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Implementation of the Boundary Integral Method
for Electromagnetic Scattering Problems With

Geometrical Discontinuities
Thierry Jacques, Laurent Nicolas, and Christian Vollaire

Abstract—The boundary integral method is used to solve
scattering by perfect electric conducting or perfect dielectric
bodies. This paper deals with different aspects of the modeling:
frequency domain and time domain formulations, computing,
solver. Methods allowing the treatment of geometrical disconti-
nuity for all kinds of mesh are specially discussed. Validation of
the formulations is carried by comparison with other codes.

Index Terms—Boundary element methods, discontinuities, nu-
merical analysis.

I. INTRODUCTION

THE APPLICATION of Maxwell’s equations at a corner or
at an edge shows that the components of the fields parallel

to discontinuity line are bounded. On the other hand, the perpen-
dicular components are infinite. In [1], since the tangential field
is discontinuous, the functional nodes are duplicated. Semidis-
continuous elements are then successfully used, and the func-
tional nodes are moved away from the edge. In [2], Schlemmer
chooses same elements for the time domain boundary integral
method and uses an interpolation between the functional node
and the discontinuity line. In [3], Rego implements these ele-
ments and uses specific interpolation function. More than 24
kinds of elements are enumerated. These methods are validated
using simple examples such as scattering by a cylinder or by a
cube.

However, for more complex geometries such as an airplane,
these methods are not satisfying. In this paper, two methods
to handle geometrical discontinuities are presented for both
time domain and frequency domain formulations. Numerical
methods to solve the scattering problems are described as well.
Comparisons with other methods are presented in order to vali-
date the models and to show the advantages and disadvantages
of each method.

II. TIME DOMAIN FORMULATION

As shown in Fig. 1, an incident wave is perturbed by an object
of boundary .
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Fig. 1. Description of the problem. The conductivity of a perfect electrical
conductor is infinite.

A. Formulation

For a point located on the outer surface of a perfect electrical
conducting, the magnetic field is computed using the following
expression:

(1)

where is the incident magnetic field, and is the electric
current density. This formulation has been first developed in [4]
with a second-order time scheme and a constant time step :

(2)

(3)

(4)

where is the electric current density at the point at time
, and are interpolation’s functions. Lagrange’s polyno-

mial functions are chosen. While Bluck uses this formulation
written for the magnetic field, the unknown used in (1) is the
electric current density since it requires three times less memory.

When using second-order boundary element, the following
matrix system is obtained:

(5)

where and are sparse matrices. The matrices are
not stored separately, but all the contributions of the node to
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Fig. 2. Distribution of the contributions of the nodes. The contributions are
equal to the integral on the surface. The center is the source point, and its radius
is equal to .

Fig. 3. Scattering of Gaussian impulse by a unit sphere. Magnetic field at
equatorial plane of the sphere. Left: Schlemmer results [2]. Right: 290 nodes,
96 quadrilateral boundary elements, m.

the node are regrouped together: A time skyline storage is ob-
tained. Regarding the matrix , only the nodes located on the
same elements than the source points have a nonzero contribu-
tion (Fig. 2). The contribution of the source point to itself is a 3

3 matrix proportional to the identity.
At each time step, the biconjugated gradient algorithm with

a diagonal preconditioning is used to solve the linear system.
On the other hand, the solution obtained at the previous time
step is used as initial vector, increasing, then, the rapidity of the
convergence.

To validate this model, the scattering of Gaussian impulse
by an unit sphere is solved. The results are compared with
Schlemmer results [2], showing good agreement (see Fig. 3).

B. Geometrical Discontinuity

At an edge or at a corner, the normal vector is discontinuous,
like the electrical current density. For an edge, on both sides
of the discontinuity line, a functional node is required in order
to interpolate the field on the elements. The contribution of the
node on the other side of the discontinuity becomes then infi-
nite. In order to treat the geometrical discontinuity problem, the
source points are moved inside the elements at a distance equal
to . Neither functional nor geometrical nodes are
displaced. For each kind of finite element (quadrilateral or tri-
angle), three kinds of points have to be considered, depending

Fig. 4. Moving of source points toward the inside of boundary elements.

on the type of node (principal or secondary) and on the location
of the discontinuity line.

By applying (1) at point and by multiplying it with the
normal vector at point , (6) may be written at the time

:

(6)

where the contributions are equal to

(7)

(8)

This method requires a stronger stability criterion than usual
since the space step must be inferior to instead of

. is a real number between 0.4 and 0.48, and is
the largest inner radius of the finite elements. This decrease of
time step implies that the number of right-hand side coefficients
stored must be increased. On the other hand, this method may be
adapted to all kinds of mesh. For a secondary node on a discon-
tinuous boundary [Fig. 4(a)], is at least equal to 0.8. For a
principal node, is larger than 0.4 [Fig. 4(b)] or 0.3 [Fig. 4(c)].
For a node on a continuous surface, is equal to 1, and
are equal to 0. It is observed that this method slows down the
convergence of the solver.

As example, the scattering of a Gaussian pulse by an unit cube
has been computed. The cube is meshed with 96 quadrilateral
elements and 390 nodes. The space time is equal to 5 cm. The
results are in good agreement with those of Bluck and Vechinski
(see Figs. 5–7).

The method presented here is valid for perfect electric
conductor. For the case of dielectric object, methods using the
boundary integral method maybe found in [6] and [7].
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Fig. 5. Electrical current density at the point (0, 0, 0.5). m. Left:
Scattering obtained by Bluck and Vechinski [5]. Right: Field obtained with our
method.

Fig. 6. Magnetic field at s. s. Scattering of a
Gaussian impulse by a 1–m side conducting cube with 798 nodes.

Fig. 7. Moving of functional and geometrical nodes.

III. FREQUENCY-DOMAIN FORMULATION

A. Formulations

By separating time and space in (1), the electric current den-
sity may be written at each point of the surface of an object
considered as a perfect electrical conducting body:

(9)

where is the Green’s function associated with the wave
number , and is the normal unit vector to the surface

. For a dielectric body, the formulations are obtained by
summing the integral equations written on both sides of the
boundary by applying the theorem of Green. The contribution
of the normal field to the tangential field (and vice versa)
is equal to the difference of gradients of Green’s functions.
This formulation leads to 16 degrees of freedom per node
corresponding to the continuous fields (electric and magnetic
current density, normal magnetic flux density and normal
electric flux density) on the boundary [8].

In both cases, the problem generates a full and non-Hermi-
tian matrix. The diagonal is dominating. The obtained linear

Fig. 8. Boundary element method. Magnetic and electric fields. Scattering of
a 750–MHz plane wave by a dielectric cylinder ( ).

Fig. 9. Finite element method. Magnetic and electric fields. Scattering of a
750–MHz plane wave by a dielectric cylinder ( ). Display
with one symmetry plane.

system is solved by using the BiCGStab(l) algorithm [8] with
a left diagonal preconditioning. All the tested geometries have
been solved using a low number of iterations corresponding to
a few hundred matrix vector multiplications. For a given mesh,
the algorithm shows more difficulties to converge when the fre-
quency increases. This is due to the fact that the number of nodes
per wavelength decreases, and the diagonal is less dominating.
As shown in [9], ten nodes per wavelength are at least required
in order to obtain a good accuracy. To take into account the geo-
metrical discontinuities for problems in frequency domain, sev-
eral solutions maybe used.

B. Geometrical Discontinuities

To get around this problem, the functional nodes are moved
toward the inside of elements. Our method consists of moving
the geometrical node as well. This choice is justified by the fact
the distance and the surface are small in comparison with the
size of the object. The computed field is dependent on the mesh
close to the discontinuity. This method does not take care of all
kinds of surfaces.

The scattering of a 750-MHz plane wave by a dielectric
cylinder ( ) has been calculated by the
boundary integral method and by the finite element (FE)
method [10]. The length and the radius of the object are
equal, respectively, to a 2.0 and a 0.25 wavelength. For the FE
method, the electrical field is computed on the edge of finite
elements contained in the volume ( ). The
magnetic field is then calculated by derivation of the electrical
field, explaining the bad accuracy of the field. As shown in
Figs. 8 and 9, both results are in good agreement. However, the
boundary element method leads to a better accuracy than the
FE method since the FE method actually sums the electric field
on both sides of geometrical discontinuity.
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Fig. 10. Electrical current density: Scattering of 100-MHz plane wave by an
airplane.

The scattering of a 100-MHz plane wave by an airplane mod-
elized as a perfect electric conductor has been computed on 64
processors of the Cray T3E (see Fig. 10). It is meshed with 2960
boundary elements and 62 418 degrees of freedom. The max-
imum electrical field is located at the back of the wing of the
airplane. The irregularities shown in front of the wing are re-
lated to the bad accuracy of the mesh.

IV. CONCLUSION

In this paper, two different methods to take into account geo-
metrical discontinuities with the boundary element method have
been presented. The method developed for the time domain for-
mulation takes into account all types of mesh. Only three kinds
of points for each kind of element have to be distinguished. The
stability criterion has to, however, be stronger than usual, im-
plying an increase in the storage of previous time steps. For the
frequency domain, the method is rougher, but it gives satisfying
computational and numerical results.
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