
HAL Id: hal-00140407
https://hal.science/hal-00140407

Submitted on 6 Apr 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An architecture-based dependability modeling
framework using AADL

Ana-Elena Rugina, Karama Kanoun, Mohamed Kaâniche

To cite this version:
Ana-Elena Rugina, Karama Kanoun, Mohamed Kaâniche. An architecture-based dependability mod-
eling framework using AADL. IASTED International Conference on Software Engineering and Appli-
cations, Nov 2006, France. pp.222-227. �hal-00140407�

https://hal.science/hal-00140407
https://hal.archives-ouvertes.fr

AN ARCHITECTURE-BASED DEPENDABILITY MODELING

FRAMEWORK USING AADL

Ana-Elena Rugina, Karama Kanoun and Mohamed Kaâniche

LAAS-CNRS, University of Toulouse

7 avenue Colonel Roche, 31077 Toulouse Cedex 4, France

Phone:+33(0)5 61 33 62 00, Fax: +33(0)5 61 33 64 11

e-mail: {rugina, kanoun, kaaniche}@laas.fr

ABSTRACT

For efficiency reasons, the software system designers’

will is to use an integrated set of methods and tools to

describe specifications and designs, and also to perform

analyses such as dependability, schedulability and

performance. AADL (Architecture Analysis and Design

Language) has proved to be efficient for software

architecture modeling. In addition, AADL was designed

to accommodate several types of analyses. This paper

presents an iterative dependency-driven approach for

dependability modeling using AADL. It is illustrated on a

small example. This approach is part of a complete

framework that allows the generation of dependability

analysis and evaluation models from AADL models to

support the analysis of software and system architectures,

in critical application domains.

KEYWORDS

Dependability modeling, AADL, evaluation, architecture

1. Introduction

The increasing complexity of software systems raises

major concerns in various critical application domains, in

particular with respect to the validation and analysis of

performance, timing and dependability requirements.

Model-driven engineering approaches based on

architecture description languages (ADLs) aim at

mastering this complexity at the design level. Over the

last decade, considerable research has been devoted to

ADLs leading to a large number of proposals [1]. In

particular, AADL (Architecture Analysis and Design

Language) [2] has received an increasing interest from the

safety-critical industry (i.e., Honeywell, Rockwell Collins,

Lockheed Martin, the European Space Agency, Airbus)

during the last years. It has been standardized under the

auspices of the International Society of Automotive

Engineers (SAE), to support the design and analysis of

complex real-time safety-critical applications. AADL

provides a standardized textual and graphical notation, for

describing architectures with functional interfaces, and for

performing various analyses to determine the behavior

and performance of the system being modeled. AADL has

been designed to be extensible to accommodate analyses

that the core language does not support, such as

dependability and performance.

In critical application domains, one of the challenges

faced by the software engineers concerns: 1) the

description of the software architecture and its dynamic

behavior taking into account the impact of errors and

failures, and 2) the evaluation of quantitative measures of

relevant dependability properties such as reliability,

availability and safety, allowing them to assess the impact

of errors and failures on the service. For pragmatic

reasons, the designers using an AADL-based engineering

approach are interested in using an integrated set of

methods and tools to describe specifications and designs,

and to perform dependability evaluations. The AADL

Error Model Annex [3] has been defined to complement

the description capabilities of the AADL core language

standard by providing features with precise semantics to

be used for describing dependability-related

characteristics in AADL models (faults, failure modes and

repair assumptions, error propagations, etc.). AADL and

the AADL Error Model Annex are supported by the Open

Source AADL Tool Environment (OSATE)1.

At the current stage, there is a lack of methodologies and

guidelines to help the developers, using an AADL based

engineering approach, to use the notations defined in the

standard for describing complex dependability models

reflecting real-life systems with multiple dependencies

between components. The objective of this paper is to

propose a structured method for AADL dependability

model construction. The AADL model is built and

validated iteratively, taking into account progressively the

dependencies between the components.

The approach proposed in this paper is complementary to

other research studies focused on the extension of the

AADL language capabilities to support formal

verifications and analyses (see e.g. [4]). Also, it is

intended to be complementary to other studies focused on

the integration of formal verification, dependability and

performance related activities in the general context of

1 http://lwww.aadl.info/OpenSourceAADLToolEnvironment.html

model driven engineering approaches based on ADLs and

on UML (see e.g., [5-9]).

The remainder of the paper is organized as follows.

Section 2 presents the AADL concepts that are necessary

for understanding our modeling approach. Section 3 gives

an overview of our framework for system dependability

modeling and evaluation using AADL. Section 4 presents

the iterative approach for building the AADL

dependability model. Section 5 illustrates some of the

concepts of our approach on a small example and

section 6 concludes the paper.

2. AADL concepts

The AADL core language allows analyzing the impact of

different architecture choices (such as scheduling policy

or redundancy scheme) on a system’s properties [10]. An

architecture specification in AADL is an hierarchical

collection of interacting components (software and

compute platform) combined in subsystems. Each AADL

component is modeled at two levels: in the component

type and in one or more component implementations

corresponding to different implementation structures of

the component in terms of subcomponents and

connections. The AADL core language is designed to

describe static architectures with operational modes for

their components. However, it can be extended to

associate additional information to the architecture.

AADL error models are an extension intended to support

(qualitative and quantitative) analyses of dependability

attributes. The AADL Error Model Annex defines a sub-

language to declare reusable error models within an error

model annex library. The AADL architecture model

serves as a skeleton for error model instances. Error

model instances can be associated with components of the

system and with the system itself.

The component error models describe the behavior of

the components with which they are associated, in the

presence of internal faults and recovery events, as well as

in the presence of external propagations from the

component’s environment. Error models have two levels

of description: the error model type and the error model

implementation. The error model type declares a set of

error states, error events (internal to the

component) and error propagations2 (events that

propagate, from one component to other components,

through the connections and bindings between

components of the architecture model). Propagations have

associated directions (in or out or in out). Error

model implementations declare transitions between

states, triggered by events and propagations declared in

the error model type. Both the type and the

implementation can declare Occurrence properties that

2 Error states can also model error free states, error events can also

model repair events and error propagations can model all kinds of
notifications.

specify the arrival rate or the occurrence probability of

events and propagations. An out propagation occurs

according to a specified Occurrence property when it

is named in a transition and the current state is the origin

of the transition. If the source state and the destination

state of a transition triggered by an out propagation are

the same, the propagation is sent out of the component but

does not influence the state of the sender component. An

in propagation occurs as a consequence of an out

propagation from another component. Figure 1 shows an

error model example.

Error Model Type [simple]

error model simple

features

Error_Free: initial error state;
Failed: error state;

Fail: error event

 {Occurrence => Poisson λ};

Recover: error event
 {Occurrence => Poisson µ};

KO: in out error propagation

 {Occurrence => fixed p};

end simple;

Error Model Implementation [simple.general]

error model implementation

 simple.general
transitions

Error_Free-[Fail] -> Failed;

Error_Free-[in KO] -> Failed;

Failed-[Recover] -> Error_Free;

Failed-[out KO] -> Failed;
end simple.general;

Figure 1. Simple error model

Error model instances can be customized to fit a particular

component through the definition of Guard properties

that control and filter propagations by means of Boolean

expressions.

The system error model is defined as a composition of a

set of concurrent finite stochastic automata corresponding

to components. In the same way as the entire architecture,

the system error model is described hierarchically. The

state of a system that contains subcomponents can be

specified as a function of its subcomponents’ states (i.e.,

the system has a derived error model).

3. Overview of the modeling framework

For complex systems, the main difficulty for building a

dependability model arises from dependencies between

the system components. Dependencies can be of several

types, identified in [11]: functional, structural or related to

the recovery and maintenance strategies. Exchange of data

or transfer of intermediate results from one component to

another is an example of functional dependency. The fact

that a thread runs on a processor induces a structural

dependency between the thread and the processor. Sharing

a recovery or maintenance facility between several

components leads to a recovery or maintenance

dependency. Functional and structural dependencies can

be grouped into an architecture-based dependency class,

as they are triggered by physical or logical connections

between the dependent components at architectural level.

Instead, recovery and maintenance dependencies are not

always visible at architectural level.

A structured approach is necessary to model dependencies

in a systematic way, to promote model reusability, to

avoid errors in the resulting model of the system and to

facilitate its validation. In our approach, the AADL

dependability-oriented model is built in a progressive and

iterative way. More concretely, in a first iteration, we

propose to build the model of the system’s components,

representing their behavior in the presence of their own

faults and recovery events only. The components are thus

modeled as if they were isolated from their environment.

In the following iterations, dependencies between basic

error models are introduced progressively.

This approach is part of a complete framework that allows

the generation of dependability analysis and evaluation

models from AADL models. An overview of this

framework is presented in Figure 2.

Figure 2. Modeling framework

The first step is devoted to the modeling of the application

architecture in AADL (in terms of components and

operational modes of these components). The AADL

architecture model may be available if it has been already

built for other purposes.

The second step concerns the specification of the

application behavior in the presence of faults through

AADL error models associated with components of the

architecture model. The error model of the application is a

composition of the set of component error models.

The architecture model and the error model of the

application form the dependability-oriented AADL model,

referred to as the AADL dependability model.

The third step aims at building an analytical dependability

evaluation model, from the AADL dependability model,

based on model transformation rules.

The fourth step is devoted to the dependability evaluation

model processing that aims at evaluating quantitative

measures characterizing dependability attributes. This step

is entirely based on existing processing tools.

The iterative approach can be applied to the second step

of the modeling framework only or to the second and third

steps together. In the latter case, semantic validation based

on the analytical model, after each iteration, is helpful to

identify specification errors in the AADL dependability

model.

Due to space limitations, we focus only on the first and

second steps in this paper. A transformation from AADL

to generalized stochastic Petri nets (GSPN) for

dependability evaluation purposes is presented in [12].

4. AADL dependability model construction

To illustrate the proposed approach, the rest of this section

presents successively guidelines for modeling an

architecture-based dependency (structural or functional)

and a recovery and maintenance dependency. More

general practical aspects for building the AADL

dependability model are given at the end of this section.

Note that we illustrate the principles using the graphical

notation for AADL composite components (system

components). However, they apply to all types of

components and connections.

4.1. Architecture-based dependency

The dependency is modeled in the error models associated

with the dependent components, by specifying

respectively outgoing and incoming propagations and

their impact on the corresponding error model. An

example is shown in Figure 3: Component 1 sends data to

Component 2, thus we assume that, at the error model

level, the behavior of Component 2 depends on that of

Component 1.

Figure 3. Architecture-based dependency

Instances of the same error model, shown in Figure 1, are

associated both with Component 1 and with Component 2.

However, the AADL dependability model is asymmetric

because of the unidirectional connection between

Component 1 and Component 2. Thus, the out

propagation KO declared in the error model instance

associated with Component 2 is inactive (i.e., even if it

occurs, it cannot propagate to Component 1).

The out propagation KO from the error model instance

of Component 1, together with its Occurrence property

and the AADL transition triggered by it form the “sender”

part of the dependency. It means that when Component 1

fails, it sends a propagation through the unidirectional

connection. The in propagation KO from the error model

instance of Component2 together with the AADL

transition triggered by it form the “receiver” part of the

dependency. Thus, an incoming propagation KO causes

the failure of the receiving component.

In real applications, architecture-based dependencies

usually require using more advanced propagation

controlling and filtering through Guard properties. In

particular, Boolean expressions can be defined to specify

the consequences of a set of propagations occurring in a

set of sender components on a receiver component.

4.2. Recovery and maintenance dependency

Recovery and maintenance dependencies need to be

described when recovery and maintenance facilities are

shared between components or when the maintenance

activity of some components has to be carried out

according to a given order or a specified strategy (i.e., a

thread can be restarted only if another thread is running).

Components that are not dependent at architectural level

may become dependent due to the recovery and

maintenance strategy. Thus, the AADL dependability

model might need some adjustments to support the

description of dependencies related to the maintenance

strategy. As error models interact only via propagations

through architectural features (i.e., connections, bindings),

the recovery and maintenance dependency between

components’ error models must be supported by the

architecture model. Thus, besides the architecture

components, we may need to model (at architectural

level) a component allowing to describe the recovery and

maintenance strategy. Figure 4-a shows an example of

AADL dependability model. In this architecture,

Component 3 and Component 4 do not interact at the

architecture level. However, if we assume that they share

a recovery and maintenance facility, the recovery and

maintenance strategy has to be taken into account in the

error model of the application. Thus, it is necessary to

represent the recovery and maintenance facility at the

architectural level, as shown in Figure 4-b in order to

model explicitly the dependency between Components 3

and Component 4.

Also, the error models of dependent components with

regards to the recovery and maintenance strategy might

need some adjustments. For example, to represent the fact

that Component 3 can only restart if Component 4 is

running, one needs to distinguish between a failed state of

Component 3 and a failed state where Component 3 is

allowed to restart.

- a - - b -

Figure 4. Maintenance dependency

4.3. Practical aspects

The order for modeling dependencies does not impact the

final AADL dependability model. However, it may

impact the reusability of parts of the model. Thus, the

order may be chosen according to the context of the

targeted analysis. For example, if the analysis is meant to

help the user to choose the best-adapted structure for a

system whose functions are completely defined, it may be

convenient to introduce first functional dependencies

between components and then structural dependencies, as

the model corresponding to functional dependencies is to

be reused. Generally, recovery and maintenance

dependencies are modeled at the end, as one important

aim of the dependability evaluation is to find the best-

suited recovery and maintenance strategies for an

application. Recovery and maintenance dependencies may

have an impact on the system’s structure.

Not all the details of the architecture model are necessary

for the AADL dependability model. Only components that

have associated error models and all connections and

bindings between them are necessary. This allows a

designer to evaluate dependability measures at different

stages in the development cycle by moving from a lower

fidelity AADL dependability model to a detailed one. In

some cases, not all components having associated error

models are part of the AADL dependability model. The

AADL Error Model Annex offers two useful abstraction

options for error models of components composed of

subcomponents:

− The first option is to declare an abstract error model

for a system component. In this case, the

corresponding component is seen as a black box (i.e.,

the detailed subcomponents’ error models are not part

of the AADL dependability model). This option is

useful to abstract away modeling details in case an

architecture model with too detailed error models

associated with components does exist for other

purposes. Issues linked to the relationship between

abstract and concrete error models have been

mentioned in [13].

− The second option is to define the state of a system

component as a function of its subcomponents’ states.

This option can be used to specify state classes for

the overall application. These classes are useful in the

evaluation of measures. If the user wishes to evaluate

reliability or availability, it is necessary to specify the

system states that are to be considered as failed states.

If in addition, the user wishes to evaluate safety, it is

necessary to specify the system states that are

considered as catastrophic.

5. Example

In this section we illustrate our modeling approach on a

small software architecture representing a process whose

functional role is to compute a result. The computation is

divided in three sub computations, each of them being

performed by a thread. The thread Compute2 uses the

result obtained by the thread Compute1 and the thread

Compute3 uses the result obtained by the thread

Compute2 to compute the result expected from the

process. The three threads are connected through data

connections according to the pipe and filter architectural

style [14]. Due to space limitations, we only take into

account two dependencies:

− An architecture-based dependency between the

computing threads: a failure in one of the computing

threads may cause the failure of the following thread

(with a probability p). In some cases, cascading

failures can occur.

− A recovery dependency: Compute3 can only recover

if Compute1 and Compute2 are error free. We assume

that Compute2 can recover if Compute1 is not error

free.

The AADL dependability model of this application is

shown in Figure 5 using the AADL graphical notation.

Figure 5. AADL dependability model

The AADL dependability model of this application is

built in three iterations. The computing threads’ behavior

in the presence of their own fault and recovery events is

represented in the first iteration. The propagation KO

together with corresponding transitions are added in a

second iteration to represent the architecture-based

dependency. The thread Compute1 can have an impact on

Compute2 and Compute2 can have an impact on

Compute3. We remind that the opposite is not possible, as

the connections between threads are unidirectional. The

recovery dependency is modeled in the third iteration. It

requires the existence of a Recovery thread in the

architecture model (see light grey part of Figure 5). Its

role is to send (through the out port to3) a

RecoverAuthorize propagation to Compute3 if Compute1

and Compute2 are error free.

Figure 6-a shows the error model Comp.general

associated with threads Compute1 and Compute2. Figure

6-b shows the error model Comp3.general associated with

the threads Compute3. The three iterations are

highlighted. Each line tagged with a (+) sign is added to

the error model corresponding to the previous iteration

while each line tagged with a (-) sign is removed from it

during the current iteration. The first and second iterations

are the same for all three computing threads. In the third

iteration, it is necessary to distinguish between a failed

state and a failed state from which Compute3 is

authorized to restart. This leads to removing a transition

declared in the first iteration, and adding a state

(CanRecover) and two transitions linking it to the state

machine.

Figure 7 shows the Guard_Out property applied to port

to3 of the Recovery thread in the third iteration. This

property specifies that a RecoverAuthorize propagation is

sent to Compute3 through port to3 when OK propagations

are received through ports in1 and in2 (meaning that

Compute1 and Compute2 are error free). The Recovery

thread has an associated error model that is not shown

here. It declares in and out propagations used in the

Guard_Out property.

The main idea of this method is to verify and validate the

model at each iteration. If a problem arises during

iteration i, only the part of the current AADL

dependability model corresponding to iteration i is

questioned. Thus, the validation process is facilitated

especially in the context of complex systems.

6. Conclusion

This paper presented an iterative approach for system

dependability modeling using AADL. This approach is

meant to ease the task of analyzing dependability

characteristics and evaluating dependability measures for

the AADL users community. Our approach assists the

user in the structured construction of the AADL

dependability model (i.e., architecture model and

dependability-related information). To support and trace

model evolution, this approach proposes that the user

builds the model iteratively. Components’ behaviors in

the presence of faults are modeled in the first iteration as

if they were isolated. Then, each iteration introduces a

new dependency between system components. Error

models representing the behavior of several types of

system components and several types of dependencies

may be placed in a library and then instantiated to

minimize the modeling effort and maximize the

reusability of models.

The OSATE toolset is able to support our modeling

approach. It also allows choosing component models and

error models from libraries. For the sake of illustration,

we used simple examples in this paper. We have already

applied the iterative modeling approach to a system with

multiple dependencies in [12] and we plan to validate it

against other complex case studies.

Error Model Type [Comp]

error model Comp

features

-- iteration 1
(+) Error_Free: initial error state;

(+) Failed: error state;

(+) Fail: error event

(+) {Occurrence => Poisson λ};
(+) Recover: error event

(+) {Occurrence => Poisson µ};

-- iteration 2
(+) KO: in out error propagation

(+) {Occurrence => fixed p};
-- iteration 3
(+) OK: out error propagation

(+) {Occurrence => fixed 1};

end Comp;

 Error Model Type [Comp3]

error model Comp3

features

-- iteration 1
(+) Error_Free: initial error state;

(+) Failed: error state;

(+) Fail: error event

(+) {Occurrence => Poisson λ};
(+) Recover: error event

(+) {Occurrence => Poisson µ};

-- iteration 2
(+) KO: in out error propagation

(+) {Occurrence => fixed p};
-- iteration 3
(+) CanRecover: error state;

(+) OK: in error propagation;
end Comp3;

Error Model Implementation [Comp.general]

error model implementation Comp.general

transitions
-- iteration 1
(+) Error_Free-[Fail]->Failed;

(+) Failed-[Recover]->Error_Free;

-- iteration 2
(+) Error_Free-[in KO]->Failed;

(+) Failed-[out KO]->Failed;

-- iteration 3
(+) Error_Free-[out OK]->Error_Free;
end Comp.general;

 Error Model Implementation [Comp3.general]

error model implementation Comp3.general

transitions
-- iteration 1
(+) Error_Free-[Fail]->Failed;

(+) Failed-[Recover]->Error_Free;

-- iteration 2
(+) Error_Free-[in KO]->Failed;

(+) Failed-[out KO]->Failed;

-- iteration 3
(-) Failed-[Recover]->Error_Free;
(+) Failed-[RecoverAuthorize]->CanRecover;

(+) CanRecover-[Recover]->Error_Free;
end Comp3.general;

a: Error Model for Compute1 and Compute2 b: Error Model for Compute3

Figure 6. Error model for Compute1 / Compute2

Guard_Out [port Recovery.to3]

-- iteration 3
(+) Guard_Out =>

(+) RecoverAuthorize when
(+) (from1[OK]and from2[OK])

(+) mask when others

(+) applies to to3;

Figure 7. Guard_Out property (port Recovery.to3)

Acknowledgements

This work is partially supported by 1) the European Commission

(European integrated project ASSERT No. IST 004033 and

network of excellence ReSIST No. IST 026764). and 2) the
European Social Fund.

References

[1] N. Medvidovic and R. N. Taylor, A classification and

comparison framework for Software Architecture

Description Languages, IEEE Transactions on Software

Engineering, 26, 2000, 70-93.

[2] SAE-AS5506, Architecture Analysis and Design Language,

Society of Automotive Engineers, 2004.

[3] SAE-AS5506/1, Architecture Analysis and Design

Language (AADL) Annex Volume 1, Annex E: Error

Model Annex, Society of Automotive Engineers, 2006.

[4] J.-M. Farines, et al., The Cotre project: rigorous software

development for real time systems in avionics, 27th

IFAC/IFIP/IEEE Workshop on Real Time Programming,

Zielona Gora, Poland, 2003.

[5] R. Allen and D. Garlan, A Formal Basis for Architectural

Connection, ACM Transactions on Software Engineering

and Methodology, 6, 1997, 213-249.

[6] M. Bernardo, P. Ciancarini, and L. Donatiello, Architecting

Families of Software Systems with Process Algebras, ACM

Transactions on Software Engineering and Methodology,

11, 2002, 386-426.

[7] A. Bondavalli, et al., Dependability Analysis in the Early

Phases of UML Based System Design, Int. Journal of

Computer Systems - Science & Engineering, 16, 2001, 265-

275.

 [8] S. Bernardi, S. Donatelli, and J. Merseguer, From UML

Sequence Diagrams and Statecharts to analysable Petri Net

models, 3rd Int. Workshop on Software and Performance

(WOSP 2002), Rome, Italy, 2002, ,35-45.

[9] P. King and R. Pooley, Using UML to Derive Stochastic

Petri Net Models, 15th annual UK Performance

Engineering Workshop, 1999, 45-56.

[10] P. H. Feiler, et al., Pattern-Based Analysis of an Embedded

Real-time System Architecture, 18th IFIP World Computer

Congress, ADL Workshop, Toulouse, France, 2004, 83-91.

[11] K. Kanoun and M. Borrel, Fault-tolerant systems

dependability. Explicit modeling of hardware and software

component-interactions, IEEE Transactions on Reliability,

49, 2000, 363-376.

[12] A. E. Rugina, K. Kanoun, and M. Kaâniche, AADL-based

Dependability Modelling, LAAS-CNRS Research Report

n°06209, April 2006, 85p.

[13] P. Binns and S. Vestal, Hierarchical composition and

abstraction in architecture models, 18th IFIP World

Computer Congress, ADL Workshop, Toulouse, France,

2004, 43-52.

[14] M. Shaw and D. Garlan, Software Architecture:

Perspectives on an Emerging Discipline (Prentice-Hall,

1996).

