimensionless parameters appearing in equations (2.8)–(2.13) are the Grashof
number Gr = gβ∆TH4/Lν2, the Reynolds–Marangoni number (called Reynolds
number in the following) Re = (−∂σ/∂T )∆TH2/Lρν2, the Prandlt number Pr = ν/κ
and the Hartmann number Ha = |B0|H(σe/ρν)

1/2.

3. Theoretical solutions
Theoretical solutions will be found for an infinite horizontal layer subjected to a

horizontal temperature gradient. In such a two-dimensional layer the flow can be
divided into three horizontal adjacent regions: the central region where the flow
is horizontal and invariant, and the two end regions at ± infinity where the flow
turns around. This simple model is a first tool for studying the interaction between
the Lorentz force and the different driving forces of convection, i.e. buoyancy and
thermocapillarity. A considerable simplification of the governing equations (2.8)–
(2.12) is obtained. The rigid–rigid case has been treated by Garandet, Alboussière &
Moreau (1992). We focus our study on the case with a free surface which can also be
subjected to a surface tension force.

3.1. One-dimensional mathematical model for the central region

The dimensionless horizontal temperature gradient (∂θ/∂x) can be considered as
constant and equal to one. The temperature is then taken as θ(x, z) = x+ θp(z). With
these assumptions and in a one-dimensional approximation, (2.8)–(2.12) reduce to

∂3u

∂z3
−Ha2 ∂u

∂z
− Gr = 0, (3.1)

∂2θp

∂z2
= Pr u. (3.2)

The solution of equation (3.1) for the velocity is of the form

u(z) =
C1

Ha
sinh(Ha(z + 0.5)) +

C2

Ha
cosh(Ha(z + 0.5))− Gr

Ha2
(z + 0.5) + C3. (3.3)

The coefficients C1, C2 and C3 are determined by using the boundary conditions
(u(z = −0.5) = 0 and (∂u/∂z) = −Re on the upper free surface, i.e. z = 0.5)
and the conservation of mass flow across any vertical plane in the liquid layer
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(
∫ 0.5

−0.5
u(z)dz = 0). We obtain the following three equations:

C2

Ha
+ C3 = 0, (3.4a)

C1 cosh(Ha) + C2 sinh(Ha)− Gr

Ha2
= −Re, (3.4b)

C1

Ha2
(cosh(Ha)− 1) +

C2

Ha2
sinh(Ha)− Gr

2Ha2
+ C3 = 0, (3.4c)

which give

C1 =
−HaK1 +K2S

S −HaC
, C2 =

K1 −K2C

S −HaC
, C3 =

−C2

Ha
,

with K1 = −Re +
Gr

Ha2
, K2 = K1 − 1

2
Gr, C = cosh(Ha) and S = sinh(Ha).

Concerning the temperature, the solution θp to equation (3.2) is obtained by two
successive integrations with respect to z: θp(z) = A+ Bz + Pr f(z), with

f(z) =
1

Ha2

(
C1

Ha
sinh(Ha(z + 0.5)) +

C2

Ha
cosh(Ha(z + 0.5))− C2

Ha

)
−
(
C1

Ha2
(z + 0.5) +

Gr

6Ha2
(z + 0.5)3 +

C2

2Ha
(z + 0.5)2

)
, (3.5)

where A and B are integration constants. Depending on the thermal boundary
conditions, different solutions can be obtained:
conducting conditions: θp(z) = Pr[f(z)− (z + 0.5)f(0.5)],

insulating conditions: θp(z) = Pr[f(z)−
∫ 0.5

−0.5
f(z)dz].

In the low-Ha limit, power series expansions of these expressions for the velocity
and the temperature give the characteristic profiles obtained in the absence of a
magnetic field. In the high-Ha range an asymptotic expression, valid in the whole
cavity, can be found for the velocity:

u(z) = − Gr

Ha2
z − K1

Ha2
+
K1

Ha
e−Ha(−z+0.5) +

K2

Ha2
e−Ha(z+0.5). (3.6)

This gives the following simplified expressions:
in the core,

u(z) = − Gr

Ha2
z +

Re

Ha2
+ O(Ha−4), (3.7a)

and at the upper surface,

u(0.5) = −Re

Ha
− Gr

2Ha2
+

Re

Ha2
+ O(Ha−3). (3.7b)

With buoyancy forces (Gr 6= 0), the influence of the Hartmann number Ha is displayed
in figure 2 where it is apparent that the profile of the horizontal component of velocity
tends to a constant vertical gradient (with a Ha−2 variation) almost everywhere in
the cavity except in the thin Hartmann layer of thickness Ha−1 near the bottom wall
where the classical Hartmann exponential profile holds. With thermocapillary forces
(Re 6= 0), the horizontal component of the velocity, displayed in figure 3, has a large



Convection under constant magnetic field. Part 1. Two-dimensional flow 29

–0.5

–0.3

–0.1

0.1

0.3

0.5

V
er

ti
ca

l c
oo

rd
in

at
e

–2.0 –1.0 0 1.0 2.0

Ha = 50

Ha = 70

Ha = 100

Horizontal velocity

Figure 2. Vertical profiles of the horizontal velocity. Analytical solution (3.3) in the rigid–free case
for pure buoyancy effect (Gr = 104, Re = 0) for three values of the Hartmann number (Ha = 50,
70 and 100).
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Figure 3. As figure 2 but for pure thermocapillary effect (Gr = 0, Re = 104).

value at the surface (Ha−1 variation), whereas the recirculation in the core occurs in
almost the whole volume with a constant profile (Ha−2 variation), a thin Hartmann
layer allowing the transition to the zero flow velocity at the bottom wall. Note that
most of these features are clearly expressed through the expression (3.6). When both
forces are combined, an intermediate behaviour is obtained depending on the value
of the Bond number Bd = Gr/Re. The variations of the horizontal velocity profile
as a function of the magnetic field intensity (given by Ha) are shown in figure 4 for
two cases corresponding to the combined action of buoyancy forces (Gr = 6000) and
thermocapillary forces (Re = 104 and 102). Noteworthy is the variation of the velocity
profiles as Re is increased, corresponding to an increase of the Bond number from
0.6 to 60. Differences are particularly noticeable when Ha values are high.

In fact, equation (3.1) shows that in the core where the viscosity is negligible, the
curl of the Lorentz force with magnitude −Ha2(∂u/∂z) vanishes in the case of surface
forces whereas it is constant in the case of buoyancy forces. This leads to the two
types of profiles mentioned above: an even velocity profile with constant value and
an odd profile with constant gradient, respectively.
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Figure 4. Vertical profiles of the horizontal velocity. Analytical solution (3.3) in the rigid–free
case for buoyancy and thermocapillary effects for Gr = 6× 103 and three values of the Hartmann
number (Ha = 50, 70 and 100): (a) Re = 104 (Bd = 0.6); (b) Re = 102 (Bd = 60).

The asymptotic expression obtained for the temperature in the high-Ha range is

f(z) = − Gr

6Ha2
(z + 0.5)3 +

K2

Ha2

(
− (z + 0.5)2

2
+

(z + 0.5)

Ha
− 1

Ha2

)
+

K1

Ha3
e−Ha(−z+0.5) +

K2

Ha4
e−Ha(z+0.5). (3.8)

This gives the following simplified expressions:
in the core,

f(z) =
Gr

2Ha2

(
(z + 0.5)2

2
− (z + 0.5)3

3

)
+

Re

Ha2

(z + 0.5)2

2
+ O(Ha−3), (3.9a)

and at the upper surface,

f(0.5) =
Gr

12Ha2
+

Re

2Ha2
+ O(Ha−3). (3.9b)

From relations (3.9) it is clear that the temperature profiles are all of O(Ha−2).
These profiles, which are displayed in figure 5 for both conducting and insulating
thermal conditions, correspond to cubic curves with buoyancy forces (figure 5a, b) and
parabolic curves with thermocapillary forces (figure 5c, d). From the latter we notice
that even with surface forces there is a continuity between the results in the core
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Figure 5. Vertical profiles of the temperature given by f(z). Analytical solution (3.5) in the
rigid–free case for Ha = 50, 70 and 100, for buoyancy or thermocapillary effect and different
thermal boundary conditions. (a) Conducting case, Gr = 104, Re = 0; (b) insulated case, Gr = 104,
Re = 0; (c) conducting case, Gr = 0, Re = 104; (d) insulated case, Gr = 0, Re = 104.

and at the surface. The temperature profiles are mainly affected by the core velocity
and the strong surface velocity of O(Ha−1) has no important effect on them. In fact,
during the two integrations performed to obtain θp, the dominant term of O(Ha−1)

for the surface velocity leads to only a negligible term of O(Ha−3) in the temperature.

3.2. The turning flow region

Here we consider the analytical calculation of the turning flow by considering a
semi-infinite cavity from x = 0 (corresponding to one of the endwalls) to infinity with
a fluid layer between z = −0.5 and 0.5. If we neglect the inertial terms, which can be
expected to be a good approximation in the high-Ha range as the velocities have just
been found to decrease strongly, the equation of motion (2.8) can be written in the
following form: [

∂2ζ

∂x2
+
∂2ζ

∂z2

]
− Gr

∂θ

∂x
−Ha2 ∂u

∂z
= 0. (3.10)

We now consider that the temperature gradient is still constant in these recirculating
zones, i.e. the convective heat transfer is negligible. This hypothesis is realistic in
the high Ha range, especially in the case of a low Prandtl number fluid. Recasting
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equation (3.10) using the definition of the vorticity (2.9), we obtain the following
equation for ψ:

∇4ψ −Ha2 ∂
2ψ

∂z2
= Gr. (3.11)

The associated boundary conditions are those defined in (2.13) for x = 0, z = −0.5
and z = 0.5. Moreover the different variables must be finite as z tends towards
infinity.

We can seek a solution in the form of a Fourier series expansion in z. In order to
satisfy the boundary condition for the thermocapillary case, we must add a polynomial
expansion in z. The expansion is then taken as follows:

ψ =

∞∑
j=0

Vj(x) cos(αjz) +

∞∑
k=0

Wk(x) sin(γkz)− 1
6
Re((z2 − 1

4
)(z + 3

2
)), (3.12)

with αj = (2j + 1)π, j = 0,∞ and γk = 2(k + 1)π, k = 0,∞.
Equation (3.12) satisfies all the conditions at the horizontal boundaries, except the
no-slip condition at z = −0.5, i.e. the Hartmann layer near the bottom wall is not
considered. This approximation is not too drastic as the Hartmann layer has here a
passive nature (the electric current in the core is not forced to close in this layer).
Moreover, the classical exponential variation of the velocity distribution within the
Hartmann layers (see (3.6)) could be used to satisfy the realistic no-slip condition, at
least when Ha is large.

If we put this expansion into equation (3.11), expand the polynomial in the sine
and cosine bases, and use the orthogonality of the sine and cosine functions, we
obtain equations for Vj and Wk that have to be solved with the appropriate boundary
conditions. After some tedious calculations which are presented in Appendix, we
obtain the solutions for ψ, u and w, given for ψ by (3.12), and for u and w by the
following expressions:

u =
∂ψ

∂z
= −

∞∑
j=0

Vj(x)αj sin(αjz) +

∞∑
k=0

Wk(x)γk cos(γkz)− 1
6
Re((z2 − 1

4
) + 2z(z + 3

2
)),

(3.13)

w = −∂ψ
∂x

= −
∞∑
j=0

V ′j (x) cos(αjz)−
∞∑
k=0

W ′
k(x) sin(γkz). (3.14)

with

Vj(x) = λje
−ajx cos(bjx) + µje

−ajx sin(bjx) +
gj

(α4
j + Ha2α2

j )
,

V ′j (x) = −e−ajx(bjλj + ajµj) sin(bjx),

and

Wk(x) = νke
−ckx cos(dkx) + πke

−ckx sin(dkx) +
hk

(γ4
k + Ha2γ2

k )
,

W ′
k(x) = −e−ckx(dkνk + ckπk) sin(dkx),

where

λj = Vj0 −
gj

(α4
j + Ha2α2

j )
, µj =

aj

bj
λj ,
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and

νk = Wk0 −
hk

(γ4
k + Ha2γ2

k )
, πk =

ck

dk
νk.

We have also

Vj0 = −Re
2(−1)j

α3
j

and Wk0 = −Re
2(−1)k

γ3
k

,

with

gj = (−Ha2 1
2
Re + Gr)

4(−1)j

αj
and hk = −Ha2Re

2(−1)k

γk
.

Finally,

aj =
1√
2

(
α2
j + αj(Ha2 + α2

j )
1/2
)1/2

and bj =
1√
2

(
−α2

j + αj(Ha2 + α2
j )

1/2
)1/2

,

ck =
1√
2

(
γ2
k + γk(Ha2 + γ2

k )
1/2
)1/2

and dk =
1√
2

(
−γ2

k + γk(Ha2 + γ2
k )

1/2
)1/2

.

We can derive the expressions valid in the high-Ha range. If we suppose that Ha�αj
and Ha� γk , that is, more precisely, that Ha is greater than each αj and γk which
plays a significant role in the expansion, we can write

aj ∼ bj ∼ ( 1
2
Haαj)

1/2 and ck ∼ dk ∼ ( 1
2
Haγk)

1/2.

Moreover

Vj∞ =
gj

α4
j + Ha2α2

j

= −Re
2(−1)j

α3
j

+ Gr
4(−1)j

α3
jHa2

+ Re
2(−1)j

αjHa2
+ O(Ha−4),

Wk∞ =
hk

γ4
k + Ha2γ2

k

= −Re
2(−1)k

γ3
k

+ Re
2(−1)k

γkHa2
+ O(Ha−4),

and

µj ∼ λj = Vj0 − Vj∞, πk ∼ νk = Wk0 −Wk∞.

In order to check the consistency of our approach with respect to the solution in the
central region calculated in §3.1, we can express the results as x tends towards infinity
in the high-Ha range. Since Vj(x)→ Vj∞ and Wk(x)→Wk∞, we have

ψ =

∞∑
j=0

(
−Re

2(−1)j

α3
j

+ Gr
4(−1)j

α3
jHa2

+ Re
2(−1)j

αjHa2

)
cos(αjz)

+

∞∑
k=0

(
−Re

2(−1)k

γ3
k

+ Re
2(−1)k

γkHa2

)
sin(γkz)− 1

6
Re((z2 − 1

4
)(z + 3

2
)) + O(Ha−4).

By using the expansions of the polynomials given in the Appendix, we can find the
expressions corresponding to the above expansions:

ψ∞ ∼
−Gr

2Ha2
(z2 − 1

4
) +

Re

Ha2
(z + 1

2
),

and

v∞ ∼ −z
Gr

Ha2
+

Re

Ha2
. (3.15)
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(a) (b) (c)

Figure 6. Streamlines giving the structure of the turning flow near the endwalls. Analytical solution
(3.12) obtained by means of Fourier expansion in the rigid–free case for pure buoyancy effect
(Gr = 104, Re = 0) and (a) Ha = 10; (b) Ha = 50; (c) Ha = 100.

(a) (b) (c)

Figure 7. As figure 6 but for pure thermocapillary effect (Gr = 0, Re = 104).

We get then an expression for v∞ identical to the one obtained in the core with the
monodimensional model (3.7a). Moreover, by directly using the expressions (3.12)
and (3.13) for large x with enough terms in the expansion, we obtain streamfunction
and velocity profiles in the high-Ha range approximately similar to those of the
monodimensional model, except for the Hartmann layer at the bottom of the cavity
which is not taken into account in the present model.

The structure of the turning flow near the endwalls is displayed in figure 6 for the
pure buoyancy case (Gr = 104, Re = 0), and in figure 7 for the pure thermocapillary
case (Gr = 0, Re = 104) by means of streamlines for three values of the Hartmann
number, 10, 50 and 100. In the buoyancy case, figure 6 shows the decrease of the
boundary layer near the endwall as Ha is increased, and the appearance of a small
recirculation cell at the centre of the turning flow. In the thermocapillary case,
figure 7 shows, as will be confirmed by the direct numerical simulation results, a
marked asymmetry of the flow with the formation of a fluid layer at the surface
which becomes thinner and thinner as the Hartmann number is increased. Near the
endwall, a boundary layer is formed whose thickness is variable with the depth for
high values of Ha. The structure of the turning flow near the end of the cavity for
three Bond numbers Bd = 60, 6 and 0.6 is displayed in figure 8 for fixed Grashof
number (Gr = 6 × 103) and Hartmann number (Ha = 100). From the figure it is
clear that the flow structures for the two limit cases, i.e. Bd = 60 and 0.6, are almost
similar to the pure buoyancy case and pure thermocapillary case, respectively, while
Bd = 6 gives an intermediate structure.



Convection under constant magnetic field. Part 1. Two-dimensional flow 35

(a) (b) (c)

Figure 8. As figure 6 but for Ha = 100,Gr = 6× 103 with buoyancy and thermocapillary effects:
(a) Re = 102 (Bd = 60); (b) Re = 103 (Bd = 6); (c) Re = 104 (Bd = 0.6).

4. Scaling analysis
The characteristic behaviours for large Ha can also be obtained by a scaling

analysis. We can make use of the vorticity equation (3.10) with (∂θ/∂x) = 1 or
of the equation of ψ (3.11). For a shallow cavity, in the central region the flow is
unidirectional (w = 0) and independent of x.

4.1. Boundary layers

We can derive the characteristic lengths corresponding to the Hartmann layer (δHa)
and to the parallel layer (δ‖). For that, we use (3.11) and, as the term on the right-hand
side does not depend on boundary layer thickness, we make the two terms of the
left-hand side equal.

For the Hartmann layers along the horizontal boundaries, the relevant length scale
for both viscous and magnetic terms is δz = δHa, δx being of order unity. We get then
(1/δ4

Ha) ∼ (Ha2/δ2
Ha), and so

δHa ∼ Ha−1. (4.1)

For the parallel layers along the vertical boundaries, the relevant length scale for
the viscous term is δx = δ‖ and that for the magnetic term is δz of order unity. We

get then (1/δ4
‖) ∼ (Ha2/1), and so

δ‖ ∼ Ha−1/2. (4.2)

4.2. Rigid–rigid cavity

In the central region, the motion is driven by buoyancy-induced pressure gradient and
the velocity profile, u, has a Z-like shape (Garandet et al. 1992). Outside the boundary
layers of size δz = δHa (i.e. −0.5 + δz 6 z 6 0.5 − δz), the viscous effects are small
and the dominant balance occurs between the Lorentz term and the buoyancy term,
which leads (with (∂u/∂z) ∼ (u/1)) in (3.10) to a horizontal velocity scale u ∼ GrHa−2.

Near the endwalls, the fluid flows with a mean vertical velocity w throughout a
layer of thickness δx = δ‖. Since there is only one global circulation roll, this heated
fluid will travel horizontally along the top wall of the cavity in a layer of thickness
1/2 (or H/2 in dimensional form). The continuity between the vertical and horizontal

circulations gives w δx ∼ u, and so w ∼ GrHa−3/2.
From the above analyses, we can state that for large Hartmann numbers Ha > 10,

the maximum values of u and w are

umax ∼ GrHa−2 (4.3)
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and

wmax ∼ GrHa−3/2, (4.4)

and the associated length scales on z and x are, respectively, 1 and Ha−1/2. Considering
the equation in primitive variables, the Lorentz force (Ha2u) is then of order Gr, and
the leading contribution to the inertial term (v · ∇)v varies like Gr2Ha−3. A condition
for inertia term to be negligible thus is

Ha3�Gr. (4.5)

4.3. Rigid–free cavity

In the pure buoyancy case, the characteristic variations are similar to those of
the rigid–rigid cavity and can be obtained by analogous considerations. The only
difference is the absence of a real Hartmann layer at the upper free boundary.

In the pure thermocapillary case, the entire flow is driven by temperature-induced
surface tension gradients at the upper surface. Large velocities are then created at
this upper surface and drive the subsurface layer of thickness δz . The scaling law at
this upper surface is determined by the balance between shear and thermocapillary
forces as expressed by the thermocapillary boundary condition (2.13e). Thus, we
obtain u ∼ Re δz .

In the subsurface layer, for large Hartmann numbers the correct balance is between
viscous and magnetic forces. Inserting Gr = 0, (∂2ζ/∂x2) = 0 and ζ ∼ u/δz in (3.10),
gives δz ∼ Ha−1 and so u ∼ ReHa−1, establishing that the upper circulation will occur
inside the Hartmann layer.

The scaling law for the constant returning core velocity which applies on almost
the whole height of the cavity (except the boundary layers) can be obtained from the
mass conservation equation. We find uret ∼ ReHa−2.

Near the endwalls, the fluid flows with a mean vertical velocity w throughout
a layer of thickness δx = δ‖. The continuity with the horizontal circulations give

w ∼ ReHa−3/2.
Finally, for large Hartmann numbers, the maximum values of the horizontal and

vertical velocities are, respectively,

umax ∼ ReHa−1 (4.6)

and

wmax ∼ ReHa−3/2, (4.7)

and the associated length scales on z and x are, respectively, Ha−1 and Ha−1/2. The
Lorentz force is then of order ReHa, and the leading contributions to the inertial
terms vary like Re2Ha−3/2. The condition for inertial terms to be negligible thus
becomes

Ha5/2�Re. (4.8)

5. Numerical results
The numerical scheme employed is based upon a highly accurate method which has

proven effective for classical hydrodynamical problems. The technique employed to
solve the system of non-dimensionalized equations (2.8)–(2.13) was the culmination
of earlier work on accurate numerical representations of Navier–Stokes and energy
equations (Roux et al. 1979 and Ben Hadid 1989). The main features of this numerical
technique are:
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(a)

(b)

(c)

(d)

Figure 9. Streamlines giving the structure of the flow in the cavity. Results obtained in the
rigid–rigid case for buoyancy effect (Gr = 2 × 104) and (a) Ha = 0; (b) Ha = 5; (c) Ha = 10;
(d) Ha = 100.

(i) an alternating direction implicit (ADI) method for solving the finite-difference
equations (2.8), (2.9) and (2.12),

(ii) a second-order central differentiation for spatial derivatives for (2.8) and (2.12),
(iii) a fourth-order compact Hermitian method for (2.9).

The Hermitian approach is based upon the use of the variables, the first derivatives
and the second derivatives as unknowns. The block-tridiagonal matrix inversion
algorithm (Thomas algorithm), resulting from the use of high-order Hermitian finite-
difference relationships, was employed for (2.9). The vorticity at the boundary
was calculated with the third-order relationship (known in the literature as Hirsh’s
relationship) and already used for natural convection problems by Roux et al. (1979)
and Ben Hadid (1989). The convergence criterion was based on the vorticity variation
at the boundary and a solution of the system of equations (2.8)–(2.13) is considered
to be converged when the variation of the (reduced) vorticity at the boundary is less
than 0.01%. The mesh used to solve the problem is generated by the Thompson
technique (Thompson, Thames & Mastin 1974). We used for calculations in cavities
with an aspect ratio A = 4 a 31 × 101 symmetric grid for the rigid–rigid case and a
35× 121 grid for the rigid–free and thermocapillary cases. In both cases the grid was
concentrated near the walls and the free surface. The grid size is gradually increased
away from the boundaries with the finest grid size being about three and half times
smaller than the one corresponding to the uniform grid. Note that this grid refinement
ensures that the Hartmann layers are well resolved in all cases.

The two-dimensional results concern a rigid–rigid cavity and a cavity with a free
surface and are presented by plotting streamlines and velocity profiles. In the present
study the Prandtl number was constant and equal to 0.01, characteristic of liquid
metals and semiconductors. In a cavity with a free surface the fluid flow is driven by
the combined action of buoyancy and thermocapillary forces. Each of these two cases
of buoyancy-driven flow and thermocapillary-driven flow is considered separately. We
also analyse their combined effects in terms of Bond number.
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Figure 10. Vertical profiles of the normalized horizontal velocity at mid-length of the cavity. Results
obtained by numerical simulation in the rigid–rigid case for buoyancy effect (Gr = 2 × 104) and
Ha = 0, 5, 50 and 100.
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Figure 11. Horizontal profiles of the normalized vertical velocity at mid-height of the cavity.
Results obtained by numerical simulation in the rigid–rigid case for buoyancy effect (Gr = 2× 104)
and Ha = 0, 5, 50 and 200.

5.1. Rigid-rigid cavity

In this case, the fluid flow is generated by buoyancy forces due to the temperature
gradients in the liquid resulting from the lateral heating. The calculations were carried
out for Grashof numbers ranging from 104 to 2.0 × 104, and various values of the
Hartmann number, 0 6 Ha 6 200. In this range of Grashof numbers the flow for
Ha = 0 is expected to be steady with intense convective rolls (see Roux 1990; Ben
Hadid & Roux 1990). Figure 9(a–d) shows the streamlines patterns at Hartmann
numbers of 0, 5, 10 and 100, respectively. For a zero Hartmann number (figure 9a),
there is an intense circulation loop in the central region and two smaller ones near
the endwalls. As the Hartmann number is increased to 5, the small rolls disappear
and the central circulation is seen to spread gradually over the whole cavity. On a
further increase in Hartmann number, the streamlines in the central region become
more and more horizontal whereas they accumulate near the endwalls indicating the
existence of a boundary layer at these walls (figure 9d). Boundary layers are also
formed adjacent to the horizontal walls of the cavity.

The horizontal and vertical normalized velocity profiles are shown, respectively,
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Figure 12. Plots of the maxima of the horizontal velocity (a) and of the vertical velocity (b) as
a function of the Hartmann number. The velocities are non-dimensionalized by νGr/H . Results
obtained in the rigid–rigid case for various Grashof numbers from Gr = 3 × 103 to Gr = 2 × 104.

For large Ha, Ha−2 and Ha−3/2 variations are depicted respectively for the horizontal and vertical
velocity.

in figures 10 and 11. It is clear from figure 10 that the horizontal velocity which
was observed to be horizontally invariant at large Ha (figure 9) possesses profiles
which are more and more linear with respect to the vertical coordinate as Ha is
increased. The vertical velocity profiles show the progressive disappearance of the
vertical velocity in the major part of the cavity except near the endwalls. In these
regions, the two small recirculations already mentioned in the analytical calculation
(§3.2) are clearly visible.

It is also clear that the use of a magnetic field can strongly decrease the flow
intensity, but cannot completely inhibit fluid motions. The plot of the maximum of
the velocity as a function of the Hartmann number is displayed in figure 12(a, b). After
an initial transient variation, the curves in log-log coordinates attain an asymptotic
linear decrease at Ha around 10. Beyond this point the magnetic damping responsible
for the great reduction of the convective flow is fully effective. In this domain
(Ha > 10), umax and wmax are shown to fit fairly well respectively the relations (4.3)
and (4.4) obtained previously by scaling analysis.

The temperature distribution given in figure 13 shows that convection does not play
an important role in the heat transfer which is of conductive type when the Hartmann
number is increased over Ha = 20. It can be observed that as Ha is increased the
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(a)

(b)

(c)

Figure 13. Isotherm lines giving the temperature distribution in the cavity. Results obtained in the
rigid–rigid case for buoyancy effect (Gr = 2× 104) and (a) Ha = 0; (b) Ha = 10; (c) Ha = 20.

(a)

(b)

(c)

Figure 14. Streamlines giving the structure of the flow in the cavity. Results obtained in the
rigid–free case for pure buoyancy effect (Gr = 104, Re = 0) and (a) Ha = 0; (b) Ha = 10;
(c) Ha = 100.

isotherm-lines which are distorted in the absence of magnetic field (figure 13a) become
gradually straightlines (see figure 13c).

5.2. Rigid–free cavity

The calculations of pure buoyancy-driven flow predicted that the primary cell of the
circulation is drawn toward the cold wall as the Grashof number is increased, and that
for sufficiently high values of Gr, for instance Gr = 104 (see figure 14a), a secondary
cell develops. The flow structures displayed in figure 14(a–c) for three Hartmann
numbers show that with the increase of Ha the secondary circulation vanishes and
the primary one expands (figure 14b). When Ha = 100 (figure 14c) the circulation is
less vigorous but extends over the whole cavity, giving a more and more symmetric
flow structure similar to that obtained with rigid walls except that there is no real
Hartmann layer near the upper free surface. In fact, as can be seen from equation
(3.6), we can consider that we have a weaker type of Hartmann layer which involves
a rapid change (exponential variation) in stress to give the no-stress condition at the
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(a)

(b)

(c)

Figure 15. As figure 14 but for pure thermocapillary effect (Gr = 0, Re = 104).

free surface. Furthermore, the characteristic behaviour of the two components of the
velocity for large values of Ha are similar to those obtained in the rigid–rigid case.

In the pure thermocapillary case the flow structure at Re = 104 is shown in figure
15(a–c) for Ha = 0, 10 and 100. In the absence of a magnetic field (figure 15a) the
flow corresponds to a strong counterclockwise cell with the centre located near the
cold wall. At Ha = 10 (figure 15b), the strength of the flow decreases but the cellular
structure persists. Large Hartmann numbers (Ha = 100) decrease the flow strength
to the point that a single cell stretches to fill the whole cavity so that most of the
flow is perpendicular to the field and hence affected by it. The flow becomes more
and more antisymmetric with respect to the centre vertical line, and unidirectional
over most of the cavity except in the close vicinity of the vertical walls (figure 15c).
The most vigorous flow is limited to a small region near the free surface (subsurface
layer), whereas the returning flow occurs with a constant velocity over almost the
whole height of the cavity.

The maximum of the velocity as a function of the Hartmann number is plotted
in figure 16 where we can observe that for large values of Ha the maximum of the
horizontal velocity, umax, and the maximum of the vertical velocity, wmax, satisfy the
relations given by scaling analysis, respectively (4.6) and (4.7).

The effect of increasing the strength of the magnetic field in the case of a combined
buoyancy and thermocapillary-driven flow is evident in the flow structures shown in
figure 17(a–c) for three Bond numbers, Bd = 0.6, 6 and 60 for a fixed Hartmann
number, Ha = 100. Examination of these figures shows that the characteristics of
the final flow structures depend strongly on Bd. For Bd = 0.6 (figure 17a) the flow
pattern is in a qualitative sense similar to that of the pure thermocapillary case (figure
15c), while for Bd = 60 (figure 17c) the flow pattern compares favourably with that
of pure buoyancy-driven flow (figure 14c).

5.3. Comparison with the analytical results

The previous sections clearly show the large modifications of the flow structure
which occur under the action of a strong magnetic field. To illustrate further the
characteristics of these flows and verify the analytical approach, we will compare
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Figure 16. Plots of the maxima of the horizontal velocity (a) and of the vertical velocity (b) as
a function of the Hartmann number. The velocities are non-dimensionalized by νRe/H . Results
obtained in the thermocapillary case for various Reynolds numbers varying from Re = 103 to

Re = 1.5 × 104. For large Ha, Ha−1 and Ha−3/2 variations are depicted respectively for the
horizontal and vertical velocity.

(a)
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(c)

Figure 17. Streamlines giving the structure of the flow in the cavity. Results obtained in the
rigid–free case for Ha = 100,Gr = 6 × 103 with combined buoyancy and thermocapillary effects:
(a) Re = 104 (Bd = 0.6); (b) Re = 103 (Bd = 6); (c) Re = 102 (Bd = 60).
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Figure 18. Vertical profiles of the horizontal velocity at mid-length of the cavity. Comparison with
analytical solutions (3.3) in the rigid–free case for pure buoyancy effect (Gr = 104, Re = 0) and
Ha = 5, 10, 20 and 50.

characteristic velocity profiles for both buoyancy and thermocapillary cases obtained
from the two approaches, i.e. analytical and numerical.

For the central region the comparison will focus on the horizontal velocity profiles
at mid-length of the cavity. The analytical profiles are given by equations (3.3), (3.4).
In the pure buoyancy-driven flow situation (Gr = 104), the curves in figure 18 reveal
that the analytical velocity profiles are in good agreement with those obtained from
the results of the numerical simulations essentially for Ha > 10. For Ha = 5 the
analytical solution is shown to overestimate the velocity in the lower part of the curve,
precisely where the velocity reaches its maximum. In the pure thermocapillary case
we observe for Re = 100 (figure 19a) a very good agreement between the two results
for Ha > 5. However, for larger values of the Reynolds number, e.g. Re = 2 × 103

(figure 19b), a relatively large discrepancy between the two curves is found for Ha = 5,
whereas for Ha > 10 the analytical curves agree rather well with the numerical ones.

Quantitative comparisons for the turning flow can be made by comparing the
vertical velocity at mid-height of the cavity or the surface velocity for cavities with
a free surface. The analytical profiles are obtained using equations (3.14) and (3.13),
respectively. In the pure buoyancy-driven flow case (figure 20) this comparison
demonstrates that the analytical vertical velocity profiles agree with the numerical
results rather well for Ha > 20. In the pure thermocapillary case the surface velocity
profiles are displayed in figures 21(a) and 21(b), respectively, for Re = 102 and 2×103.
Here we observe that for Re = 102 and Ha > 10 (figure 21a) the curves are close
together. But for Ha = 5 small differences appear, i.e. the analytical results exhibit a
small undershoot for x < 0.5, and a small overshoot for x > 0.8. For Re = 2 × 103

(figure 21b) and for Ha 6 10, the analytical curves are quite different, essentially near
the rigid boundary (x = 0). For Ha = 20 a small undershoot remains evident for
x < 0.25, and a rather good agreement is only obtained for Ha = 30. Note that
all these limiting values of Hartmann number where a good comparison is obtained
between the two approaches are in agreement with relations (4.5) and (4.8) derived
by scaling analysis. For example, for Re = 2×103 the value of the Hartmann number
sufficient to neglect the inertia terms is (from (4.8)) Ha�20. Hence it is not surprising
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Figure 19. Vertical profiles of the horizontal velocity at mid-length of the cavity. Comparison with
analytical solutions (3.3) in the rigid–free case for pure thermocapillary effect (Gr = 0; (a) Re = 102,
(b) Re = 2× 103) and Ha = 5, 10 and 20.

that some differences in the velocity profiles are observed up to Ha = 20 since inertia
terms are neglected in the analytical approach.

6. Stability analysis
We consider in this section the stability of buoyancy-driven flow of an electrically

conducting fluid in a laterally unbounded layer confined by a solid wall at the
bottom and bounded by a stress-free surface (Re = 0) at the top. The layer is
subjected to a constant horizontal temperature gradient and to a homogeneous
vertical magnetic field. We assume that the aspect ratios are large enough and the
temperature gradient sufficiently small to obtain a parallel core flow. By increasing
the temperature gradient the parallel core flow becomes susceptible to a variety of
instabilities and, depending on the Prandtl number, both transverse and longitudinal
oscillatory modes are possible (Hart 1972, 1983; Laure & Roux 1987; Roux, Ben
Hadid & Laure 1989). The transverse modes correspond to rolls that have axes
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Figure 20. Horizontal profiles of the vertical velocity in the turning flow region at mid-height of
the cavity. Comparison with analytical solutions (3.14) in the rigid–free case for pure buoyancy
effect (Gr = 104, Re = 0) and Ha = 5, 10 and 20.

perpendicular to the parallel flow direction and then a two-dimensional flow structure
persists, whereas the cells axes for the longitudinal modes are aligned with the parallel
flow direction which leads to a global three-dimensional flow structure. For Prandtl
numbers less than 0.0045 oscillatory transverse instabilities are the dominant modes,
whereas the longitudinal oscillatory modes dominate in the range 0.0045 6 Pr 6 0.41.
More precisely, for the longitudinal instability, travelling waves become the preferred
modes for 0.0045 6 Pr 6 0.38, while standing waves prevail for 0.38 6 Pr 6 0.41
(Laure & Roux 1987). The linear stability results presented in this section extend
those cited above which were obtained without a magnetic field.

In order to analyse the linear stability of the basic state (3.3)–(3.5), the governing
equations (2.3-2.7) are linearized with respect to small perturbations (v′, p′, θ′, φ′).
The dimensionless linearized system of equations to be solved is

∇ · v′ = 0, (6.1)

∂v′

∂t
+ (U0 · ∇v′ + v′ · ∇U0) = −∇p′ + ∇2v′ + Grθ′ez + Ha2(−∇φ′ + v′ × ez)× ez, (6.2)

∂θ′

∂t
+ (U0 · ∇θ′ + v′ · ∇θ0) =

1

Pr
∇2θ′, (6.3)

∇2φ′ = (∇× v′)ez, (6.4)

where U0 = (u(z), 0, 0) and θ0(x, z) = x + Prf(z) are obtained from (3.3) and (3.5),
respectively. The non-dimensional form of system (6.1)–(6.4) results from the scaling
of lengths, velocities and temperature by the reference quantities given in §2.2. The
electric potential appearing in equations (6.2) and (6.4) has been scaled by ν|B0|. The
electric potential boundary conditions associated with equation (6.4) are

∂φ′

∂z

∣∣∣∣
z=−0.5

=
∂φ′

∂z

∣∣∣∣
z=0.5

= 0, (6.5)

corresponding to electrically insulated horizontal boundaries.
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Figure 21. Horizontal surface velocity in the turning flow region. Comparison with analytical
solutions (3.13) in the rigid–free case for pure thermocapillary effect (Gr = 0; (a) Re = 102,
(b) Re = 2× 103) and several values of the Hartmann number.

The perturbations can be written in normal modes of the form

v′(x, y, z) = v′(z)ei(hxx+hyy)+ωt, p′(x, y, z) = p′(z)ei(hxx+hyy)+ωt,

θ′(x, y, z) = θ′(z)ei(hxx+hyy)+ωt, φ′(x, y, z) = φ′(z)ei(hxx+hyy)+ωt,

which leads to an eigenvalue problem. The parameters hx, hy are real wavenumbers
in the longitudinal, x, and transverse, y, directions, respectively, and ω = ωr + iωi
is a complex eigenvalue, the real part of which being an amplification rate and the
imaginary part an oscillatory frequency. According to the linear theory, the flow is
stable if, for given values of the governing parameters, e.g. Pr, Gr and Ha, all the
eigenvalues have a negative amplification factor ωr for all values of hx and hy . The
unstable case corresponds to the situation where, for some values of hx and hy , at
least one eigenvalue has a positive amplification rate. The state for which the largest
amplification rate ωr is zero is called the state of neutral stability.
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Figure 22. Neutral stability curves in the pure buoyancy case with magnetic effect. The critical
Grashof number Grc is given as a function of Prandtl number Pr for several values of the
Hartmann number Ha (from 0 to 5). Two types of curves are obtained corresponding respectively
to transverse oscillating modes (two-dimensional structures) and to longitudinal oscillating modes
(three-dimensional structures).

The numerical procedure is based on a Tau-method which uses Chebyshev polyno-
mials as trial functions. In the present study we used 20 polynomials which are found
sufficient to give grid-free results. The discretized system results in a generalized
algebraic eigenvalue problem AW = λBW , where A and B are complex matrices.
The problem is then solved using the EIGZC routine from the IMSL library. In this
routine the eigenvectors are normalized so that the largest component has absolute
value 1. The details of the method may be found in Laure (1987).

Our aim is to study the effect of a vertical magnetic field on the stability charac-
teristics. The curves showing the evolution of the critical Grashof number, Grc, as a
function of the Prandtl number for several Hartmann number values are displayed in
figure 22 for thermally insulated horizontal boundaries (denoted the insulated case).
The global dynamical behaviour for 0.001 6 Pr 6 0.3 and Ha 6 5 may be described
by the two types of curves mentioned above: the first type corresponds to transverse
oscillatory modes (hx 6= 0, hy = 0) and prevails for Pr 6 Prt, and the second to
longitudinal oscillatory modes (hy 6= 0, hx very small or zero) and occurs for Pr > Prt.
Here Prt is the value of the Prandtl number at which the crossover between the
transverse and longitudinal modes occurs. From figure 22 it is evident for both modes
that at a given value of Pr the critical Grashof number Grc is an increasing function
of Ha, indicating the stabilizing influence of the magnetic field. This stabilizing effect
is seen to be more effective for the transverse modes, as the curves in that case shift
to a larger Grashof number than the curves corresponding to the longitudinal modes.
As a result, Prt is moved towards smaller values and the range of Prandtl number
over which the transverse modes prevail shrinks until it finally disappears for Ha > 5
in the range of Pr studied. For this domain of Ha, the longitudinal oscillatory mode
corresponds then to the first instability in the range 0.001 6 Pr 6 0.3, indicating that,
in a laboratory experiment, longitudinal rolls will be the expected outcome. From
figure 22, it is also apparent that the stabilizing effect of increasing Ha in the case
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Figure 23. Variation with Ha of Prt which is the value of the Prandtl number corresponding to the
transition between transverse and longitudinal modes. Buoyancy-driven flow case in the rigid–free
cavity and for two thermal boundary conditions.
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Figure 24. Neutral stability curves in the pure buoyancy case with magnetic effect. The critical
Grashof number Grc is given as a function of Ha2 for Pr = 0.001. The evolution is in Ha2 for the
transverse modes and in exp(Ha2/9) for the longitudinal modes.

of the longitudinal modes causes the point at which the Grashof number attains its
minimum to move towards smaller values of Pr. We have not investigated the flow
for Ha > 5, owing to the slow convergence of the series approximations because of
the very large values of the critical Grashof number.

More generally, the evolution of the marginal states with regard to the Prandtl
number remains qualitatively unchanged when the vertical magnetic field is applied:
an increase of Pr is always destabilizing for the longitudinal oscillating modes and
stabilizing for the transverse oscillating modes. Moreover, in the limiting case of
vanishing Hartmann number, the curves converge to those obtained by Laure &
Roux (1987) without a magnetic field.

The curves of Prt as a function of the Hartmann number Ha which are displayed
in figure 23 show precisely the decrease of Prt with increasing Ha for both types of
thermal boundary conditions.

Without loss of generality, figure 24 gives an example for the dependence of Grc on
the Hartmann number for Pr = 0.001. The stability curves for the transverse modes
show exponentially increasing values of Grc with Ha, an evolution much faster than
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Figure 25. Variation with Pr of the wavelength of the neutral modes for several values of the
Hartmann number: (a) transverse modes (λx); (b) longitudinal modes (λy).

for the longitudinal modes. In fact, from the results it is possible to derive for each
mode a simple relationship giving the dependence of Grc on Ha. This relationship
may be written in the form Grc ∼ exp(Ha2/9) for the transverse modes and Grc ∼ Ha2

for the longitudinal modes. More general relationships may be found by including the
effect of Pr: Grc ∼ Ha2Pr−1/2 for the longitudinal modes, valid for 0.001 6 Pr 6 0.1,
and again Grc ∼ exp(Ha2/9) for the transverse modes, valid in the limit of very small
Pr. Note that the Ha2 dependence of the critical Grashof number was pointed out in
the experimental investigations of Hurle et al. (1974).

We display in figure 25 the curves of critical wavelength as a function of the Prandtl
number for the transverse (λx = 2π/hx) and longitudinal (λy = 2π/hy) oscillatory
modes. Examination of these curves reveals that for Pr < 0.02, the variation of λx
with Pr is relatively small, but it becomes more important for Pr > 0.02. For λy a
rapid decrease is observed in the range Pr < 0.1. For the longitudinal modes, an
increase of Ha up to 5 produces relatively moderate effects on λy which goes down
as Ha is increased. In contrast, for the transverse modes, the curves for λx are shifted
up and appear to be more sensitive to the effect of the magnetic field. This feature
corresponds to an increase of the size of the secondary transverse cells as Ha increases.
It is qualitatively contrary to what is observed in the Rayleigh–Bénard problem (see
Chandrasekhar 1961), where the cells tend to become more narrow as the strength of
the magnetic field is increased.

Typical characteristics of the flow at the marginal state for the transverse and
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(a)

(b)
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(d)

Figure 26. Flow characteristics for the transverse mode corresponding to a two-dimensional
structure in the (x, z)-plane. Streamlines and isotherms for the perturbation (respectively, (a) and
(b)) and for the global solution (respectively, (c) and (d)) are given for the marginal state at
Pr = 0.001 and Ha = 5.

(a)

(b)

(c)

Figure 27. Flow characteristics for the three-dimensional longitudinal mode given in the (y, z)
plane. The velocity field projection (a), the iso-lines for the longitudinal velocity u′ (b) and the
isotherms (c) are given for the perturbation at marginal state at Pr = 0.02 and Ha = 5. The relative
height of the cavity is increased for the velocity field representation.

longitudinal modes are given in figures 26 and 27, respectively. For the graphic
representation of the global solution, we superpose on the base flow ε times the
perturbation which corresponds to the more unstable eigenvector (ε = 0.001). For
the transverse modes (two-dimensional structure in the (x, z)-plane), the streamlines
and isotherms of both the perturbation and the global solution are presented for
Pr = 0.001 and Ha = 5. The results resemble those obtained for Ha = 0. The main
difference is the increase of the wavelength of the perturbation but modifications are
also observed in the temperature perturbation. Results for the longitudinal modes
(three-dimensional structure) are given in the (y, z)-plane, the main plane for the
perturbation as hx is very small or zero, for Pr = 0.02 (corresponding to molten
gallium) and Ha = 5. In figure 27 are displayed the perturbation characteristics,
namely the projection of the velocity field (a) (with an increase of the height of the
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Figure 28. Variation with Pr of the frequency of the neutral modes for several values of the
Hartmann number: (a) transverse modes; (b) longitudinal modes.

cavity for a better presentation), the iso-longitudinal velocity u′ (b) and the isotherms
(c).

The curves of the frequency of oscillations (f = ωi/2π) displayed in figure 28 reveal
essentially that an increase of Ha always produces an increase of the frequency. The
variation with respect to Pr is similar to the case without a magnetic field: relatively
constant for the longitudinal modes and increasing with Pr for the transverse modes.
Furthermore, this growth of the frequency with Ha may be related to the increase of
Grc due to the stabilizing effects of the magnetic field.

The electric potential is found to be constant for the transverse modes, and has no
influence on the stability thresholds. For the longitudinal modes, it shows variations in
the (y, z)-plane which are displayed in figure 29(a). The creation of an electric potential
is connected to transverse variations of u′ (the longitudinal velocity perturbation given
in figure 27b). The perturbation current in this plane which corresponds to

J ′y = −∂φ
′

∂y
(y, z)− u′(y, z), J ′z = −∂φ

′

∂z
(y, z),

and includes the directly induced current and the potential one is illustrated in figure



52 H. Ben Hadid, D. Henry and S. Kaddeche

(a)

(b)

Figure 29. Electric characteristics for the three-dimensional longitudinal mode given in the
(y, z)-plane. The iso-lines for the electric potential (a) and the electric current projection (b)
are given for the perturbation at marginal state at Pr = 0.02 and Ha = 5.

29(b). The global current in the cavity is in fact given by

J ′x = v′(y, z), J ′y = −∂φ
′

∂y
(y, z)− (u′(y, z) + u(z)), J ′z = −∂φ

′

∂z
(y, z),

but the two new terms are conservative. The effect of the electric potential, as seen
in the (y, z)-plane, is thus to slow down the directly induced current and to allow
counter circulation along the boundaries (mainly the no-slip bottom boundary) for
the conservation of the current. The potential will then decrease the stabilizing effect
generated by the directly induced current. This is confirmed by the fact that for the
longitudinal modes the instability thresholds increase if we neglect the potential effect.

The results obtained with thermally conducting horizontal boundaries reveal the
same qualitative influence of the Hartmann number on the main characteristics of
the transverse and longitudinal oscillatory modes. The main differences are connected
with the influence of Pr and were already observed without a magnetic field: first the
value of Prt is larger (see figure 23) and then the variation with Pr of the wavelength
and of the frequency of the longitudinal modes are changed.

Some general comments on the stability analyses can be made. The action of the
magnetic field on the stability characteristics is twofold: it appears in the analytical
velocity and temperature equations for the basic state as well as in the linearized
governing equation (6.2) in the Lorentz force term. It is established from the foregoing
results (see §5) that the asymptotic behaviour of the velocity (with a Ha−2 dependence)
occurs only for Ha > 10. As all our results in the stability analysis are obtained for
Ha 6 5, this may suggest that the stabilizing effect is more effective in the Lorentz
force which is directly proportional to Ha2. Concerning the different variation with
Ha of the transverse and longitudinal modes, it may be noted that the transverse
modes are of dynamical origin (asymptotic behaviour for Pr = 0 and increase of
the thresholds as Pr increases) whereas the longitudinal modes are of thermal origin
(increase of the thresholds as Pr decreases). Moreover, the decrease of wavelength as
Ha is increased is observed for our longitudinal modes as well as in the Rayleigh–
Bénard situation, both corresponding to instabilities of thermal origin.

7. Conclusions
We investigated the effect of a constant magnetic field on the flow states in a dif-

ferentially heated horizontal Bridgman cavity. We derived analytical solutions for the
horizontal velocity in the central region and for the two components of the velocity in
the turning flow region. We also performed numerical simulations for a cavity with a
moderate aspect ratio A = 4. One obvious finding is that for increasing values of the
Hartmann number, i.e. for increasing strength of the magnetic field, the intensity of the
convective flow decreases and is followed by a progressive change of the overall struc-
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ture of the flow. When Ha > 10 the overall character of the flow is greatly modified.
Thus, several noteworthy features are: (i) by increasing the Hartmann number the
velocity decreases and has an asymptotic behaviour which is found to follow a power
law; (ii) the flow becomes more and more unidirectional in the central region and
boundary layers develop in the vicinity of the rigid walls; (iii) the characteristics of the
final flow structure are found to depend on the type of driving force. For example, the
typical velocity profile in the core is linear with respect to the vertical coordinate in the
buoyancy-driven flow case whereas it is constant for the thermocapillary-driven flow.

The analytical velocity profiles obtained with some simplifying assumptions agree
well with the corresponding numerical velocity profiles for certain values of the
Hartmann number. This good agreement implies that in a certain range of Ha the
flow in a finite cavity may be accurately modelled by a simplified analytical model.
This range is found to correspond to Ha3�Gr for the pure buoyancy-driven flow and
to Ha5/2�Re for the pure thermocapillary-driven flow.

The stability of natural convection in a laterally unbounded horizontal layer with
the upper free surface subjected to a horizontal temperature gradient is also considered
herein when a constant, vertical magnetic field is applied. The critical Grashof number
Grc for the onset of instability is determined as a function of the Prandtl number up
to Ha = 5. We have found that Grc increases linearly with the square of the Hartmann
number for the longitudinal modes and exponentially for the transverse modes. This
result confirms the stabilizing effect of the magnetic field, already observed in the
experiments of Hurle et al. (1974) and Davoust et al. (1994). Furthermore, since the
stabilizing effect is more effective on the transverse oscillating modes, the longitudinal
oscillating modes (which generate a three-dimensional flow structure) become for
Ha > 5 the preferred ones over the entire range of investigated Prandtl number
0.001 6 Pr 6 0.3. Consequently, for large Hartmann number three-dimensional
simulations become necessary in order to understand the interaction between the
magnetic field and the flow field. Moreover, in real situations, the presence of lateral
walls, which was not taken into account here, may also introduce important three-
dimensional modifications in the flow structure. This three-dimensional aspect of the
problem will be treated in Part 2 (Ben Hadid & Henry 1997).
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Appendix
If we put the expansion (3.12) in equation (3.11), we get

∞∑
j=0

(V (4)
j − 2α2

jV
(2)
j + α4

jVj + Ha2α2
jVj) cos(αjz)

+

∞∑
k=0

(W (4)
k − 2γ2

kW
(2)
k + γ4

kWk + Ha2γ2
kWk) sin(γkz) + Ha2Re z + Ha2 1

2
Re = Gr. (A 1)
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We need then to express the functions 1, z, z2 and z3 in the orthogonal basis of the
sine and cosine functions. We get

1 =

∞∑
j=0

4(−1)j

αj
cos(αjz), (z2 − 4) =

∞∑
j=0

−8(−1)j

α3
j

cos(αjz), (A 2)

z =

∞∑
k=0

2(−1)k

γk
sin(γkz), (z3 − 1

4
z) =

∞∑
k=0

−12(−1)k

γ3
k

sin(γkz). (A 3)

By replacing Ha2Re z and (Ha2 Re/2−Gr) by their expansions and taking into account
the orthogonality of the sine and cosine functions, we obtain

∀j, V
(4)
j − 2α2

jV
(2)
j + (α4

j + Ha2α2
j )Vj = gj, (A 4)

and

∀k, W
(4)
k − 2γ2

kW
(2)
k + (γ4

k + Ha2γ2
k )Wk = hk, (A 5)

with

gj = (−Ha2 1
2
Re + Gr)

4(−1)j

αj
and hk = −Ha2Re

2(−1)k

γk
.

These two equations have the same form. Let us consider the first one. Its character-
istic equation is

m4 − 2α2
jm

2 + (α4
j + Ha2α2

j ) = 0

and the solution is of the form m = ±aj ± ibj with

aj =
1√
2

(
α2
j + αj(Ha2 + α2

j )
1/2
)1/2

and bj =
1√
2

(
−α2

j + αj(Ha2 + α2
j )

1/2
)1/2

.

A particular solution of the global equation is gj/(α
4
j + Ha2α2

j ). We can then write the
global solution as

Vj(x) = λje
−ajx cos(bjx) + µje

−ajx sin(bjx) + λ′je
ajx cos(bjx) + µ′je

ajx sin(bjx)

+
gj

α4
j + Ha2α2

j

.

As Vj must be finite as x tends towards infinity, λ′j and µ′j must be zero. We have
then for Vj and Wk

Vj(x) = λje
−ajx cos(bjx) + µje

−ajx sin(bjx) +
gj

α4
j + Ha2α2

j

, (A 6)

and

Wk(x) = νke
−ckx cos(dkx) + πke

−ckx sin(dkx) +
hk

γ4
k + Ha2γ2

k

, (A 7)

with ck and dk defined as aj and bj . The solution is then obtained from (3.12) with
the expressions for Vj and Wk given above.

We must then verify the boundary conditions at x = 0: ψ = 0 and (∂ψ/∂x) = 0.
For that, we need to know the expansion of the polynome P on the basis. By using
expressions (A 2)–(A 3), we can write

ψ =

∞∑
j=0

(Vj(x)− Vj0) cos(αjz) +

∞∑
k=0

(Wk(x)−Wk0) sin(γkz),
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with

Vj0 = −Re
2(−1)j

α3
j

and Wk0 = −Re
2(−1)k

γ3
k

.

The boundary conditions are then

∀j, Vj(x = 0) = Vj0 and V ′j (x = 0) = 0,

and

∀k, Wk(x = 0) = Wk0 and W ′
k(x = 0) = 0,

which gives

λj = Vj0 −
gj

α4
j + Ha2α2

j

, µj =
aj

bj
λj ,

and

νk = Wk0 −
hk

γ4
k + Ha2γ2

k

, πk =
ck

dk
νk.
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