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A Time-Domain Integral Formulation for the
Scattering by Thin Wires

François Bost, Laurent Nicolas, and Gérard Rojat

Abstract—A time-domain model to provide the transient re-
sponse of complex 3D wire structure is presented. It is based on
the antennas theory. The Electric Field Integral Equation is solved
by the Method of Moments and an iterative time-stepping proce-
dure. The current is described by a first order expanding scheme.
The delta function is chosen as testing function for point-matching.

Index Terms—Integral equations, numerical analysis, time do-
main analysis, wire scatterers.

I. INTRODUCTION

D IFFERENT formulations have been developed to perform
the electromagnetic scattering by complex structures: fi-

nite difference methods first, boundary element (BEM) and fi-
nite element methods later. The study of thin wires structures
using the BEM leads to very interesting simplification. The de-
velopment of an integral formulation in time-domain for thin
wires seems then very attractive. However only one computer
code using such a time-domain formulation has been previously
reported [1]. Our purpose is to apply this technique to model
transient phenomena in complex structures such as electric cir-
cuits or Printed Circuits Boards.

This paper presents a rigorous three-dimensional
time-domain integral formulation for thin wires based upon the
antennas theory. The Electric Field Integral Equation (EFIE)
is solved by using the Method of Moments and an iterative
time-stepping procedure. The current is described by a first
order expanding scheme and the delta function is chosen as
testing function for point-matching. The formulation provides
directly the induced current in the wire.

The basic hypotheses and the integral formulation are pre-
sented in the first section. The solving method is then described.
The accuracy and the stability of the numerical scheme is then
discussed. Examples are finally given in the last section.

II. INTEGRAL FORMULATION

By using the delayed vector and scalar potential and , the
classical EFIE is written with the assumption that the scatterers
are perfect conductors [2]:
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Fig. 1. Contribution of a straight segment at the collocation point .

(1)

where
is the incident field,
is the unit vector normal to the surface S of the
scatterer,
is the distance between observation and source
points, is the retarded time,

and are the induced charges and current densities on
.

When conductors are thin wires, the current density can
be restricted to its tangential term along the -direction of the
wire axis:

(2)

where is the tangent vector along the wire axis and is
the total current at the curvilinear coordinate.

The continuity equation allows to replace the charges density
with the current density:

(3)

With the thin-wire approximation, (3) leads to:

(4)

By multiplying by the tangent vector to the wire at observa-
tion point (Fig. 1) and using vector identities, the EFIE for thin
wires may then be written as:
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(5)

This EFIE is of the first kind, and its kernel has a second
order singularity. Since the singular integral evaluated for the
self-patch in the right hand side of (5) leads to a nondiagonal
matrix, the time scheme cannot be explicit. The entire integral
is then separated into two parts, and the unknown current at the
observation time can then be extracted from the self-patch value
by solving an implicit scheme [3]:

self-patch
terms

terms depending
on retarded time

(6)

Note that the magnetic field integral equation (MFIE) could
have been written in the same way. The MFIE is generally pre-
ferred to the EFIE to solve a surface problem since it is sim-
plier to use. However it becomes unstable, and hence unsuit-
able, when it is assumed that there is no variation of the induced
current along the circumference of the wire. Indeed, in the case
of a straight line, multiplying by leads to cancel all the terms
except the source terms and the MFIE is no longer available.

III. SOLVING METHOD

The EFIE is solved by the Method of Moments (MoM) [4].
The unknown current is interpolated by a set of basis func-
tions. The testing function is the delta function, so that the MoM
becomes the so-called point-matching method or collocation
method.

A. Interpolation Scheme for the Induced Current

The thin wires structure is divided into segments, and a
set of basis functions expresses the unknown current in each of
these segments:

(7)

with

if
anywhere else

if
anywhere else

(8)

A linear scheme is used for time and space, on the contrary
of the quadratic scheme used in [3], [5]:

for and

(9)

where represents the magnitude of the current in space-time
at point and time . This first order interpolation scheme
for the current leads to a constant distribution of charge on each
space segment of the wire. Consequently a discontinuity appears
at the junction between two adjacent segments. When modeling
straight antennas, the computation of the induced current is ac-
tually not affected by this discontinuity. However, at singular
points like angular points or multiple junctions, this can lead to
a charge accumulation, and special numerical treatment has to
be introduced in the model [9].

B. Kernel Singularity

The kernel shows a type singularity. This second-order
singularity is circumvented by assuming that the current is lo-
cated on the wire axis, because of the small radius compared to
the wavelength and compared to the length of the wire. Since the
observation point is located on the surface of the scatterer, the
distance is always greater or equal to the radius of the wire.

The regular integral terms representing the contribution of
the far segments are computed by Gauss integration. In order
to guarantee accurate results, the self-patch integration is calcu-
lated analytically.

C. Point Matching

The delta function is used as testing function for the Method
of Moments. By using the point-matching method, (5) becomes:

(10)

By writing the EFIE at each node taken as matching
point , a matrix system is obtained. From Fig. 1 it is
seen that the contribution of a straight segment at the matching
point M is affected with a delay , which intends the propa-
gation term.

Because the computation at the time requires the currents
at earlier times, the solving procedure uses an iterative scheme.
The system of equations is solved at each time step by a
matrix inversion. The final matrix system may then be written
symbolically as:

for (11)

where
is the incident field vector tangent at points and time

,
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Fig. 2. Current induced by a 1 V/m-300 MHz incident electric field at the
middle of a wire antenna for a radius mm for several values of and .
Reference values (denoted ref) are presented in [6].

is the geometrical matrix of the elementary contribu-
tions between nodes and (it corresponds actually
to an incomplete impedance matrix),
is the vector of currents at nodes and time , and
is the scattered field vector tangent at points de-
pending on the earlier currents at time .

IV. VALIDATION

The accuracy and the stability of the scheme depend on the
characteristic parameters of the wire: its total length , its radius
, the discretization , the time step , the wave-length .

The thin wire approximation implies of course that the radius of
the wire has to be small compared to the wavelength, in order
to neglect the variation of the current along the circumference
of the wire. On the other hand, two relations are predominant:

, and .

A. Study of the Ratio

The length of the line segment is related to the incident wave-
length by , where varies generally from 6 to 20 for
the thin wires. Theoretically, the more the length of the segments
decreases, the more the numerical model may be accurate. How-
ever the radius becomes significant in comparison with the seg-
ments length. Consequently the thin wires approximation is no
longer valid, and the integral formulation becomes unstable.

There is then a compromise to find to obtain both accuracy
and stability. Fig. 2 presents the current induced at the middle
of antenna of various lengths when illuminated by a 300 MHz
wave for several values of the space discretization . At this
frequency, a resonance is observed when the length of the an-
tenna is equal to m. Best results are obtained with
a ratio . These values of the magnitude of the cur-
rent for both antenna lengths m and m are in
agreement with the results presented in [6]. For values of
lower than 5, the problem becomes ill-conditioned and then un-
stable. For values greater than 10 (Fig. 2), one can note a dis-
placement of the resonance peak, and the values of the current
become underestimated.

B. Study of the Ratio

Depending on the relative value of compared to , the
system matrix may be more or less dense: for , it

Fig. 3. Current induced at the middle of a straight antenna ( m,
mm) by a 300 MHz incident plane wave for several values of the time step
( ). Err. shows the difference with the reference value obtained for

.

becomes for example tridiagonal. When the time step is in-
creased, more and more nonadjacent segments are tied up at the
same time, leading to a time scheme unstable.

Fig. 3 shows the induced current in the middle of a straight an-
tenna illuminated by a 300 MHz plane wave for different values
of the time step . It can be observed that the current remains
sinusoidal when the time step is lower than . Further-
more the error made on the magnitude of the current remains
also acceptable for such values of the time step.

C. Conclusion: Optimal Values of the Discretization
Parameters

From the previous study, it appears that the optimal values for
a length wire with a wavelength are:

Radius of the wire: and
Space discretization: , with
Time discretization: to with

D. Comparison with a Finite Element Code

The field scattered by a thin wire is computed by our model
and by 2D and 3D finite element (FE) method [7]. Fig. 5 shows
the comparison along a line perpendicular to the direction of
propagation and centered on the wire, as defined at the Fig. 4.
The results given by our model are in accordance with those ob-
tained using 3D FE. The difference observed for the near field
( m) is due to the way that the thin wire formulation com-
putes the scattered field outside the wire: it is obtained by in-
serting a small dipole at the measurement point. There is a cou-
pling effect between the wire and the dipole, which is not neg-
ligible when both are close.

V. EXAMPLE OF TRANSIENT RESPONSES OF WIRE ANTENNAS

A. Wire Antenna Illuminated by a Gaussian Pulse

This example shows the response of a 1 meter
long antenna exposed to a gaussian pulse of the form

, with c and
. The radius of the wire is 6.7 mm. As shown in

Fig. 6, the calculated current agrees with the results obtained
with a second order interpolated current [8]. Slight differences
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Fig. 4. Scattering by a thin wire antenna ( m, mm) for a
1V/m-300 MHz incident plane wave. Computation by 3D finite element method
[7]. Visualization of the total field in the symmetry planes.

Fig. 5. Comparison of the scattered field between 2D FEM, 3D FEM and our
model along a line perpendicular to the wire (Fig. 4).

Fig. 6. Current induced in a thin wire antenna ( m, mm)
, with c and .

may be observed due to approximations made on numerical
parameters defining the pulse. Discretization parameters and
computation times are summarized in Table I.

B. Wire Antenna with a Voltage Step Supply

This integral formulation allows also actually the computa-
tion of conducted problems [9]. As example, a voltage gener-
ator supplying a 1 V voltage step is connected at the center of a
wire antenna. The length of the antenna is 1m, and its radius is
6.74 mm. Fig. 7 shows the current at the center of the antenna.
Results are in excellent agreement with those presented in [5].
The modification of the ratio shows a slight influence on
the magnitude of the current and on its frequency.

TABLE I
COMPARISON OF THE DISCRETIZATION PARAMETERS AND CPU TIME ON

HP9000/700 FOR BOTH EXAMPLES PRESENTED IN SECTION A AND B

Fig. 7. Current at the center of a 1 m wire antenna for two different radii. The
antenna is fed by a 1 V voltage step.

VI. CONCLUSION AND PERSPECTIVES

A time-domain integral formulation to evaluate induced cur-
rent in thin wires when illuminated by transient wave has been
presented. The Electric Field Integral Equation is solved by
the Method of Moments and an iterative time-stepping proce-
dure. The delta function is chosen as testing function for point-
matching. It is shown that a first-order interpolation scheme can
be used to expand the unknown currents. This new model is val-
idated by determining the space and time discretization rules.
Its accuracy is demonstrated using two examples of different
nature.

The real interest of such a formulation is actually the mod-
eling of EMC problems. By inserting non linear components,
including generators, and multiple junctions, both conducted
and induced phenomena may be modeled, so that the analysis
of electronic device in normal running is made possible [9].
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