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We consider a jumping Markov process {X x t } t≥0 . We study the absolute continuity of the law of X x t for t > 0. We first consider, as Bichteler-Jacod [2] and Bichteler-Gravereaux-Jacod [1], the case where the rate of jump is constant. We state some results in the spirit of those of [2, 1], with rather weaker assumptions and simpler proofs, not relying on the use of stochastic calculus of variations.

We finally obtain the absolute continuity of the law of X x t in the case where the rate of jump depends on the spatial variable, and this last result seems to be new.

with possibly an additional diffusion term, and the integral part written in a (more general) compensated form.

Here n ∈ N is fixed, and the functions γ : R d → R and ϕ : R n → R are nonnegative.

We aim to investigate the absolute continuity of the law of X x t with respect to the Lebesgue measure on R d , for t > 0. We will sometimes allow the presence of a Brownian part, but we will actually not use the regularizing effect of the Brownian motion.

Assume for a moment that d = n = 1. Roughly speaking, the law of X x t is expected to have a density as soon as t > 0, if for all y ∈ R, γ(y) R ϕ(z)dz = ∞ and if h(y, z) is not too much constant in z (for example h(y, .) of class C 1 with a nonzero derivative almost everywhere). Indeed, in such a case, X x has infinitely many jumps immediately after t = 0. Furthermore, the jumps are of the shape X x t = X x t-+ h(X x t-, Z), with Z a random variable independent of X x t-, with law ϕ(z)dz. This produces absolute continuity for

X x t , if h is sufficiently non-constant in z.
This simple idea is not so easy to handle rigorously, since X x has infinitely many jumps, and since ϕ(z)dz is not a probability measure (because R n ϕ(z)dz = ∞). To our knowledge, all the known results are based on the use of stochastic calculus of variations, i.e. on a sort of differential calculus with respect to the stochastic variable ω. The first results in this direction were obtained by Bismut [START_REF] Bismut | Calcul des variations stochastiques et processus de sauts[END_REF]. Important results are due to Bichteler-Jacod [START_REF] Bichteler | Calcul de Malliavin pour les diffusions avec sauts, existence d'une densité dans le cas unidimensionel[END_REF], and then Bichteler-Gravereaux-Jacod [START_REF] Bichteler | Malliavin calculus for processes with jumps[END_REF]. We refer to Graham-Méléard [START_REF] Graham | Existence and regularity of a solution to a Kac equation without cutoff using Malliavin Calculus[END_REF] and Fournier-Giet [START_REF] Fournier | On small particles in coagulation-fragmentation equations[END_REF] for applications to physical integro-differential equations such as the Boltzmann and the coagulation-fragmentation equations. See also Picard [11] and Denis [START_REF] Denis | A criterion of density for solutions of Poisson-driven SDEs[END_REF] for alternative methods in the much more complicated case where the intensity measure of N is singular.

All the previously cited works concern the case where the rate of jump γ(x) is constant. The case where γ is non constant is much more delicate. The main reason for this is that in such a case, the map x → X x t cannot be regular (and even continuous). Indeed, if γ(x) < γ(y), and if R n ϕ(z)dz = ∞, then it is clear that for all small t > 0, X y jumps infinitely more often than X x before t. The only available result with γ not constant seems to be that of [START_REF] Fournier | Jumpring SDEs: absolute continuity using monotonicity[END_REF], of which the assumptions are very restrictive: monotonicity (in x)

is assumed for h and γ.

First, we would like to give some results in the spirit of Bichteler-Jacod [START_REF] Bichteler | Calcul de Malliavin pour les diffusions avec sauts, existence d'une densité dans le cas unidimensionel[END_REF] and Bichteler-Gravereaux-Jacod [START_REF] Bichteler | Malliavin calculus for processes with jumps[END_REF], with simpler proofs. We will in particular not use the stochastic calculus of variations. We thus consider in Section 2 the case where γ is constant. In Subsection 2.1, we state and prove a first result under a strong nondegeneracy assumption on h, which is satisfying only in the case where d = 1.

It relies on assumptions which ensure that one jump is sufficient to produce absolute continuity for the law of X x t . The proof is elementary, and our result follows the line of Theorem 2.5 in Bichteler-Jacod [START_REF] Bichteler | Calcul de Malliavin pour les diffusions avec sauts, existence d'une densité dans le cas unidimensionel[END_REF], but our assumptions are rather weaker. In Subsection 2.2, we study a much more complicated case, where a finite number of jumps are required to ensure the absolute continuity of the law of X x t . Our result is inspired by that of Bichteler-Gravereaux-Jacod [START_REF] Bichteler | Malliavin calculus for processes with jumps[END_REF] Theorem 2.14.

Although the results of Subsection 2.1 are contained in those of Subsection 2.2, we begin with Subsection 2.1 for the sake of clarity: the result and its proof are much simpler.

We will finally obtain a result in the case where γ is not constant in Section 3. This last result seems to be new, and improves consequently those of [START_REF] Fournier | Jumpring SDEs: absolute continuity using monotonicity[END_REF].

Our methods allow to improve slightly the results of [START_REF] Bichteler | Malliavin calculus for processes with jumps[END_REF][START_REF] Bichteler | Calcul de Malliavin pour les diffusions avec sauts, existence d'une densité dans le cas unidimensionel[END_REF] concerning the existence of a density when γ is constant, and to obtain a result when γ depends on the variable position. Let us however recall that the smoothness of the density was studied in [START_REF] Bichteler | Malliavin calculus for processes with jumps[END_REF], which does not seem to be possible with our method.

In the whole paper, we denote the collection of Borelian subsets of R d with vanishing Lebesgue measure by

A = A ∈ B(R d ); A dx = 0 . (1.2)
2

The case of a constant rate of jump

Consider the following d-dimensional S.D.E., for some d ∈ N, starting from x ∈ R d :

X x t = x + t 0 b(X x s )ds + t 0 R n h(X x s-, z) Ñ (ds, dz) + t 0 σ(X x s )dB s , (2.1) 
where Assumption (I): N (ds, dz) is a Poisson measure on [0, ∞) × R n , for some n ∈ N, with intensity measure ν(ds, dz) = dsϕ(z)dz. The function ϕ : R n → R + is supposed to be measurable. We denote by Ñ = Nν the associated compensated Poisson measure. The R m -valued (for some m ∈ N) Brownian motion {B t } t≥0 is supposed to be independent of N .

In this case, the generator of the Markov process X x is given, for any φ ∈ C 2 b (R d ) and y ∈ R d , by

Lφ(y) = b(y).∇φ(y) + 1 2 d i,j=1 (σσ * ) i,j (x)∂ i ∂ j φ(x) + R n [φ(y + h(y, z)) -φ(y) -h(y, z).∇φ(y)] ϕ(z)dz. (2.2) 
We assume the following hypothesis, M d×m standing for the set of d × m matrices with real entries.

Assumption 

× R n → R d is measurable. For each z ∈ R n , x → h(x, z) is of class C 2 on R d . There exists η ∈ L 2 (R n , ϕ(z)dz) and a continuous function ζ : R d → R such that for all x ∈ R d , z ∈ R n , |h(x, z)| ≤ (1 + |x|)η(z), while |h x (x, z)| + |h xx (x, z)| ≤ ζ(x)η(z).
Then it is well-known that the following result holds. 

∈ R d , all T ∈ [0, ∞), E sup s∈[0,T ] |X x s | 2 < ∞. (2.
3)

The process {X x t } t≥0,x∈R d furthermore satisfies the strong Markov property.

See Ikeda-Watanabe [START_REF] Ikeda | Stochastic differential equations and diffusion processes[END_REF] for the case of globally Lipschitz coefficients. A standard localization procedure allows to obtain Theorem 2.1.

Absolute continuity using one jump

We first give some assumptions, statements, and examples. The proof is handled in a second part.

Statements

We first introduce some assumptions. Here I d stands for the unit d × d matrix, while x 0 is a given point of R d .

Assumption (H2): For all x ∈ R d , all z ∈ R n , det(I d + h x (x, z)) = 0.
Assumption (H3)(x 0 ): There exists > 0 such that for all x ∈ B(x 0 , ), there exists a subset

O(x) ⊂ R n such that, (recall (1.2)), O (x) 
ϕ(z)dz = ∞, and for all A ∈ A,

O(x) 1 {h(x,z)∈A} ϕ(z)dz = 0, (2.4) 
and such that the map (x, z) →

1 {z∈O(x)} is measurable on B(x 0 , ) × R n .
The main results of this section are the following. We do not state a result concerning the regularizing effect of the Brownian part of (2.1), since it seems reasonable that standard techniques of Malliavin calculus (see e.g. Nualart, [START_REF] Nualart | The Malliavin calculus and related topics[END_REF]) may allow to prove that under (H1), (H2) and if σσ * (x 0 ) is invertible, then the law of X x0 t has a density with respect to the Lebesgue measure on R d as soon as t > 0.

These results relax subsequently the assumptions of [START_REF] Bichteler | Calcul de Malliavin pour les diffusions avec sauts, existence d'une densité dans le cas unidimensionel[END_REF], especially concerning the regularity (in z) and boundness conditions on h. Let us comment on our hypotheses. The second condition in (2.4) means that the image measure of 1 {z∈O(x)} ϕ(z)dz (where dz stands for the Lebesgue measure on R n ) by the map z → h(x, z) has a density with respect to the Lebesgue measure on R d , for each x ∈ B(x 0 , ).

Proposition 2.4 Assume that n = d and that there exists an open subset

O of R n such that (x, z) → h(x, z) is of class C 1 on R × O. If for all x ∈ R d , O 1 {det h z (x,z) =0} ϕ(z)dz = ∞, then (H3)(x 0 ) holds for any x 0 .
Indeed, it suffices to note that, since

n = d, h z (x, z) is a d × d matrix for each x ∈ R d , each z ∈ O. Choosing = 1 and O(x) = {z ∈ O, det h z (x, z) = 0} allows us to conclude, noting that, due to the local inverse Theorem, the map z → h(x, z) is a local C 1 -diffeomorphism on O.
Assumptions (H1) and (H3)(x 0 ) are quite natural. Note that (H2) is not only a technical condition, as this example shows.

Example 2.5 Assume that n = d = 1, that ϕ ≡ 1, that b, σ satisfy (H1) with b(0) = σ(0) = 0, and that h(x, z) = -x1 {|z|≤1} +(x/|z|)1 {|z|>1} . Then (I) and (H1) are satisfied, while (H3)(x) holds for all x = 0, but (H2) fails. One can prove that in such a case, P [X x0 t = 0] > 0 for all t > 0, and thus the law of

X x0 t is not absolutely continuous. Indeed, it is clear that, if T 1 = inf{t ≥ 0; t 0 R 1 {|z|≤1} N (ds, dz) ≥ 1}, then T 1 < ∞ a.s.
(its law is exponential with parameter 2) and X T1 = X T1-+ (-X T1-) = 0. Since furthermore b(0) = σ(0) = 0 and h(0, .) = 0, an uniqueness argument and the strong Markov property show that X T1+t = 0 a.s. for all t ≥ 0. Hence P [X x0 t = 0] > 0 for all t > 0.

Proof

We now turn to the proof of Theorem 2.2. We first proceed to a localization procedure.

Lemma 2.6 To prove Theorem 2.2 and Corollary 2.3, we may assume the additional condition (H4) below.

Assumption (H4): The functions b, b , b , σ, σ , σ are bounded. There exists η

∈ L 2 (R n , ϕ(z)dz) such that for all x ∈ R d , z ∈ R n , |h(x, z)| + |h x (x, z)| + |h xx (x, z)| ≤ η(z).
Proof We study the case of Theorem 2.2. Let x 0 ∈ R d be fixed. Assume that Theorem 2.2 holds under (I), (H 1 ), (H 2 ), (H 3 )(x 0 ), (H4), and consider some functions b, σ, h satisfying only (I), (H 1 ), (H 2 ), (H 3 )(x 0 ). For each l ≥ 1, consider some functions b l , σ l , h l satisfying (I), (H 1 ), (H 2 ), (H 3 )(x 0 ), (H4)

and such that for all |x| ≤ l, 

all z ∈ R n , b l (x) = b(x), σ l (x) = σ(x),
all x ∈ R d , det ∂ ∂x X x t = 0.
Proof It is well-known (see Protter [START_REF] Protter | Stochastic integration and differential equations[END_REF] Theorems 39 and 40 Section 7 for very similar results) that under (I), (H1), (H4), the map x → X x t is a.s. of class C 1 on R d for each t ≥ 0, and that one may differentiate (2.1) with respect to x:

∂ ∂x X x t = I d + t 0 b (X x s ) ∂ ∂x X x s ds + t 0 R n h x (X x s-, z) ∂ ∂x X x s-Ñ (ds, dz) + t 0 σ (X x s ) ∂ ∂x X x s dB s . (2.6)
Then, following the ideas of Jacod ([9], Theorem 1 and Corollary page 443), we deduce an explicit expression for V x t = det ∂ ∂x X x t in terms of Doléans-Dade exponentials (a continuity argument shows that this explicit expression holds a.s. simultaneously for all x ∈ R d ). We thus obtain, still using the results of [START_REF] Jacod | Equations différentielles linéaires, la méthode de variation des constantes[END_REF] simultaneously for all x ∈ R d , that a.s., det ∂ ∂x X x t = 0 for all x ∈ R d and all t < τ = inf x∈R d T x , where

T x = inf{t ≥ 0; t 0 R n 1 {det(I d +h x (X x s-,z))=0} N (ds, dz) ≥ 1}. (2.7)
But (H2) ensures that τ = ∞ a.s.

We may now prove Theorem 2.2.

Proof of Theorem 2.2 Due to Lemma 2.6, we suppose the additional condition (H4). We consider

x 0 ∈ R d and t > 0 fixed.

Step 1: Due to (H3)(x 0 ), we may build, for each x ∈ B(x 0 , ), an increasing sequence {O p (x)} p≥1 of subsets of R n such that

∪ p≥1 O p (x) = O(x) and ∀ p ≥ 1, Op(x) ϕ(z)dz = p, (2.8) 
in such a way that for each p ≥ 1, the map (x, z) → 1 {z∈Op(x)} is measurable on B(x 0 , ) × R n .

We also consider the stopping time

τ = inf{s ≥ 0; |X x0 s -x 0 | ≥ } > 0 a.s.
(2.9)

The positivity of τ comes from the fact that X x0 is a.s. right-continuous and starts from x 0 .

We finally consider the stopping time, for p ≥ 1,

S p = inf s ≥ 0; s 0 R n 1 n z∈Op " X x 0 (u∧τ )- "o N (du, dz) ≥ 1 , (2.10) 
and the associated mark Z p ∈ R n , uniquely defined by

N ({S p } × {Z p }) = 1.
Due to (2.8), and to the fact that X x0 (u∧τ )-always belongs to B(x 0 , ), one may prove that (i) p → S p is a.s. nonincreasing, (ii) lim p→∞ S p = 0 a.s., (iii) conditionally to F Sp-, the law of Z p is given by 1 p ϕ(z)1 n z∈Op " X

x 0 (Sp ∧τ )-

"o dz, where

F Sp-= σ {B ∩ {S p > s}; s ≥ 0, B ∈ F s } . (2.11)
Indeed, (i) is obvious by construction, since p → O p (x) is increasing for each x ∈ R d . Next, an easy computation shows that the compensator of the (random) point measure N p (ds, dz) = 1 {z∈Op(X x 0 (s∧τ )-)} N (ds, dz)

is given by pds × p -1 1 {z∈Op(X x 0 (s∧τ )-)} ϕ(z)dz. Since for each x ∈ R d , R n p -1 1 {z∈Op(x)} ϕ(z)dz = 1, we deduce that the rate of jump of N p is constant and equal to p, so that S p , which is its first instant of jump, has an exponential distribution with parameter p. This and (i) ensure (ii). We also obtain (iii) as a consequence of the shape of the compensator of N p .

Step 2: We now prove that conditionally to σ(S p ), the law of X x0

Sp has a density with respect to the Lebesgue measure on R d , on the set Ω 0 p = {τ ≥ S p }. Since S p is F Sp--measurable, it suffices to prove that for any A ∈ A, a.s., P [Ω 0 p , X x0 Sp ∈ A | F Sp-] = 0. But, using the notations of Step 1, a.s.,

X x0 Sp = X x0 Sp-+ h[X x0
Sp-, Z p ] on Ω 0 p . Furthermore, we know that on Ω 0 p , X x0 Sp-∈ B(x 0 , ) a.s. Thus, using

Step 1 (see (iii)), since {τ ≥ S p } and X x0 Sp-are F Sp--measurable,

P [Ω 0 p , X x0 Sp ∈ A | F Sp-] = 1 Ω p 0 P X x0 Sp-+ h[X x0 Sp-, Z p ] ∈ A | F Sp- (2.12) = 1 n τ ≥Sp,X x 0 Sp-∈B(x0, ) o R n 1 n h h X x 0 Sp-,z i ∈A-X x 0 Sp- o 1 p ϕ(z)1 n z∈Op " X x 0 Sp - "o dz = 0 due to (H3)(x 0 ) (use (2.4) with x = X x0 Sp-), since for any y ∈ R d , A -y = {x -y, x ∈ A} belongs to A.
Step 3: We may now deduce that for any p ≥ 1, the law of X x0 t has a density on the set Ω 1 p = {S p ≤ τ ∧t}.

We deduce from Step 2 that on Ω 1 p ⊂ Ω 0 p the law of (S p , X x0 Sp ) is of the shape ν p (ds)f p (s, x)dx. Hence, for any A ∈ A, using the strong Markov property, we obtain, conditionning with respect to F Sp ,

P [Ω 1 p , X x0 t ∈ A] = E 1 Ω 1 p E t 0 ν p (ds) R d f p (s, x)dx1 {X x t-s ∈A} . (2.13)
It thus suffices to show that a.s., for any s < t fixed,

R d f p (s, x)dx1 {X x t-s ∈A} = 0. (2.14)
Of course, it suffices to check that a.s., for s < t fixed,

R d dx1 {X x t-s ∈A} = 0. (2.15)
But this is immediate from Lemma 2.7, using that the Jacobian of the map x → X x t-s does (a.s.) never vanish and that A is Lebesgue-nul: one may find, due to the local inverse Theorem, a countable family

of open subsets R i of R d , on which x → X x t-s is a C 1 diffeomorphism, and such that R d = ∪ ∞ i=1 R i . The conclusion follows, performing the substitution x → y = X x t-s on each R i . This allows us to conclude that P [Ω p 1 , X x0 t ∈ A] = 0.
Step 4: The conclusion readily follows: due to Step 1 (see (2.9) and (ii)), 1 Ω 1 p goes a.s. to 1 as p tends to infinity. We thus infer from the Lebesgue Theorem that for any A ∈ A,

P [X x0 t ∈ A] = lim p→∞ P [Ω 1 p , X x0 t ∈ A] = 0, (2.16) 
thanks to Step 3. Thus the law of X x0 t has a density with respect to the Lebesgue measure on R d .

We finally show how to relax assumption (H2) when (H3)(x) holds everywhere.

Proof of Corollary 2.3 Due to Lemma 2.6, we may suppose the additional assumption (H4). We consider δ 0 > 0 such that for any

M ∈ M d×d satisfying |M | ≤ δ 0 , det(I d + M ) ≥ 1/2. We then split R n into O F ∪ O I , with O F = {z ∈ R n , η(z) ≥ δ 0 } , O I = {z ∈ R n , η(z) < δ 0 } . (2.17) Since η ∈ L 2 (R n , ϕ(z)dz), we deduce that λ F := OF ϕ(z)dz ≤ δ -2 0 R n η2 (z)ϕ(z)dz < ∞.
We next consider the solution {Y x t } t≥0 to the S.D.E.

Y x t = x + t 0 b(Y x s )ds + t 0 R n h(Y x s-, z)1 {z∈OI } Ñ (ds, dz) - t 0 OF h(Y x s-, z)ϕ(z)dz + t 0 σ(Y x s )dB s . (2.18) 
Clearly, this S.D.E. satisfies (I), (H1), (H 2 ), and (H3)(x) for all x, so that due to Theorem 2.2, the law of Y x t has a density for each t > 0, each x ∈ R d . The solution X x0 t to (2.1) may now be realized in the following way (see Ikeda-Watanabe [START_REF] Ikeda | Stochastic differential equations and diffusion processes[END_REF] for details): consider a standard Poisson process with intensity λ F and with instants of jump 0 = T 0 < T 1 < T 2 < ..., a family of i.i.d. R n -valued random variables (Z i ) i≥1 with law λ -1 F ϕ(z)1 {z∈OF } dz, and a family of i.i.d. solutions ({Y i,x t } x∈R d ,t≥0 ) i≥1 to (2.18), all these random objects being independent. Set

X x0 0 = x 0 , ∀ i ≥ 0, X x0 Ti+1 = Y i,X x 0 T i Ti+1-Ti + h(Y i,X x 0 T i Ti+1-Ti , Z i ) and ∀ t ≥ 0, X x0 t = i≥0 Y i,X x 0 T i t-Ti 1 {t∈[Ti,Ti+1)} . (2.19) 
Then {X x0 t } t≥0 is solution (in law) to (2.1). To conclude, notice that for any t > 0, one has t / ∈ ∪ i {T i } a.s., so that for any A ∈ A,

P [X x0 t ∈ A] = i≥0 P Y i,X x 0 T i t-Ti ∈ A, t ∈ (T i , T i+1 ) ≤ i≥0 P Y i,XT i t-Ti ∈ A, t > T i = 0. (2.20)
The last equality comes from the facts that for each i, {Y i,x s } s≥0,x∈R d is independent of (T i , X Ti ), and that the law of Y i,x t has a density for each t > 0, each x ∈ R d .

Absolute continuity using a finite number of jumps

We now would like to investigate the case where one jump is not sufficient to produce a density for the law of X x t . For example, assume that d = 2, and that X x t = (X x,1 t , X x,2 t ) has sufficiently many jumps which produce a density for X x,1 t , sufficiently many jumps which produce a density for X x,2 t , and that these two kinds of jump are independent enough. Then the result of Theorem 2.2 might still hold, even if (H3) fails.

In other words, we would like to prove a result in the spirit of Bichteler-Gravereaux-Jacod [START_REF] Bichteler | Malliavin calculus for processes with jumps[END_REF] Theorem 2.14. We keep in mind assumptions (I), (H1), (H2) and (H4) defined in the previous subsection.

We first give our result, which relies on a general (but quite untracktable) non-degeneracy assumption.

Then we turn to the proof, and we conclude the section with examples of applications.

Statements

We invite the reader to have a look at Assumption (H6) (stated in Subsection 2.2.3), which is a tractable version of (H5) below ((H6) is however less general). We first of all introduce some notation.

Notation 2.8 Assume (I) and (H1).

(i) For x = (x i ) ∈ R d , we set |x| = ( i x 2 i ) 1/2 , and for M = (M ij ) i,j ∈ M d×d we set |M | = i,j |M ij |.
(ii) For x ∈ R d and > 0, we consider the set

O x, = {z ∈ R n , |h(x, z)| ≤ } .
(2.21) (iii) For x ∈ R d , η > 0 and > 0, we consider the following set of regular functions: (iv) We consider the function g :

D x,η, = ψ ∈ C 1 (B(x, η) → R d ), sup y∈B(x,η) [|ψ(y) -y| + |ψ (y) -I d |] ≤ . ( 2 
R d × R n → R d defined by g(x, z) = x + h(x, z).
(v) Consider x 0 ∈ R d , > 0 and α ∈ N to be fixed. For ψ 1 , ..., ψ α ∈ D x0,2α , , we define the functions g x0,ψ1,...,ψi i for i ∈ {1, ..., α} recursively, by

g x0,ψ1 1 : O ψ1(x0), ⊂ R n → B(x 0 , 2 ) ⊂ R d , g x0,ψ1 1 (z 1 ) = g[ψ 1 (x 0 ), z 1 ], (2.23) 
and, for i ∈ {1, ..., α -1},

g x0,ψ1,...,ψi+1 i+1 (z 1 , ..., z i , .) : O ψi+1(g x 0 ,ψ 1 ,...,ψ i i (z1,...,zi)), ⊂ R n → B(x 0 , 2(i + 1) ) ⊂ R d , g x0,ψ1,...,ψi+1 i+1 (z 1 , ..., z i , z i+1 ) = g[ψ i+1 (g x0,ψ1,...,ψi i (z 1 , ..., z i )), z i+1 ]. (2.24)
Note that (2.23) and (2.24) always make sense, since ψ i belongs to D x0,2α , and due to point (ii). For

x 0 ∈ R d to be fixed, our non-degeneracy assumption is the following.

Assumption (H5)(x 0 ): There exists > 0 and α ∈ N such that for any ψ 1 , ..., ψ α in D x0,2α , , the following conditions hold: there exists

O 1 (ψ 1 ) ⊂ O ψ1(x0), such that O1(ψ1) ϕ(z)dz = ∞, (2.25) 
and such that for all z 1 ∈ O 1 (ψ 1 ), there exists

O 2 (ψ 1 , ψ 2 ; z 1 ) ⊂ O ψ2[g x 0 ,ψ 1 1 (z1)], such that O2(ψ1;ψ2,z1) ϕ(z)dz = ∞, ..., (2.26) 
and such that for all z α-1 ∈ O α-1 (ψ 1 , ..., ψ α-1 ; z 1 , ..., z α-2 ), there exists The idea of Theorem 2.9 is relatively simple, since assumption (H5)(x 0 ) almost contains its proof (see Subsection 2.2.2 below). Note that α stands for the maximum number of jumps necessary to produce a density for the law of X x t .

O α (ψ 1 , ..., ψ α ; z 1 , ..., z α-1 ) ⊂ O ψα[g x 0 ,ψ 1 ,...,ψ α-1 α-1 (z1,...,

Proof

We first of all remark that we may assume the additionnal assumption (H4) as before: copy line by line the proof of Lemma 2.6. By the same way, the proof of Corollary 2.10 is the same as that of Corollary 

|X x s -x| 2 + ∂X x s ∂x -I d 2 = 0. (2.30)
Proof First, a standard computation using (2.1), (2.6) and (H4) shows that there exists a constant C > 0 such that for all x ∈ R d , all t ∈ [0, 1],

E sup s∈[0,t] |X x s -x| 2 + ∂X x s ∂x -I d 2 ≤ Ct. (2.31)
Another standard computation using (2.1), (2.6) and (H4) shows that there exists a constant C > 0 such that for all x, y ∈ R d ,

E sup s∈[0,1] |X x s -X y s | 2 + ∂X y s ∂x - ∂X x s ∂x 2 ≤ C|x -y| 2 .
(2.32)

We deduce from an easy adaptation of the Kolmogorov criterion of continuity, see e.g. Revuz-Yor [START_REF] Revuz | Continuous martingales and Brownian motion[END_REF] p 25, that there exists 

C > 0 such that if Z = sup s∈[0,1] sup x,y∈B(x0,1),x =y      |X x s -X y s | 2 |x -y| 1/2 + ∂X y s ∂x - ∂X x s ∂x 2 |x -y| 1/2      , E[Z] < ∞. ( 2 
|X x s -x| 2 + ∂X x s ∂x -I d 2 ≤ E   n d i=1 sup s∈[0,t] |X xi s -x i | 2 + ∂X xi s ∂x -I d 2 + n -1/2 Z   ≤ C[n d t + n -1/2 ] (2.34)
One easily concludes, choosing n to be equal to the integer part of t -1/2d .

Proof of Theorem 2.9 As said before, we may assume the additional condition (H4). Let t > 0 and

x 0 ∈ R d be fixed. We assume that (H5)(x 0 ) is satisfied, for some > 0. We suppose smaller than 1/2α, where α ∈ N was defined in (H5)(x 0 ). This ensures that B(x 0 , 2α ) ⊂ B(x 0 , 1). We denote, for x ∈ R d and s ≥ 0, by {X x,s r } r≥s the process defined by

X x,s r = x + r s b(X x,s u )du + r s R n h(X x,s u-, z) Ñ (du, dz) + r s σ(X x,s u )dB u , (2.35) 
We consider, for 0 ≤ s ≤ r, the (stochastic) maps ψ s,r and ψ s,r-from R d into itself, defined by

ψ s,r (x) = X x,s r , ψ s,r-(x) = X x,s r-.
(2.36)

Step 1: We first build recursively some well-chosen jump times and marks. Due to (H5)(x 0 ), we may build, for any ψ 1 ∈ D x0,2α , , an increasing sequence {O p 1 (ψ 1 )} p≥1 of subsets of R n such that

∪ p≥1 O p 1 (ψ 1 ) = O 1 (ψ 1 ), and ∀ p ≥ 1, O p 1 (ψ1) ϕ(z)dz = p.
(2.37)

We also consider the stopping times

τ 1 = inf {s ≥ 0; ψ 0,s / ∈ D x0,2α , } , S p 1 = inf s ≥ 0; s 0 R n 1 {z∈O p 1 (ψ 0,(u∧τ 1 )-)} N (du, dz) ≥ 1 , (2.38) 
and we denote by Z p 1 the associated mark, uniquely defined by

N ({S p 1 } × {Z p 1 }) = 1.
We 

ϕ(z)dz = p. (2.39) 
We also consider the stopping times Step 2: We remark that

τ i+1 = inf s > S p i ; ψ S p i ,s / ∈ D x0,2α , , (2.40 
for Ω 0 p = ∩ i∈{1,...,α} {τ i ≥ S p i } , lim p→∞ P [Ω 0 p ] = 1, (2.41) 
and for 

Ω 1 p = Ω 0 p ∩ {S p α ≤ t}, lim p→∞ P [Ω 1 p ] = 1. ( 2 
-= ψ 0,S p 1 -(x 0 ), so that X x0 S p 1 = ψ 0,S p 1 -(x 0 ) + h ψ 0,S p 1 -(x 0 ), Z p 1 = g x0,ψ 0,S p 1 - 1 (Z p 1 ) . (2.44) Thus X x0 S p 2 -= ψ S p 1 ,S p 2 -g x0,ψ 0,S p 1 - 1 (Z p 1 )
, so that

X x0 S p 2 = ψ S p 1 ,S p 2 -g x0,ψ 0,S p 1 - 1 (Z p 1 ) + h ψ S p 1 ,S p 2 -g x0,ψ 0,S p 1 - 1 (Z p 1 ) , Z p 2 = g x0,ψ 0,S p 1 -,ψ S p 1 ,S p 2 - 2 (Z p 1 , Z p 2 ) , (2.45) 
and so on...

Consider the σ-field

G p = σ ψ 0,S p 1 -, ..., ψ S p α-1 ,S p α -, S p 1 , ..., S p α . (2.46) 
We next claim that our construction leads to the conclusion that on Ω p 0 , the law of (Z p 1 , ..., Z p α ) conditionally to G p is given by

1 p 1 {z1∈O p 1 (ψ 0,S p 1 
-)} ϕ(z 1 )dz 1 × 1 p 1 {z2∈O p 2 (ψ 0,S p 1 -,ψ S p 1 ,S p 2 -,z1)} ϕ(z 2 )dz 2 ×... × 1 p 1 {zα∈O p α (ψ 0,S p 1 -,...,ψ S p α-1
,S p α -;z1,...,zα-1)} ϕ(z α )dz α .

(2.47)

Hence, for any Lebesgue-null set A ∈ A, since Ω p 0 is G p -measurable,

P [Ω 0 p , X x0 S p α ∈ A | G p ] = 1 Ω 0 p P g x0,ψ 0,S p 1 -,...,ψ S p α-1 ,S p α - α (Z p 1 , ..., Z p α ) ∈ A G p = 1 Ω 0 p 1 p α O p 1 (ψ 0,S p 1 
-) ϕ(z 1 )dz 1 ... O p α (ψ 0,S p 1 -,...,ψ S p α-1 ,S p α -;z1,...,zα-1)} ϕ(z α )dz α 1 ( g x 0 ,ψ 0,S p 1 - ,...,ψ S p α-1 ,S p α - α (z1,...,zα)∈A ) = 0 a.s., (2.48) 
where the last equality comes from (H5)(x 0 ) (see (2.28)). Since S α p is G p -measurable, this concludes the

Step.

Step 4: We deduce from Step 3 that the law of (S p α , X x0 S α p ) is of the shape ν p (ds)f p (s, x)dx. One thus may conclude exactly as in the proof of Theorem 2.2, Steps 3 and 4, using S p α instead of S p : we first prove that for each p ≥ 1, the law of X x0 t has a density on the set Ω p 1 (see the proof of Theorem 2.2, Step

3), and then we let p tend to infinity (see the proof of Theorem 2.2, Step 4).

Applications

The aim of this subsection is to give examples of functions h satisfying (H5). In the whole subsection, we will denote, for k ∈ N, for (A i ) i∈{1,...,k} a collection of d × l i matrices, by (A 1 ; ... ; A k ) the corresponding d × (l 1 + ... + l k ) matrix. We first show that (H5) generalizes (H3) Lemma 2.12 Assume (I) and (H1). Suppose that for some

x 0 ∈ R d , (H3)(x 0 ) is satisfied. Then (H5)(x 0 ) is satisfied.
Proof We know from (H3)(x 0 ) that there exists 0 > 0 such that for all x ∈ B(x 0 , 0 ), there exists O(x) such that (2.4) is fullfilled. Then (H5)(x 0 ) is satisfied with α = 1 and = 0 /3. Indeed, it suffices to choose, for each

ψ 1 ∈ D x0,2 , , O 1 (ψ 1 ) = O(ψ 1 (x 0 )) ∩ O ψ1(x0), .
Then (2.4) and (H1) ensure that (2.25) holds, while (2.28) follows from (2.4), since g x0,ψ1

1

(z 1 ) = ψ 1 (x 0 )+ h[ψ 1 (x 0 ), z 1 ], with ψ 1 (x 0 ) ∈ B(x 0 , 3 ) = B(x 0 , 0 ).
We next show that (H5) is satisfied under some conditions in the spirit of those of Bichteler-Gravereaux-Jacod [START_REF] Bichteler | Malliavin calculus for processes with jumps[END_REF] Theorem 2.14, at least in the case where σ ≡ 0 (recall that mixed non-degeneracy conditions concerning both σ and h are supposed in [START_REF] Bichteler | Malliavin calculus for processes with jumps[END_REF], which seems to be very difficult to obtain not using Malliavin calculus concerning at least the Brownian part). We of course rewrite (and generalize) the assumptions of [START_REF] Bichteler | Malliavin calculus for processes with jumps[END_REF] in terms of our notations.

Proposition 2.13 Assume (I) and (H1). Suppose that (H6) below is satisfied. Then (H5)(x 0 ) is satisfied for any x 0 ∈ R d .

Assumption (H6):

There exists α ∈ N, and some disjoint open subsets B 1 , ..., B α of R n such that:

(i) (x, z) → h(x, z) is of class C 1 on R d × B i for all i ∈ {1, ...

, α};

(ii) for all x ∈ R d , there exists B 1 (x) ⊂ B 1 , ..., B α (x) ⊂ B α such that for all i ∈ {1, ..., α},

Bi(x) ϕ(z)dz = ∞, (2.49) 
and such that for all z 1 ∈ B 1 (x), ..., z α ∈ B α (x), the d × d matrix

M (x, z 1 , ..., z α ) = α i=1 [(I d + h x (x, z i )) -1 h z (x, z i )][(I d + h x (x, z i )) -1 h z (x, z i )] * (2.50) is well-defined (that is (I d + h x (x, z i ))
is invertible for all i) and non degenerated (that is det M = 0).

Here K * stands for the transposed matrix of K.

(iii) For all i ∈ {1, ..., α}, the map (x, z) → 1 {z∈Bi(x)} is measurable.

This assumption is a strict ellipticity condition: at each point ∈ R d , the vector space spanned by the directions of all possible jumps at x is R d . See the comments in [START_REF] Bichteler | Malliavin calculus for processes with jumps[END_REF] for more details.

Note that M (x, z 1 , ..., z α ) is invertible if and only if the rank of the following d × nα matrix is d:

rank (I d + h x (x, z 1 )) -1 h z (x, z 1 ) ; (I d + h x (x, z 2 )) -1 h z (x, z 2 ) ; ... ; (I d + h x (x, z α )) -1 h z (x, z α ) = d.
(2.51)

Proof Let x 0 ∈ R d be fixed. We will prove that (H5)(x 0 ) holds, with α = d, and with > 0 small enough, in order that for all ψ ∈ D x0,2α , , all x ∈ B(x 0 , 2α ), the d × d matrix ψ (x) is invertible. We consider ψ 1 , ..., ψ d in D x0,2α , to be fixed.

Step 1 For any k ∈ N ∪ {0}, any j ∈ {1, ..., d -1}, any d × k matrix M such that rank M ≥ j, and any

x ∈ R d , one may find, due to (2.51), an index i(x, M ) ∈ {1, ..., α} such that, for any z i ∈ B i(x,M) (x), the rank of the following d × (k + n) matrix is at least j + 1:

rank M ; (I d + h x (x, z i )) -1 h z (x, z i ) ≥ j + 1, (2.52) 
which implies that the rank of the following d × (k + n) matrix is also at least j + 1:

rank (I d + h x (x, z i ))M ; h z (x, z i ) ≥ j + 1.
(2.53)

Step 2: Set x 1 = ψ 1 (x 0 ), M 1 = 0, and consider O 1 (ψ 1 ) = B i(x1,M1) (x 1 ) ∩ O x1, . Due to (2.49) and (H1), we deduce that (2.25) holds. Furthermore, the map z 1 → g x0,ψ1

1 (z 1 ) is of class C 1 on O 1 (ψ 1 ). Using
Step 1, we obtain that for any z 1 ∈ O 1 (ψ 1 ), the rank of the following d × n matrix is at least 1:

rank [g x0,ψ1 1 ] (z 1 ) = rank [h z (ψ 1 (x 0 ), z 1 )] = rank (I d + h x (x 1 , z 1 ))M 1 ; h z (x 1 , z 1 ) ≥ 1.
(2.54)

We used here the explicit expression (2.23) of g 1 . Next, we fix z 1 in O 1 (ψ 1 ), and we set

x 2 = ψ 2 [g x0,ψ1 1 (z 1 )],
and

M 2 = ψ 2 (g x0,ψ1 1 (z 1 ))[g x0,ψ1 1 
] (z 1 ) ∈ M d×n . Note that rank(M 2 ) ≥ 1 due to (2.54) and since

ψ 2 (g x0,ψ1 1 (z 1 )) is invertible. We choose O 2 (ψ 1 , ψ 2 ; z 1 ) = B i(x2,M2) (x 2 ) ∩ O x2, . (2.55) 
Then (2.49) and (H1) ensure that (2.26) holds, while an immediate computation shows that for all

z 1 ∈ O 1 (ψ 1 ), all z 2 ∈ O 2 (ψ 1 , ψ 2 ; z 1
), the rank of the following d × 2n matrix is at least 2, thanks to Step

1: rank [g x0,ψ1,ψ2 2 ] (z 1 , z 2 ) = rank ((I d + h x (x 2 , z 2 ))M 2 ; h z (x 2 , z 2 )) ≥ 2.
(2.56)

We used here the explicit expression (2.24) of g 2 . By the same way, one may build recursively a sequence of sets O i (ψ 1 , ..., ψ i ; z 1 , ..., z i-1 ), for i = 1, ..., d, in such a way that for all i ∈ {1, ..., α}

Oi(ψ1,...,ψi;z1,...,zi-1)

ϕ(z i )dz i = ∞, (2.57) 
and such that for any (z 1 , ..., z d ) ∈ ∆ x0,ψ1,...,ψ d , where clearly satisfies (H1), and it satisfies (H6), and thus (H5)(x 0 ) for all x 0 ∈ R 2 . Note that h does not satisfies (H3)(x 0 ), for any x 0 .

∆ x0,ψ1,...,ψ d = {(z 1 , ..., z d ), z 1 ∈ O 1 (ψ 1 ), ..., z d ∈ O d (ψ 1 , ..., ψ d ; z 1 , ..., z d-1 ))}, ( 2 
Remark that h is quite degenerated, since the state space of {X x0 t } t≥0 is 2, while the image of h(x, .) is a one-dimensional curve, for each x ∈ R 2 . However, X x t has a density for t > 0 because there are many possible directions of jumps: for each x, the vector space spanned by the directions {h z (x, z), z ∈ (0, 1)} is R 2 .

Proof Set α = 2, and consider two disjoint open subsets B 1 and B 2 of (0, 1) such that B 1 ∪ B 2 = (0, 1), and such that 

B1 ϕ(z)dz = B2 ϕ(z)dz = ∞. (2.60) The function h is clearly of class C 1 on R 2 × B i for i = 1, 2. Fix x ∈ R 2 ,
∂ x2 γ(x)z 2
) is injective on (0, (x)). Setting B i (x) = B i ∩ (0, (x)), it is clear that (2.49) holds for all x.

To show that M (x, z 1 , z 2 ) is non degenerated, it suffices to prove that for all x ∈ R 2 , all z 1 ∈ B 1 (x),

z 2 ∈ B 2 (x), the two-dimensional vectors v 1 = (I d + h x (x, z 1 )) -1 h z (x, z 1 ) and v 2 = (I d + h x (x, z 2 )) -1 h z (x, z 2 ) (2.61)
are well-defined and not colinear. But, for i = 1, 2, we get, using the expression of h,

v i = γ(x) 1 + ∂ x1 γ(x)z i + ∂ x2 γ(x)z 2 i     1 -∂ x2 γ(x)z 2 i 2z i + ∂ x1 γ(x)z 2 i     .
(2.62) Thanks to our choice for (x) and since z 1 = z 2 (because B 1 ∩ B 2 = ∅), while z 1 , z 2 belong to (0, (x)), we deduce that v 1 and v 2 are well-defined and not colinear, which concludes the proof.

We carry on with an hypoelliptic case, where the dependence of h in x plays an important role.

Example 2.15 Assume that (I) holds with d = 2 and n = 1, and with ϕ(z) = z -2 1 {z∈(0,1)} . Set

h(x, z) =     z x 1 z    
, where x = (x 1 , x 2 ). Then h clearly satisfies (H1), and it satisfies (H6), and thus (H5)(x 0 ) for all x 0 ∈ R 2 . Note that h does not satisfies (H3)(x 0 ), for any x 0 .

Remark that replacing here

h(x, z) =     z x 1 z     by h(x, z) =     z z     would not work, since in such a case, if b = σ = 0, if x 0 = 0, the solution X x0
t belongs a.s. to {(x 1 , x 2 ) ∈ R 2 ; x 1 = x 2 }, and thus can not have a density. Thus the dependence of h in x plays an important role.

Proof Set α = 2, and consider two disjoint open subsets B 1 and B 2 of (0, 1) such that B 1 ∪ B 2 = (0, 1), and such that (2.60) holds. Set then

B 1 (x) = B 1 and B 2 (x) = B 2 for all x ∈ R 2 . The function h is clearly of class C 1 on R 2 × B i for i = 1, 2. To show that M (x, z 1 , z 2 ) is non degenerated, it suffices to prove that for all x ∈ R 2 , all z 1 ∈ B 1 , z 2 ∈ B 2
, the two-dimensional vectors v 1 and v 2 defined by (2.61) are well-defined and not colinear. But, for i = 1, 2, we get

v i =     1 x 1 -z i     .
(2.63)

The conclusion follows: since z 1 = z 2 , v 1 and v 2 are not colinear.

We conclude with a case where (H5) is satisfied while (H6) does not hold.

Example 2.16 Assume that (I) holds with d = 2 and n = 1, and with ϕ(z) = z -2 1 {z∈(0,1)} . For z ∈ (0, 1), denote by [1/z] the integer part of 1/z, and set h(x, z)

=     z x 1 /[1/z]     .
Then h clearly satisfies (H1), and it satisfies (H5)(x 0 ) for all x 0 ∈ R 2 . Note that h does not satisfies (H6).

In this example, h is very degenerated, since for each fixed x, h z (x, z)

=     1 0   
 for all z such that the derivative exists. Furthermore we realize, denoting h = (h 1 , h 2 ), that for each x, the image h 2 (x, (0, 1)) is countable. However, here again, the dependance of h in x plays a fundamental role, and X x t = (X x,1 t , X x,2 t ) has a density: roughly speaking, a first jump will allow the law of X x,1 t to become absolutely continuous.

A second jump will allow the law of X x,2 t to catch the density of X x,1 t .

Proof We prove that (H5)(x 0 ) holds with α = 2, and with small enough, in such a way that for all

ψ ∈ D x0,2α , , all x ∈ B(x 0 , 2α ), ψ (x) is invertible. Set γ(z) = 1/[1/z].
We consider the open subset

O = {z ∈ (0, 1), γ (z) exists} = (0, 1)\ ∪ n≥2 {1/n}. Then clearly, O ϕ(z)dz = ∞, (2.64) while γ (z) = 0 for all z ∈ O. For any ψ 1 ∈ D x0,2α , , we choose O 1 (ψ 1 ) = O. Next, for any z 1 ∈ O 1 (ψ 1 ), any ψ 2 ∈ D x0,2α , , we choose O 2 (ψ 1 , ψ 2 ; z 1 ) =        z 2 ∈ O,     1 γ(z 2 )     and {ψ 2 [ψ 1 (x 0 ) + h(ψ 1 (x 0 ), z 1 )]} -1     1 0     are not colinear        . (2.65) 
Then clearly,

O1(ψ1) ϕ(z 1 )dz 1 = O2(ψ1,ψ2;z1) ϕ(z 2 )dz 2 = ∞. (2.66) 
Then we note that, setting to simplify g(z 1 , z 2 ) = g x0,ψ1,ψ2

2 (z 1 , z 2 ), g is of class C 1 on ∆ ψ1,ψ2 = {(z 1 , z 2 ), z 1 ∈ O 1 (ψ 1 ), z 2 ∈ O 2 (ψ 1
, ψ 2 ; z 1 )}, and that the 2 × 2 matrix

g (z 1 , z 2 ) =     ψ 2 [ψ 1 (x 0 ) + h(ψ 1 (x 0 ), z 1 )]     1 γ(z 2 )     ;     1 0         (2.67)
is invertible for each (z 1 , z 2 ) in ∆ ψ1,ψ2 . We thus may perform the substitution (z 1 , z 2 ) → (y 1 , y 2 ) = g(z 1 , z 2 ) to obtain (2.28).

The case of a non constant rate of jump

Consider now the following d-dimensional S.D.E., for some d ∈ N, starting from x ∈ R d :

X x t = x + t 0 b(X x s )ds + t 0 R n ∞ 0 h(X x s-, z)1 {u≤γ(X x s-)} N (ds, dz, du), (3.1) 
where ), for some n ∈ N, with intensity measure ν(ds, dz, du) = dsϕ(z)dzdu. The function ϕ : R n → R + is supposed to be measurable.

Assumption (J): N (ds, dz, du) is a Poisson measure on [0, ∞) × R n × [0, ∞
In this case, the generator of the Markov process X x is given, for any φ ∈ C 1 b (R d ) and y ∈ R d , by

Lφ(y) = b(y).∇φ(y) + R n γ(y) [φ(y + h(y, z)) -φ(y)] ϕ(z)dz. (3.2) 
It might be possible to add a Brownian term and consider a compensated Poisson measure. However, the present situation simplifies the computations. We assume the following hypothesis.

Assumption (A1): The function b : R d → R d is of class C 1
, and has at most linear growth. The function

γ : R d → R + is of class C 1 . The function h : R d × R n → R d is measurable. For each z ∈ R n , x → h(x, z) is of class C 1 on R d . There exists η ∈ L 1 (R n , ϕ(z)dz) and a continuous function ζ : R d → R such that for all x ∈ R d , z ∈ R n , γ(x)|h(x, z)| ≤ (1 + |x|)η(z), while |h x (x, z)| ≤ ζ(x)η(z).
Then it is well-known that the following result holds.

Proposition 3.1 Assume (J) and (A1). Consider the natural filtration {F t } t≥0 associated with the Poisson measure N . Then, for any x ∈ R d , there exists a unique càdlàg {F t } t≥0 -adapted process

{X x t } t≥0 solution to (3.1) such that for all x ∈ R d , all T ∈ [0, ∞), E sup s∈[0,T ] |X x s | < ∞. (3.3) 
The process {X x t } t≥0,x∈R d furthermore satisfies the strong Markov property.

We refer to [START_REF] Fournier | Jumpring SDEs: absolute continuity using monotonicity[END_REF] (Section 2) for the proof of a very similar result.

We divide the section into three parts: we start with the statements and proofs, and we end with an example of application.

Statements

To obtain some absolute continuity results, we will assume the following conditions. Here x 0 is fixed in R d .

Assumption (A2): There exists c 0 > 0 such that for all

x ∈ R d , all z ∈ R n , det(I d + h x (x, z)) ≥ c 0 . For each z ∈ R n , the map x → x + h(x, z) is a C 1 -diffeomorphism.
Remark that if d = 1, the condition 1 + h x (x, z) ≥ c 0 > 0 ensures that (A2) holds.

Assumption (A3)(x 0 ): The function γ does never vanish. There exists > 0 such that for all x ∈ B(x 0 , ), there exists a subset O(x) ⊂ R n such that, (

ϕ(z)dz = ∞, and for all A ∈ A,

O(x) 1 {h(x,z)∈A} ϕ(z)dz = 0, (3.4) 
and such that the map (x, z) →

1 {z∈O(x)} is measurable on B(x 0 , ) × R n .
The main results of this section are the following.

Theorem 3.2 Let x 0 ∈ R d be fixed. Assume (J), (A 1 ), (A 2 ) and (A 3 )(x 0 ). Consider the unique solution {X x0 t } t≥0 to (2.1). Then the law of X x0 t has a density with respect to the Lebesgue measure on R d as soon as t > 0.

As usual, an immediate consequence is the following. These results improve consequently those of [START_REF] Fournier | Jumpring SDEs: absolute continuity using monotonicity[END_REF], where many restrictive conditions were assumed, such as the monotonicity of x → γ(x) and x → h(x, z), and the positivity of h(x, z). These conditions were usefull to prove the almost sure monotonicity of the (irregular) map x → X x t .

Note that we are not able to obtain a result under an assumption in the spirit of (H5) (or (H6)) when γ is not constant, because of the irregularity of the map x → X x t (see the introduction).

Exactly as in Subsection 2.1 (see Proposition 2.4), we have a general example of application, using the local inverse Theorem.

Proposition 3.4 Assume (J) and (A 1 ). Suppose that n = d, that γ does never vanish. Assume that there exists > 0 and an open subset

O ⊂ R d such that h is of C 1 on B(x 0 , ) × O. If ∀ x ∈ 0 , ), O 1 {det h z (x,z) =0} ϕ(z)dz = ∞, (3.5) 
then (A3)(x 0 ) holds.

Proof

First of all, we proceed to a localization procedure. Assumption (A4): The functions b, b , γ and γ are bounded. There exists η ∈ L 1 (R n , ϕ(z)dz) such that for all x ∈ R d , z ∈ R n , |h(x, z)|+|h x (x, z)| ≤ η(z). There exists γ 0 > 0 such that for all x ∈ R d , γ(x) ≥ γ 0 .

We omit the proof of this lemma, since it is the same as that of Lemma 2.6 (see also [START_REF] Fournier | Jumpring SDEs: absolute continuity using monotonicity[END_REF] Section 2). We will need the following Lemma. Next, we note that the proof of Corollary 3.3 is the same as that of Corollary 2.3, using of course Theorem 3.2 instead of that of Theorem 2.2, and using β 0 defined in Lemma 3.6 rather than δ 0 . We thus omit the proof of Corollary 2.3.

The main novelty of this section consists in the following Proposition, which allows us to overcome the irregularity of the map x → X x t .

Proposition 3.7 Assume (J), (A1), (A2) and (A4), and denote by {X x t } t≥0,x∈R d the unique solution to (3.1). Consider a probability density function f 0 on R d . Then for all t ≥ 0, all A ∈ A,

R d f 0 (x)P [X x t ∈ A]dx = 0. (3.6) 
In other words, if X 0 is a random variable (independent of N ) with law f 0 (x)dx, then X X0 t has a density for each t ≥ 0. To prove this, we first consider the case where f 0 satisfies some additional conditions. Consider a d-dimensional random variable X 0 , independent of N , satisfying E[|X 0 |] < ∞. Assume that the law of X 0 is absolutely continuous with respect to the Lebesgue measure on R d , and that its density

f 0 satisfies R d f 2 0 (x)dx < ∞. (3.7) 
Then for all t ≥ 0, the law of X X0 t has a density f (t, x), and furthermore, for any T ∈ [0, ∞),

sup [0,T ] R d f 2 (t, x)dx < ∞. (3.8)
Proof We split the proof into several steps. We first introduce an approximating process X l t in Step 1.

We next show some non-uniform L ∞ estimates for the density of X l t in Step 2, which allow us to prove rigorously some uniform (in l) L 2 estimates in Step 3. We go to the limit in Step 4.

Step 1: We consider a sequence {f 0 l } l≥1 of bounded and continuous density functions, converging to

f 0 in L 2 (R d ).
We build a sequence {X l 0 } l≥1 of random variables (independent of N ), such that for each l, the law of X l 0 is given by f 0 l (x)dx. Since E[|X 0 |] < ∞, we may handle this construction in such a way that lim l E[|X 0 -X l 0 |] = 0. We also consider an increasing sequence K l of subsets of R n such that ∪ l K l = supp η (recall (A4)), and such that for each l, Λ l = K l ϕ(z)dz < ∞ (choose for example

K l = {z ∈ R n , η(z) ≥ 1/l}).
We finally denote, for each l ∈ N, by {X l t } t≥0 a R d -valued Markov process starting from X l 0 and with generator L l , defined for any bounded measurable function φ : R d → R and any x ∈ R d , by

L l φ(x) = lγ(x) [φ(x + b(x)/lγ(x)) -φ(x)] + γ(x) K l ϕ(z)dz [φ(x + h[x, z]) -φ(x)] . (3.9) 
We now show that for each t ≥ 0, X l t converges to X t in law as l tends to infinity. To this aim, we build {X l t } t≥0 with the help of N , and of another independent Poisson measure M l (ds, du) on [0, ∞) × [0, ∞)

with intensity measure ldsdu:

X l t = X l 0 + t 0 ∞ 0 b(X l s-) lγ(X l s-) 1 {u≤γ(X l s-)} M l (ds, du) + t 0 K l ∞ 0 h(X x s-, z)1 {u≤γ(Xs-)} N (ds, dz, du), (3.10) 
Noting that

Y l t = t 0 ∞ 0 b(X l s-) lγ(X l s-) 1 {u≤γ(X l s-)} M l (ds, du) - t 0 b(X l s )ds (3.11)
is a martingale with bracket

Y l t = 1 l t 0 b 2 (X l s ) γ(X l s ) ds ≤ ||b/γ|| 2 ∞ t l → 0, (3.12) 
and using (A1) and (A4) repeatedly, one may then show that for any T ≥ 0,

lim l→∞ E[sup [0,T ] |X l t -X X0 t |] = 0. (3.13)
Step 2: Consider now l 0 > ||(b/γ) || ∞ /β 0 , where β 0 was defined in Lemma 3.6. This is possible due to (A4). We aim to prove that for any l ≥ l 0 , any t ≥ 0, X l t has a bounded density f l (t, x), and that for any

T > 0, sup [0,T ] sup x∈R d f l (t, x) < ∞. (3.14)
We thus consider l ≥ l 0 to be fixed. We also denote, for any a ∈ (0, ∞), by C a = {A ∈ B(R d ); A dx ≤ a}.

A direct computation, using (3.9), the fact that γ is bounded, and neglecting all the non positive terms, yields that there exists a constant C (depending on l) such that for any A ∈ B(R d ),

P [X l t ∈ A] = P [X l 0 ∈ A] + l t 0 E[γ(X l s ) 1 {X l s +b(X l s )/lγ(X l s )∈A} -1 {X l s ∈A} ]ds + t 0 K l E[γ(X l s ) 1 {X l s +h(X l s ,z)∈A} -1 {X l s ∈A} ]ϕ(z)dzds (3.15) ≤ P [X l 0 ∈ A] + C t 0 P [X l s + b(X l s )/lγ(X l s ) ∈ A]ds + C t 0 sup z∈K l P [X l s + h(X l s , z) ∈ A]ds. For A ∈ B(R d ), set τ (A) = {x ∈ R d , x + b(x)/lγ(x) ∈ A}, and τ z (A) = {x ∈ R d , x + h(x, z) ∈ A}. Then, using (A2), we deduce that for any z ∈ R n , any A ∈ B(R d ), τz(A) dx = R d 1 {x+h(x,z)∈A} dx = R d 1 {y∈A} dy | det(I d + h x (x, z))| ≤ 1 c 0 A dx. (3.16)
By the same way, using that l ≥ l 0 and Lemma 3.6, we get

τ (A) dx ≤ 2 A dx. (3.17) 
Gathering (3.15), (3.16) and (3.17), we obtain, setting n = [2 ∨ 1/c 0 ] + 1, that for some constant C, for any a ∈ (0, ∞),

sup A∈Ca P [X l t ∈ A] ≤ sup A∈Ca P [X l 0 ∈ A] + C t 0 sup A∈Cna P [X l s ∈ A]ds ≤ a||f 0 l || ∞ + nC sup A∈Ca P [X l s ∈ A]ds. (3.18) 
To obtain the last term, we have used that any A ∈ C na may be written as a union of n elements of C a .

We finally obtain, using the Gronwall Lemma, that for any T , there exists C T such that for all a ∈ (0, ∞),

sup [0,T ] sup A∈Ca P [X l t ∈ A] ≤ C T × a. (3.19) 
This ensures (3.14).

Step 3: We now show, and it is the heart of the proof, that for any T ≥ 0, there exists a constant C T , not depending on l ≥ l 0 , such that sup

[0,T ] R d f 2 l (t, x)dx ≤ C T . (3.20) 
We will rather work with the weight function γ(x), which seems artificial: we are however not able to conclude working directly with f 2 l dx. Setting for simplicity γf l (t, x) = γ(x)f l (t, x), we get

∂ t R d γ(x)f 2 l (t, x)dx = 2 R d [∂ t f l (t, x)][γf l (t, x)]dx = 2 R d f l (t, x)L l {γf l (t, x)}dx = 2l R d f l (t, x)γ(x)[γf l (t, x + b(x)/lγ(x)) -γf l (t, x)]dx +2 R d f l (t, x)γ(x) K l ϕ(z) [γf l (t, x + h(x, z)) -γf l (t, x)] dzdx = 2A l (t) + 2B l (t), (3.21) 
the last equality standing for a definition. First, using the Cauchy-Schwartz inequality, we obtain, setting The last inequality is due to the fact that (b/γ) is bounded due to (A4). We finally obtain, the value of C changing from line to line, that for any l ≥ l 0 ,

||g|| 2 2 = R d g 2 (x)dx, A l (t) ≤ l ||γf l (t, .)|| 2 ||γf l (t, . + b(.)/lγ(.))|| 2 -||γf l (t, .)|| 2 2 . ( 3 
A l (t) ≤ ||γf l (t, .)|| 2 2 × l √ 2 ∧ (1 -C/l) -1/2 -1 ≤ C||γf l (t, .)|| 2 2 . (3.24)
Next, using the Fubini Theorem and then the Cauchy-Shcwarz inequality, we get

B l (t) = K l ϕ(z)dz R d γf l (t, x)γf l (t, x + h(x, z)) -(γf l ) 2 (t, x) dx ≤ K l ϕ(z)dz ||γf l (t, .)|| 2 ||γf l (t, . + h(., z))|| 2 -||γf l (t, .)|| 2 2 (3.25)
But the substitition x → y = x + h(x, z), valid due to (A2), shows that

||γf l (t, . + h(., z))|| 2 2 = R d (γf l ) 2 (t, y) 1 det(I d + h x (x, z)) dy ≤ α(z)||γf l (t, .)|| 2 2 , (3.26) 
where α(z) = sup x∈R d [1/ det(I d + h x (x, z))] is well-defined due to (A2). We thus obtain that

B l (t) ≤ ||γf l (t, .)|| 2 2 K l ϕ(z)dz| α(z) -1| ≤ ||γf l (t, .)|| 2 2 R n ϕ(z)dz| α(z) -1| = C||γf (t, .)|| 2 2 . (3.27)
The constant C is finite here due to (A2) and (A4): one may check that for some constants c 1 , c 2 , c 3 ,

| α(z) -1| ≤ 1 √ c0 ∧ c 1 η(z)1 {η(z)<c2} ≤ c 3 η(z) ∈ L 1 (R n , ϕ(z)dz).
Gathering together the previous estimates, integrating against time, and using that γ is bounded, we obtain, for some constant C not depending on l ≥ l 0 ,

R d γ(x)f 2 l (t, x)dx ≤ R d γ(x)(f 0 l ) 2 (x)dx + C t 0 ||γf l (s, .)|| 2 2 ds ≤ R d γ(x)(f 0 l ) 2 (x)dx + C t 0 ds R d γ(x)f 2 l (s, x)dx. (3.28)
Since γ is bounded, we deduce that sup l R d γ(x)(f 0 l ) 2 (x)dx < ∞. Furthermore, we deduce from (3.14) that for all T ≥ 0, for each l ≥ l 0 , R d γ(x)f 2 l (t, x)dx is bounded on [0, T ]. We thus may conclude, using the Gronwall Lemma and the fact that γ is bounded below, that for any T ,

sup l≥l0 sup [0,T ] R d f 2 l (t, x)dx ≤ C sup l≥l0 sup [0,T ] R d γ(x)f 2 l (t, x)dx < ∞. (3.29) 
Step 4: We now fix t ≥ 0. The space L 2 (R d ) being weakly compact, using (3.29) allows us to find a subsequence f k l (t, .), going weakly to a function f (t, .) ∈ L 2 (R d ). On the other hand, we know that X l t converges in law to X X0 t . Hence the law of X X0 t is given by f (t, x)dx, and (3. The Lebesgue Theorem allows us to conclude that (3.6) holds, since [f 0 (x)∧n]1 {|x|≤n} increases pointwise to f 0 (x) as n tends to infinity.

We are finally able to conclude.

Proof of Theorem 3.2 Due to Lemma 3.5, we assume the additional condition (A4), and we in particular denote by γ 0 > 0 a lowerbound of γ. We consider x 0 ∈ R d and t > 0 to be fixed. The proof follows closely the line of that of Theorem 2.2, so that we will only sketch it.

Step 1: Due to (A3)(x 0 ), we may build, for each x ∈ B(x 0 , ), an increasing sequence {O p (x)} p≥1 of subsets of R n satisfying (2.8), in such a way that for each p ≥ 1, the map (x, z) → 1 {z∈Op(x)} is measurable on B(x 0 , ) × R n . We also consider the a.s. positive stopping time τ > 0 defined by (2.9).

We finally consider the stopping time, for p ≥ 1, S p = inf s ≥ 0; Due to (2.8), and to the fact that X x0 (u∧τ )-always belongs to B(x 0 , ), one may prove that (see the proof of Theorem 2.2 Step 1 for details) (i) p → S p is a.s. nonincreasing, (ii) lim p→∞ S p = 0 a.s., (iii) conditionally to F Sp-, the law of Z p is given by 1 p ϕ(z)1 n z∈Op " X

x 0 (Sp ∧τ )-"o dz.

Step 2: We now claim that conditionally to σ(S p ), the law of X x0 Sp has a density with respect to the Lebesgue measure on R d , on the set Ω 0 p = {τ ≥ S p }. It indeed suffices to follow line by line Step 2 of the proof of Theorem 2.2.

Step 3: We may now deduce that for any p ≥ 1, the law of X x0 t has a density on the set Ω 1 p = {S p ≤ τ ∧t}.

We deduce from Step 2 that on Ω 1 p ⊂ Ω 0 p the law of (S p , X x0 Sp ) is of the shape ν p (ds)f p (s, x)dx. Hence, for any A ∈ A, using the strong Markov property, we obtain, conditionning with respect to F Sp , The last inequality follows from Proposition 3.7, applied with f 0 (x) = f p (s, x) for each s fixed.

P [Ω 1 p , X x0 t ∈ A] = E 1 Ω 1 p E t 0 ν p (ds)
Step 4: The conclusion readily follows, copying line by line Step 4 of the proof of Theorem 2.2.

Application to some fragmentation equations

We would like to end this paper with an example of application of Theorem 3.3. We will show a regularization property for a class of fragmentation equations. We refer to [START_REF] Fournier | On small particles in coagulation-fragmentation equations[END_REF] for details concerning this type of equations. We call fragmentation kernel any nonnegative symmetric function F (x, y) = F (y, x) on (0, ∞) × (0, ∞). A function c(t, x) : [0, ∞) × (0, ∞) → [0, ∞), representing the concentration of particles with size x at time t, is said to solve the fragmentation equation if for all t ≥ 0, all x ∈ (0, ∞), Finally, X and X being almost surely nonincreasing, starting both from x 0 , and having the same generator for y ∈ [ , x 0 ], they clearly coincide while one of them is greater than (in distribution). Since A ⊂ ( , ∞), we deduce that P [X t ∈ A] = P [X t ∈ A] for any t > 0. This concludes the proof.

1 Introduction

 1 Consider a d-dimensional Markov process with jumps {X x t } t≥0 , starting from x ∈ R d , with generator L, defined for φ : R d → R sufficiently smooth and y ∈ R d , by Lφ(y) = b(y).∇φ(y) + R n γ(y)ϕ(z) [φ(y + h(y, z))φ(y)] dz, (1.1)

  H1): The functions b : R d → R d and σ : R d → M d×m are of class C 2 and have at most linear growth. The function h : R d

  .22) Note that for any ψ in D y,η, , ψ (y) is a d × d matrix for each y ∈ B(x, ), and that one has ψ(B(x, η)) ⊂ B(x, η + ).

2 -

 2 ,...,ψ S p i ,(u∧τ i+1 )-;Z p 1 ,...,Z p i )} N (du, dz) ≥ 1 , and we denote by Z p i+1 the associated mark, uniquely defined by N ({S p i+1 } × {Z p i+1 }) = 1.

  .58) the rank of the following d × nd matrix is (at least) d: rank [g x0,ψ1,...,ψ d d ] (z 1 , ..., z d ) = d. (2.59) This ensures that the map z 1 , ..., z d → g x0,ψ1,...,ψ d d (z 1 , ..., z d ) is a submersion on ∆ x0,ψ1,...,ψ d , from which (2.28) follows immediately, for any A ∈ A.We now give an example of function h satisfying (H6).

Example 2 .

 2 14 Assume that (I) holds with d = 2 and n = 1, and with ϕ(z) = z -2 1 {z∈(0,1)} . Consider a C 2 function γ : R → (0, ∞) with at most polynomial growth, and set h(x, z) = γ(x)

  and consider (x) > 0 such that 1 + ∂ x1 γ(x)z + ∂ x2 γ(x)z 2 > 0 for all z ∈ (0, (x)), and such that, z → f (x, z) = (2z + ∂ x1 γ(x)z 2 )/(1 -

Corollary 3 . 3

 33 Let x 0 ∈ R d be fixed. Assume (J), (A 1 ) and that (A 3 )(x) holds for all x ∈ R d . Consider the unique solution {X x0 t } t≥0 to (3.1). Then the law of X x0 t has a density with respect to the Lebesgue measure on R d as soon as t > 0.

Lemma 3 . 5

 35 To prove Theorem 3.2 and Corollary 3.3, we may assume the additional condition (A4) below.

Lemma 3 . 6

 36 There exists β 0 > 0 such that for anyC 1 function δ : R d → R d satisfying ||δ || ∞ ≤ β 0 , the map x → x + δ(x) is a C 1 -diffeomorphism, and for all x ∈ R d , det(I d + δ (x)) ≥ 1/2. Proof Set ζ(x) = x + δ(x) First of all, it is clear, by continuity of the determinant, that if β 0 is small enough, det ζ (x) = det[I d + δ (x)] ≥ 1/2 for all x ∈ R d . Thus, it classically suffices to show that, if β 0 is small enough, ζ is injective. Consider thus x, y such that ζ(x) = ζ(y). Then |x -y| = |δ(x)δ(y)| ≤ ||δ || ∞ |x -y| ≤ β 0 |x -y|, which implies that x = y if β 0 < 1.

Lemma 3 . 8

 38 Assume (J), (A1), (A2) and (A4), and denote by {X x t } t≥0,x∈R d the unique solution to (3.1).

2 inf

 2 .22) But the substitution x → y = x + b(x)/lγ(x), which is valid for l ≥ l 0 due to Lemma 3.6, leads to the conclusion that ||γf l (t, . + b(.)/lγ(.)d + (b/γ) (x)/l) dy ≤ ||γf l (t, .)|| 2 x∈R d det(I d + (b/γ) (x)/l) ≤ ||γf l (t, .)|| 2

8 . 0 t

 80 29) allows us to conclude that (3.8) holds. Proposition 3.7 follows easily from Lemma 3.Proof of Proposition 3.7 For each n ∈ N, consider the probability density functionf n 0 on R d defined by f n 0 (x) = c n [f 0 (x) ∧ n]1 {|x|≤n} .Here c n is a normalization constant. Consider a random variable X n 0 , independent of N , with law f n 0 (x)dx independent of N . Then X n 0 satisfies the assumptions of Lemma 3.8, for each n ∈ N. Thus X X n has a density for each t ≥ 0, which implies that for all n ∈ N, all t ≥ 0, all A ∈ A,R d [f 0 (x) ∧ n]1 {|x|≤n} P [X x t ∈ A]dx = c -1 n R d f n 0 (x)P [X x t ∈ A]dx = c -1 n P [X X n 0 t ∈ A] = 0. (3.30) 

"o 1

 1 {u≤γ0} N (dr, dz, du) ≥ 1 , (3.31) and the associated mark Z p ∈ R n , uniquely defined by N ({S p } × {Z p } × [0, ∞)) = 1.

∂F 0 F 1 0 1 0 ( 1 - 1 0

 01111 t c(t, x) = ∞ x (x, yx)c(t, y)dy -(y, xy)dy.(3.33)We will assume in the sequel the following assumptions on the fragmentation kernel (see Remark 3.3 of[START_REF] Fournier | On small particles in coagulation-fragmentation equations[END_REF]).Assumption (K): F (x, y) = α(x + y)β(x/(x + y)) for some C 1 functions α : (0, ∞) → [0, ∞) and β : (0, 1) → [0, ∞), β being symmetric at 1/2.The conservation of mass ∞ 0 xc(t, x)dx = ∞ 0 xc(0, x)dx = 1 being expected to hold, we may rewrite (3.33) in terms of the probability measures Q t (dx) = xc(t, x)dx (see Definition 2.1 in [6]). It is shown in [6] (see Remark 2.4, Theorem 3.2, Remark 3.3, Proposition 3.8, and Remark 3.10) that the following result holds. positive function γ : R → (0, ∞), and such that γ (y) = γ(y) for all y ∈ [ , x 0 ] (this is possible since γ is strictly positive and of class C 1 on (0, ∞)). Consider also a C 1 b function f : R → ( /2, ∞), such that f (y) = y for all y ∈ [ , x 0 ]. Finally, set h (y, z) = -f (y)z. Then there exists a unique Markov process X starting from x, nonincreasing, with generator L F (y) = γ (y) [φ(y + h (y, z))φ(y)] (1z)β(z)dz. z)β(z)dz = ∞ (because β is symmetric at 1/2 and since β(z)dz = ∞ by assumption), one may easily check that (A1) and (A3)(y) (for any y ∈ R) holds for X . Corollary 3.3 thus ensures that P [X t ∈ A] = 0 for any t > 0.

  Proposition 2.1 Assume (I) and (H1). Consider the natural filtration {F t } t≥0 associated with the Poisson measure N and the Brownian motion B. Then, for any x ∈ R d , there exists a unique càdlàg {F t } t≥0 -adapted process {X x t } t≥0 solution to (2.1) such that for all x

  Theorem 2.2 Let x 0 ∈ R d be fixed. Assume (I), (H 1 ), (H 2 ) and (H 3 )(x 0 ). Consider the unique solution {X x0 t } t≥0 to (2.1). Then the law of X x0 Let x 0 ∈ R d be fixed. Assume (I), (H 1 ) and that (H 3 )(x) holds for all x ∈ R d . Consider the unique solution {X x0 t } t≥0 to (2.1). Then the law of X x0

	Corollary 2.3

t has a density with respect to the Lebesgue measure on R d as soon as t > 0.

In the case where (H3)(x) holds for all x ∈ R d , we can omit assumption (H2). t has a density with respect to the Lebesgue measure on R d as soon as t > 0.

  Let x 0 ∈ R d be fixed. Assume (I), (H 1 ), (H 2 ) and (H 5 )(x 0 ). Consider the unique solution Corollary 2.10 Let x 0 ∈ R d be fixed. Assume (I), (H 1 ), and that (H 5 )(x) holds for all x ∈ R d . Consider the unique solution {X x0 t } t≥0 to (2.1). Then the law of X x0

	We then have the following results, which generalize Theorem 2.2 and Corollary 2.3.
	Theorem 2.9 {X x0 t } t≥0 to (2.1). Then the law of X x0 t	has a density with respect to the Lebesgue measure on R d as
	soon as t > 0.								
					Oα(ψ1,...,ψα;z1,...,zα-1)	ϕ(z)dz = ∞,		(2.27)
	and such that for all negligible Lebesgue subset A ∈ A (recall (1.2)),	
	O1(ψ1)	dz 1	O2(ψ1,ψ2;z1)	dz 2 ...	Oα(ψ1,...,ψα;z1,...,zα-1)	dz α 1 n g α x 0 ,ψ 1 ,...,ψα	(z1,...,zα)∈A	o = 0.	(2.28)
	We finally require that for all i ∈ {1, ..., α}, the map			

zα-1)], such that ψ 1 , ..., ψ i , z 1 , ..., z i → 1 {zi∈Oi(ψ1,...,ψi;z1,...,zi-1)} (2.29) is measurable with respect to all its variables. t has a density with respect to the Lebesgue measure on R d as soon as t > 0.

  next define recursively O p i , τ i , S p i , and Z p i for i ∈ {1, ..., α}, in the following way. Let i ∈ {1, ..., α -1} be fixed. Due to (H5)(x 0 ), we may build, for any ψ 1 , ..., ψ i+1 ∈ D x0,2α , , any z 1 ∈ O p 1 (ψ 1 ), ..., z i ∈ O p i (ψ 1 , ..., ψ i ; z 1 , ..., z i-1 ), an increasing sequence {O p i+1 (ψ 1 , ..., ψ i+1 ; z 1 , ..., z i )} p≥1 of subsets of R

n such that ∪ p≥1 O p i+1 (ψ 1 , ..., ψ i+1 ; z 1 , ..., z i ) = O i+1 (ψ 1 , ..., ψ i+1 ; z 1 , ..., z i ), and ∀ p ≥ 1, O p i+1 (ψ1,...,ψi+1;z1,...,zi)

  Gamma distribution with parameters α and p allows to obtain (2.42). We now show that the law of X x0 S α p conditionally to S α p has a density with respect to the Lebesgue measure on R d on the set Ω 0 p . First note that on Ω 0 p ,

	.42) i ) i∈{1,...,α} is a family of independent exponentially distributed random variables i+1 -S p Noting that (S p with parameter p, (2.41) follows from Lemma 2.11 and the strong Markov property. Using finally that t > 0 while S p S p α = g x0,ψ 0,S p 1 -,...,ψ S p α-1 ,S p α -α (Z p 1 , ..., Z p α ). (2.43) α follows a Step 3: X x0 Indeed, recalling Notation 2.8, one can check that X x0 S p 1

Proposition 3.9 Assume (K). Consider a probability measure Q 0 on (0, ∞), satisfying Q 0 , x p < ∞ for some p ≥ 1. Assume that 1 0 z(1z)β(z)dz < ∞, that lim x→0 x 2 α(x) = 0, while x 2 α(x) ≤ C(1 + x p ) for some constant C. Then there exists a R-valued Markov process {X t } t≥0 enjoying the following properties:

(i) X is a.s. càdlàg, nonnincreasing, and takes its values in [0, ∞);

(ii) the law of X 0 is given by Q 0 , while its generator is given, for any φ ∈ C 1 b ([0, ∞)), any y ∈ (0, ∞), by

for all t ≥ 0;

(iv) if x 2 α(x) ≥ x δ for some δ ∈ (0, 1), some > 0, then P [X t = 0] > 0 for each t > 0;

(iv) setting Q t = L(X t ) for each t > 0, the family {x -1 Q t (dx)} t≥0 solves (3.33) in a weak sense.

We will prove here the following regularization result, which improves consequently [START_REF] Fournier | On small particles in coagulation-fragmentation equations[END_REF] Proposition 3.12.

Proposition 3.10 Additionally to the hypotheses of Proposition 3.9, suppose that for all x > 0, α(x) > 0, and that

1. Then the law of X t has a density with respect to dx + δ 0 (dx) as soon as t > 0. Here dx stands for the Lebesgue measure on R.

2. In the case where x 2 α(x) ≤ C(x + x p ) for some constant C, this implies that the law of X t has a density with respect to dx as soon as t > 0. Hence the measure weak solution {x -1 Q t (dx)} t≥0 to (3.33) becomes a function weak solution (starting from a measure initial condition).

Proof First note that point 2 follows immediately from point 1 and Proposition 3.9-(iii). On the other hand, it clearly suffices to prove 1 when Q 0 = δ x0 , for some arbitrary x 0 > 0, by linearity.

The Markov process X taking its values in [0, ∞), we just have to check that for each > 0, each Lebesgue-null subset A ⊂ ( , ∞), each t > 0, P [X t ∈ A] = 0. Let thus such a couple , A be fixed.

We unfortunately can not apply Corollary 3.3 directly, since the map γ(x) = xα(x) may explode or vanish when x tends to 0, while h(x, z) = -xz is degenerated when x = 0. We thus consider a C 1 b strictly