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Stability and Fidelity of the Finite Element Time
Domain Method With Distorted Mesh

Boguslaw Butrylo, Christian Vollaire, and Laurent Nicolas

Abstract—Properties of the three-dimensional formulation of
the finite element time domain algorithm for the wave equation are
analyzed. First-order edge elements are implemented in the formu-
lation. Several issues associated with deformation of the structured
mesh and efficiency of the time integration scheme are presented.
The convergence and stability of the time domain algorithm de-
pending on the spatial discretization are discussed. The numerical
accuracy of the simulation is studied.

Index Terms—Edge elements, finite element method, stability,
time domain analysis.

I. INTRODUCTION

THE finite element (FE) method is usefully applied in a
wide variety of circumstances in computational electro-

magnetics. The fundamental advantage of this method is to
create a smart numerical model with an unstructured and a
structured grid. The FE scheme is more flexible in handling
complicated geometry than other approximated numerical
methods, but the creation of the suitable FE mesh is not a trivial
task. Right physical sense of the edge elements compared
to classical ones (nodal based) make this numerical method
efficient to take into account discontinuities of the electro-
magnetic field. Moreover, time domain analysis is required for
large number of applications. So, the vector FE time domain
algorithm is useful in modeling of electromagnetic phenomena.
The spatial discretization of an FE model and quality of the
mesh have an effect on the properties of the time-domain
algorithm (FETD) used for wave propagation problems. The
value of the time step for a known FE grid must satisfy the
Courant–Friedrichs–Levy (CFL) restriction [1]

(1)

where is a dimension of an element, is the speed of
an electromagnetic (EM) wave in a medium, and is the
Courant number. The CFL condition is tightly coupled with the
Nyquist’s restriction

(2)
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where is the frequency of the propagating EM wave.

If the FE mesh is distorted or locally refined, the value of
the Courant number depends on the quality of the mesh and
the method of integration in the time domain. There is no clear
rule to determine the optimal value of the coefficient. In this
paper, the properties of the first-order edge-based FE grid is
discussed. The objective of the paper is to analyze the stability
and convergence of the FETD-edge element algorithm in order
to estimate the minimum value of the Courant number.

II. FINITE ELEMENT SCHEME

The mathematical background of the finite-element time-do-
main formulation is well known [1], [2]. The governing vector
wave equation is derived from the Maxwell equations for some
linear and isotropic media

(3)

Application of the Galerkin method and spatial discretization of
the analyzed model yield to a matrix linear ordinary differential
equation (ODE)

(4)

The components of a mass matrix , a stiffness matrix , and a
damping matrix are stated by the following equations:

(5a)

(5b)

(5c)

The indicates the external surface of the th element
with predefined absorbing boundary conditions. The first-order
Engquist–Majda boundary condition is implemented on the ex-
ternal surface of the FE model to modelize the unbounded do-
main [3]. The column vector represents the dynamic load
in the analyzed model.

Since the numerical model is approximated by edge elements,
and are the edge-based vector shape functions. In the

elaborated algorithm, the first-order tetrahedral ele-
ments are implemented [4], [5].
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The edge element formulation is an alternative to the
common, widely used nodal-base FE formalism. There are
many circumstances in which edge elements have clear advan-
tages over the typical nodal formulation [6]. The edge elements
enforce tangential continuity of the electric (or magnetic) field
on the edge of elements, while the normal field components are
free. In this way, the implementation of the essential boundary
conditions in the edge formulation is much easier than in nodal
formulation, and the edge elements do not generate conflict
between different types of boundary conditions.

Flexibility of the FE technique and right physical sense of the
edge elements make this formulation useful in numerical mod-
eling of electromagnetic phenomena. Of course, the edge-based
formulation of the FE method is not perfect. The edge elements
are not suitable when the sources of the electromagnetic field
are not free of divergence [6].

The second, significant fault of the edge element formulation
is the numerical efficiency. The edge elements are less efficient
than nodal elements. The FE method based on edge elements
needs more unknowns to obtain the same accuracy as the nodal
formulation. Denoting by and the number of nodes and
the number of edges in the model with structured FE grid, the ap-
proximate relation between these two quantities is represented
as follows:

(6)

The total number of degrees of freedom in the edge formulation
is equal to the number of edges , while in the nodal formu-
lation the vector field is described by three components .
Nevertheless, the edge-based form of the FE model is more
memory consuming than the equivalent nodal model. Equation
(6) indicates larger computational cost of the edge formulation,
since the total elapsed time of the solver increases when the
number of degrees of freedom is higher. The nodal-based FE
algorithm is less memory and computationally demanding.

III. TIME DOMAIN MODELING

The ordinary differential equation (4) is transferred into
linear algebraic equation by discretization of the time domain.
Two unconditionally stable (backward Euler scheme and
Newmark method [1]) and two conditionally stable (central
Euler and mixed Euler) time integration schemes are used in
the algorithm. These time integration algorithms differ primary
in the manner in which the first and second derivatives of field
distribution are calculated. For example, the differential form of
the ODE for the central Euler scheme is stated by the equation

(7)

while the mixed time integration scheme results in the following
form:

(8)

The mixed time integration scheme is a combination of two
basic methods of numerical derivation. The backward Euler
scheme is implemented for the first derivative, while the
second-order derivative in the time domain is approximated by
the central Euler rule.

The backward scheme and Newmark method are uncondi-
tionally stable, but convergence of these methods depends on
the time step . When the backward Euler scheme is imple-
mented to the ODE, the time-dependent distribution of electric
field is described by the formula

(9)

All implemented time integration schemes belong to a group
of multistep methods, and the final, common form of the time
domain matrix equations is [2]

(10)

The matrix is not diagonal, thus making the problem implicit.
The form and properties of the matrix arise from the imple-
mented time integration scheme.

The properties of the time integration scheme have an ef-
fect on the accuracy, numerical stability, and convergence of
the FETD algorithm. The central difference and mixed differ-
ence schemes are useful, if an explicit method of matrix solu-
tion is formulated. Unfortunately, the final matrix equation has
to fulfill some additional restrictions in this case. The stability
of conditionally stable schemes depends on the time integration
step . The backward scheme and Newmark method are un-
conditionally stable, but convergence of these methods depends
on the time step .

The preconditioned conjugate gradient algorithm (PCG)
with the symmetric successive over relaxation (SSOR) pre-
conditioner is applied to solve the final matrix equation [7].
The computational cost of the PCG algorithm is known to be
approximately , but the quality of the mesh has an effect
on the total cost of the iterative solver.

IV. NUMERICAL EXPERIMENTS

The presented time domain algorithm is used to calculate a
benchmark problem with a monochromatic plane wave prop-
agating in free space. Several three-dimensional (3-D) rectan-
gular domains are meshed with the same number of elements
(46 305 tetrahedral elements, 20 nodes per wavelength) leading
to several distorted meshes.

Two types of structured tetrahedral grids are used in the sim-
ulation. The final FE grid is based on a preliminary hexahedral
discretizaton of the 3-D rectangular model. The secondary grid
is inscribed into the hexahedral mesh and consists of tetrahedral
edge elements. In this approach, the primary (hexahedral) mesh
is the same for both types of the final grid. The properties of the
FE mesh become different in the second step of the model dis-
cretization, because other methods of transition from hexahedra
to tetrahedral elements are used (Fig. 1). The final properties of
the whole FE mesh arise from these elementary schemes of do-
main decomposition.
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Fig. 1. Two types of tetrahedral grid inscribed into a single cubic element:
(a) mesh A; (b) mesh B.

TABLE I
PROPERTIES OF THE STRUCTURED TETRAHEDRAL MESH

The unequivocal information about distortion of the tetrahe-
dral mesh is expressed by the Robert/Roux factor [8]

(11)

where is a normalization coefficient, is the volume of a
tetrahedron, and is the volume of a circumscribed sphere.
This factor can change from 0 (4 points lie in a plane) to 1 (ideal,
regular tetrahedral element).

The properties of these tetrahedral meshes are comparable
only by the minimum value of the coefficient (Table I).

Mesh B consists of topologically equivalent tetrahedral
elements, because all of elements have the same value of
the Robert/Roux coefficient. The optimal value of factor

is obtained when this type of the mesh is
inscribed into cubes. When the primary (hexahedral) mesh is
distorted, the value of the Robert/Roux factor remains uniform
but its value is less than the optimal one.

Mesh A is better shaped, however, two subsets of the tetrahe-
dral elements can be distinguished in this matter. The first one
consists of tetrahedral elements with better shaped coefficient
( if the primary mesh is based on the cube). Only 20%
of the elements have better factor and the remainder is worse
shaped. These elements have the same topological quality as the
presented mesh B.

Some numerical computations enable us to determine a cor-
relation between the quality of the FE tetrahedral mesh and the
properties of the implemented time integration schemes. It is
shown from the numerical results that the value of the Courant
number must be decreased when the distortion of the FE mesh
increases (Fig. 2). If the value of factor is greater than the value
presented in the figure, the central and mixed Euler schemes are
not stable.

It is also shown that the difference between meshes A and B
for the central Euler scheme is perceptible only when the ideal
FE mesh is created. If the value of the factor is less than 0.7,
the maximum coefficient is equal for these types of tetrahedral

Fig. 2. Maximal value of factor as a function of mesh deformation.

Fig. 3. Maximum value of magnitude error for uniform, distorted mesh.

grid. Both conditionally stable schemes do not converge when
the inferior mesh (B) is significantly distorted ( for
the central Euler scheme, and for the mixed scheme).
The set of tetrahedral elements with better shape characteristic
improves the overall stability of the time domain algorithm for
mesh A. This essential factor of stabilization is lost for mesh B.

The mixed time integration scheme needs a lower coef-
ficient than the central scheme. This means that the value of
time step must be smaller, and the computational cost of
the FETD algorithm increases. However, the mixed scheme is
useful in explicit formulation of the algorithm, because the mass
matrix has to be lumped solely.

The numerical results obtained from the time domain
method are verified and compared to the analytical solution.
The backward Euler method introduces the largest magnitude
error (Fig. 3). Its maximal value is about 20%. The fidelity of
the Newmark method is better than the backward scheme for
both the ideal and distorted meshes. The maximum magnitude
error for conditionally stable schemes is less than 5%. The
value of the error for these schemes increases two times when
the distortion is changed in a narrow scope .

The good agreement between computational and analytical
results demands the increase of the number of iterations in the
PCG algorithm (Fig. 4). In this way, the efficiency of the PCG
algorithm decreases, because more floating point operations in
the PCG algorithm are required to find the final solution. When
the distorted FE mesh is used, the matrix becomes worse
conditioned and nondiagonally dominant. The components on
the diagonal are constant while some nondiagonal components
are equal to them. The second part of the off-diagonal terms
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Fig. 4. Maximal number of iterations in PCG algorithm as a function of .

of matrix goes to zero when the distortion increases. The
entries of the matrix for conditionally stable time integration
schemes are the result of the dot product of the vector shape
functions and . The vector product is included to the
terms of the matrix when the unconditionally stable schemes
are implemented. The behavior of the individual components of
the matrix depends on the orientation of the appropriate edges
and the deformation of the FE mesh.

V. CONCLUSION

The stability and accuracy of the FETD method depend on
the value of space increment and the value of time increment

. The value of the Courant number depends on the local dis-
tortion and the whole statistic of the Robert/Roux factor in the
analyzed FE model.

The presented results indicate the tight relation between the
performance of the algorithm and the quality of the FE mesh.
The results concern two types of structured FE meshes with the
first-order tetrahedral edge elements. The stability and accuracy
of the algorithm with unstructured mesh depend on the local
quality of the grid and the total statistic of the coefficient in

the model. The distorted FE edge-based mesh makes accuracy
of conditionally and unconditionally schemes worse. Local re-
finements and distortions of the edge-based mesh cause global
instability of the time domain scheme.

The conditionally stable schemes require fewer iterations of
the PCG algorithm but the time step must be adapted to the
quality of mesh. This means that the computational cost of the
FETD algorithm depends on the quality of the edge-based mesh.
Flexible changes of the time step enable us to modify the com-
putational cost of the unconditionally stable schemes.

A well-shaped and fine FE mesh leads to a well-conditioned
formulation of the FE time domain algorithm. In this case, the
total computational cost and/or size of the FETD model can ex-
ceed the computational power of the modern computer hard-
ware. The concurrent modeling of FE phenomena is an alterna-
tive approach to this problem.
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