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Numerical Performance of the Distributed Vector
Finite-Element Time-Domain Algorithm

Boguslaw Butrylo, Member, IEEE, Christian Vollaire, Member, IEEE, Laurent Nicolas, and
Alain Nicolas, Member, IEEE

Abstract—This paper deals with a distributed time-domain
modeling of electromagnetic phenomena with the finite-element
method. The model is approximated by edge elements. The con-
stitutive equations and method of parallelization of the algorithm
are presented. The properties of the distributed finite-element
time-domain algorithm are discussed. Some typical performance
metrics are studied for the parallel versions of the software.
The presented algorithm is executed on a heterogeneous and a
homogeneous clusters of workstations. Two different distributed
memory environments (MPI and PVM) are used to evaluate the
efficiency of the algorithm.

Index Terms—Distributed computing, edge elements,
finite-element time-domain (FETD) algorithm, high-frequency
electromagnetic field.

I. INTRODUCTION

I N THE LAST years the various types of edge elements are
widely used in computational electromagnetics. Flexibility

of the finite-element technique and right physical sense of
the edge elements make this formulation useful in modeling
of electromagnetic phenomena. High spatial and temporal
resolutions of the analyzed electromagnetic problem require
high-performance computing resources.

The distributed implementation of the finite-element
time-domain (FETD) algorithm enables to overcome some
limitations of a sequential version of this method [1].
High-performance simulation of the time-domain problem
enables to reduce either memory cost or time of computation
but, as usual, some weaknesses of the distributed implementa-
tion are revealed [2]. In this paper, the properties of the vector
FETD are evaluated in the known distributed multicomputer
environments.

II. CONSTITUTIVE EQUATIONS

The distribution of electric field in the analyzed model is
stated by time-dependent vector wave equation

(1)
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where , , and are the parameters of the linear and isotropic
media. In the case of excitation by a plane wave, according to
general Galerkin scheme, the weak form of (1) is given by

(2)

where is the test vector function, is the external sur-
face of the model, and is the incident field. Since the un-
bounded domain of computation must be limited, the domain
of analysis is truncated, and the first-order Engquist–Majda ab-
sorbing boundary condition is assumed on the external surface

[3].
This equation is discretized in time domain and in space

domain to yield a system of linear equations which must be
solved. Space discretization is achieved using incomplete
first-order tetrahedral edge elements [4]. Consid-
ering the central Euler difference approximations of the first-
and the second-order derivatives, the final form of the equation
is

(3)

where , , and are mass, damping, and stiffness matrices,
respectively [5]. These matrices are sparse, symmetric, and non-
diagonal, therefore, an implicit solver must be used to calculate
the time-dependent distribution of electric field . The
vector represents the dynamic load in the analyzed model and

is the assumed time step in the time integration scheme.

III. DISTRIBUTED IMPLEMENTATION

The distributed version of the presented algorithm is based
on the classical domain decomposition paradigm. Because the
unknowns are connected with the edges, the set of edges is de-
composed. There are no geometrical restrictions of the decom-
position, because the , , and matrices are assembled by
degrees-of-freedom (DOF) [6], [7].

The elaborated FETD algorithm works in single process mul-
tiple data (SPMD) mode, whereas the configuration of the dis-
tributed memory environment is stable [8].
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Fig. 1. Flow chart of the distributed FETD edge-based algorithm (two
concurrent processes, is a maximal time of simulation).

The FETD algorithm involves many types of computing
tasks, ranging from two- and three-dimensional (2-D, 3-D)
assembling, to extensive matrix operations. These computa-
tionally intensive operations are performed in two main stages:
assembling of the matrix equation and time integration loop
(Fig. 1).

The first stage starts from an input operation, and then the
nodal form of the model is translated into an edge formulation.
The entire edge description of the geometry is performed in-
dependently by each of computing units, because this task is
not computationally expensive. Finally, the edge-based form of
the analyzed model is decomposed and saved in the processing
units. Only the data required on each processor are stored in
memory.

Local, distributed assembling of , , and matrices is per-
formed in the next step. Each computing unit assembles the ma-
trices only for its local subset of edges. The task allocation ob-
tained in this stage is almost ideal. Any processing unit does
not need to access data pertaining to the other processor. Only
at the end of this stage, the information about boundary condi-
tions (BC) is exchanged between workstations. As the result of
the distributed assembling, the matrix (3) is distributed by rows
among processing units of a cluster.

Traditional FETD scheme involves the repeated solution of
system of sparse linear equations. According to Fig. 1, at least
three different tasks can be distinguished in the time integration
loop.

First, each processor assembles its local part of the right-hand
side of matrix equation (incident wave or source antenna). These
partial source terms are concatenated in SPMD mode. Then,
the preconditioned conjugate gradient (PCG) is used to solve
the matrix (3). Since the matrix system is well preconditioned
(ten iteration per time step), diagonal preconditioning is used to
avoid messages passing during this stage.

Partial matrix vector multiplications are performed in parallel
[7]. Therefore, the basic matrix and vector operations are paral-
lelized in the time integration loop. In order to reduce communi-
cation traffic, only nonzero terms of partial vectors are sent for

TABLE I
PROPERTIES OF THE MULTICOMPUTER SYSTEMS

the concatenation (SPMD mode). The communication pattern of
the FETD algorithm is highly structured and fully predictable.

The transfer from edge to nodal results is the third step in the
time integration loop. It is the most time consuming operation
in the time integration loop, because the Gaussian quadratures
must be calculated in each time step. This part of the algorithm
is efficiently parallelized, but it is not taken into account as a
specific form of the postprocessing task.

IV. DISTRIBUTED ENVIRONMENT

Two different types of clusters of workstations are used to
evaluate the presented FETD algorithm (Table I). The first
cluster (A) is a heterogeneous system and the processing units
are connected by the gigabit Ethernet hardware. The second
cluster (B) has worse communication infrastructure (fast
Ethernet) but it consists of eight equivalent processing units.

Two different distributed memory environments are imple-
mented in the clusters. The interdependent threads communicate
through either MPI or PVM message passing environment [8].
The communicational load of the presented FETD algorithm is
proportional to the total number of edges in the finite-element
method (FEM) model, and it depends on the number of pro-
cessing units in the cluster. In the MPI version of the FETD al-
gorithm, the network traffic is minimized by using broadcast
communication rather than point-to-point data transfer. In the
PVM version, the processing units communicate only in the in-
dividual mode because of the low performance of the imple-
mented broadcast function.

V. VALIDATION OF THE ALGORITHM

The elaborated algorithm is scalable, because the number of
computing units can be easily matched in the SPMD mode. The
real enlargement of the FE model is limited by minimum size
of memory of a single computing node, because the set of data
is not totally decomposed. Fig. 2 gives the memory repartition
for a 342 342 DOF problem, since the total size of local vari-
ables is related to the total size of global variables. Global vari-
ables are the set of data duplicated on each processor (e.g., some
components of the edge-based FE model). Local variables con-
cern data specific to each processor. The local parts of matrices
and specific structures for PCG algorithm constitute this set of
variables. The structure of the algorithm and form of data struc-
tures affect the relation between local and global variables. This
relation does not depend on the hardware platform and/or type
of distributed environment.
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Fig. 2. Relation between local and global variables in the distributed
edge-based formulation of the FETD algorithm.

TABLE II
LOAD BALANCING OF THE ALGORITHM

The benchmark problems [a plane wave propagating in free
space, and diffraction of electromagnetic plane wave on a per-
fect electric conducting (PEC) body] are calculated to deter-
mine the performance of the presented algorithm. The input and
output subtasks are not taken into account in this analysis be-
cause the elapsed time of I/O operations depends principally on
the properties of hard disks.

The interdependence of the processes is different in the as-
sembling stage and in the time integration loop. The assembling
thread in the processing unit is loosely connected with the others
concurrent threads. The subtasks in the distributed implementa-
tion of the PCG algorithm are tightly coupled. In this case, the
workstations are loaded uniformly (Table II).

The nominal load balancing is ideal in the time integration
loop, but it does not mean that the absolute time of computa-
tion is reduced. The maximum computation time of the worst
workstation approximates the computation time for all of the
processing units. When one processing unit is slow or highly
loaded, the others processing units have to wait for a part of
data from this unit.

The speedup of MPI implementation evolves with the size
of the assembled FE model (Fig. 3). The interprocessor com-
munication plays a significant role for small models. Once the
mesh size increases, the computation becomes dominant. For
the largest FE models, the speedups of MPI and PVM imple-
mentations are approximately equal. They increase linearly with
respect to number of processing units, however, it is less than
the ideal one (Figs. 4 and 5). This stage is highly parallelized,
but inherently sequential nature of some operations and mutual
data transfers of BC data slow the overall speedup down. The as-

Fig. 3. Speedup of the assembling stage as a function of DOF (cluster A—four
processors).

Fig. 4. Speedup of the assembling stage, one time step of the solving stage
and for the total computation (cluster A—342 342 DOF problem).

Fig. 5. Speedup of the assembling stage, one time step of the solving stage
and for the total computation (cluster B—268 380 DOF).

sembling and matrix factorization subroutines are the most time
consuming operations in the first stage of the FETD algorithm.

The time integration loop is more computationally de-
manding. The crucial part of this stage is distributed version
of the iterative solver subroutine. However, the speedup of this
part is not good, and it slows down the computation stage. The
elapsed time of the distributed solver is worse than the time of
a sequential implementation (Figs. 3–5). The diagonal precon-
ditioner is perfectly parallelized since distributed subtasks are
executed independently. Therefore, the total performance of the



1000 IEEE TRANSACTIONS ON MAGNETICS, VOL. 40, NO. 2, MARCH 2004

Fig. 6. Scattering by a PEC airplane in time domain (574 151 DOF).

distributed PCG solver is shaped by the matrix operations. The
global matrix-vector product is a linear combination of locally
calculated subvectors. These partial vectors must be transferred
between computing units.

On the other hand, the speedup of the solver stage (one
time step: source term assembling and PCG) is below 1 for
any FE model. The implemented parallel PCG algorithm with
distributed preconditioner degenerates into a form with a poorer
performance than the sequential algorithm. This effect arises
from nonoverlapped, intensive communication and interdepen-
dencies between distributed threads of the PCG subroutine. The
distributed PCG solver can cope with extremely large FE-edge
element model, and the maximum size of the model is limited
only by the parameters of the hardware. The overall speedup
of the implemented PCG algorithm does not depend on the
number of DOF. It remains constant for a wide range of the FE
models, and due to the communication load it decreases when
the number of processing units is enlarged.

The total speedup of the FETD algorithm is given as

Speedup (4)

where is the time of assembling, the run time of a single
time step, the number of time steps, and is the number
of computers in the cluster. According to the Amdahl’s law,
the speedup is limited by relation between sequential and par-
allel parts of the algorithm [8]. There is no clear rule to fix
the speedup of the FETD algorithm, since the nature of the as-
sembling stage differs from the solver. The upper limit of the
speedup of the FETD algorithm is described by the performance
of the assembling stage (i.e., it directly depends on the number
of processing units), whereas the lower limit is equal to the
speedup of the solver. In that case, the total speedup is a function
of the time step and the number of time steps . It is greater
than one in the presented benchmark problem (assembling and
300 time steps, Figs. 4 and 5).

The heart and bottleneck of the concurrent FETD algorithm
is the distributed solver for large sparse matrix equation. The
bandwidth of the communication network in the cluster essen-
tially determines the speedup of the solver and FETD algorithm.
However, the scalability and global speedup of the parallel al-
gorithm are satisfactory. In this way, realistic problems can be
solved (Fig. 6).

VI. CONCLUSION

Three-dimensional time-dependent simulation of electro-
magnetic phenomena requires a large amount of memory and
processing time to find the solution of a realistic model. The
elaborated distributed version of FETD algorithm enables to
perform computationally and memory expensive simulations.

The presented distributed implementation of the FETD algo-
rithm is a demanding application. The extensive parallelism is
applied in assembling stage and time integration loop. The par-
allelization of the FETD algorithm improves performance of nu-
merical simulation.

The run time of the algorithm is reduced considerably in the
stage of matrix assembling. The overall speedups of the MPI
and the PVM implementations in the assembling stage are very
close. The presented results indicate slightly better numerical
performance of PVM version.

The coherent form of the FEM model is constructed by the
data transfer, since the data set is decomposed. The efficient
data transfer is a critical issue in the distributed implementation
of the FETD method. Communication latency limits the per-
formance of the PCG solver and the total speedup of the time
integration loop.
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