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ABSTRACT 

For efficiency reasons, the software system designers’ 

will is to use an integrated set of methods and tools to 

describe specifications and designs, and also to perform 

analyses such as dependability, schedulability and 

performance. AADL (Architecture Analysis and Design 

Language) has proved to be efficient for software 

architecture modeling. In addition, AADL was designed 

to accommodate several types of analyses. This paper 

presents an iterative dependency-driven approach for 

dependability modeling using AADL. It is illustrated on a 

small example. This approach is part of a complete 

framework that allows the generation of dependability 

analysis and evaluation models from AADL models to 

support the analysis of software and system architectures, 

in critical application domains.  
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1. Introduction 

The increasing complexity of software systems raises 

major concerns in various critical application domains, in 

particular with respect to the validation and analysis of 

performance, timing and dependability requirements. 

Model-driven engineering approaches based on 

architecture description languages (ADLs) aim at 

mastering this complexity at the design level. Over the 

last decade, considerable research has been devoted to 

ADLs leading to a large number of proposals [1]. In 

particular, AADL (Architecture Analysis and Design 

Language) [2] has received an increasing interest from the 

safety-critical industry (i.e., Honeywell, Rockwell Collins, 

Lockheed Martin, the European Space Agency, Airbus) 

during the last years. It has been standardized under the 

auspices of the International Society of Automotive 

Engineers (SAE), to support the design and analysis of 

complex real-time safety-critical applications. AADL 

provides a standardized textual and graphical notation, for 

describing architectures with functional interfaces, and for 

performing various analyses to determine the behavior 

and performance of the system being modeled. AADL has 

been designed to be extensible to accommodate analyses 

that the core language does not support, such as 

dependability and performance.  

In critical application domains, one of the challenges 

faced by the software engineers concerns: 1) the 

description of the software architecture and its dynamic 

behavior taking into account the impact of errors and 

failures, and 2) the evaluation of quantitative measures of 

relevant dependability properties such as reliability, 

availability and safety, allowing them to assess the impact 

of errors and failures on the service. For pragmatic 

reasons, the designers using an AADL-based engineering 

approach are interested in using an integrated set of 

methods and tools to describe specifications and designs, 

and to perform dependability evaluations. The AADL 

Error Model Annex [3] has been defined to complement 

the description capabilities of the AADL core language 

standard by providing features with precise semantics to 

be used for describing dependability-related 

characteristics in AADL models (faults, failure modes and 

repair assumptions, error propagations, etc.). AADL and 

the AADL Error Model Annex are supported by the Open 

Source AADL Tool Environment (OSATE)1.  

At the current stage, there is a lack of methodologies and 

guidelines to help the developers, using an AADL based 

engineering approach, to use the notations defined in the 

standard for describing complex dependability models 

reflecting real-life systems with multiple dependencies 

between components. The objective of this paper is to 

propose a structured method for AADL dependability 

model construction. The AADL model is built and 

validated iteratively, taking into account progressively the 

dependencies between the components. 

The approach proposed in this paper is complementary to 

other research studies focused on the extension of the 

AADL language capabilities to support formal 

verifications and analyses (see e.g. [4]). Also, it is 

intended to be complementary to other studies focused on 

the integration of formal verification, dependability and 

performance related activities in the general context of 
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model driven engineering approaches based on ADLs and 

on UML (see e.g., [5-9]). 

The remainder of the paper is organized as follows. 

Section 2 presents the AADL concepts that are necessary 

for understanding our modeling approach. Section 3 gives 

an overview of our framework for system dependability 

modeling and evaluation using AADL. Section 4 presents 

the iterative approach for building the AADL 

dependability model. Section 5 illustrates some of the 

concepts of our approach on a small example and  

section 6 concludes the paper. 

2. AADL concepts 

The AADL core language allows analyzing the impact of 

different architecture choices (such as scheduling policy 

or redundancy scheme) on a system’s properties [10]. An 

architecture specification in AADL is an hierarchical 

collection of interacting components (software and 

compute platform) combined in subsystems. Each AADL 

component is modeled at two levels: in the component 

type and in one or more component implementations 

corresponding to different implementation structures of 

the component in terms of subcomponents and 

connections. The AADL core language is designed to 

describe static architectures with operational modes for 

their components. However, it can be extended to 

associate additional information to the architecture. 

AADL error models are an extension intended to support 

(qualitative and quantitative) analyses of dependability 

attributes. The AADL Error Model Annex defines a sub-

language to declare reusable error models within an error 

model annex library. The AADL architecture model 

serves as a skeleton for error model instances. Error 

model instances can be associated with components of the 

system and with the system itself. 

The component error models describe the behavior of 

the components with which they are associated, in the 

presence of internal faults and recovery events, as well as 

in the presence of external propagations from the 

component’s environment. Error models have two levels 

of description: the error model type and the error model 

implementation. The error model type declares a set of 

error states, error events (internal to the 

component) and error propagations2 (events that 

propagate, from one component to other components, 

through the connections and bindings between 

components of the architecture model). Propagations have 

associated directions (in or out or in out). Error 

model implementations declare transitions between 

states, triggered by events and propagations declared in 

the error model type. Both the type and the 

implementation can declare Occurrence properties that 

                                                             

2 Error states can also model error free states, error events can also 

model repair events and error propagations can model all kinds of 
notifications. 

specify the arrival rate or the occurrence probability of 

events and propagations. An out propagation occurs 

according to a specified Occurrence property when it 

is named in a transition and the current state is the origin 

of the transition. If the source state and the destination 

state of a transition triggered by an out propagation are 

the same, the propagation is sent out of the component but 

does not influence the state of the sender component. An 

in propagation occurs as a consequence of an out 

propagation from another component. Figure 1 shows an 

error model example.  

Error Model Type [simple] 
 

error model simple 

features 

Error_Free: initial error state; 
Failed: error state; 

Fail: error event  

 {Occurrence => Poisson λ}; 

Recover: error event 
 {Occurrence => Poisson µ}; 

KO: in out error propagation  

 {Occurrence => fixed p}; 

end simple; 

Error Model Implementation [simple.general] 
 

error model implementation   

 simple.general 
transitions 

Error_Free-[Fail] -> Failed; 

Error_Free-[in KO] -> Failed; 

Failed-[Recover] -> Error_Free; 

Failed-[out KO] -> Failed; 
end simple.general; 

Figure 1. Simple error model 

Error model instances can be customized to fit a particular 

component through the definition of Guard properties 

that control and filter propagations by means of Boolean 

expressions. 

The system error model is defined as a composition of a 

set of concurrent finite stochastic automata corresponding 

to components. In the same way as the entire architecture, 

the system error model is described hierarchically. The 

state of a system that contains subcomponents can be 

specified as a function of its subcomponents’ states (i.e., 

the system has a derived error model). 

3. Overview of the modeling framework 

For complex systems, the main difficulty for building a 

dependability model arises from dependencies between 

the system components. Dependencies can be of several 

types, identified in [11]: functional, structural or related to 

the recovery and maintenance strategies. Exchange of data 

or transfer of intermediate results from one component to 

another is an example of functional dependency. The fact 

that a thread runs on a processor induces a structural 

dependency between the thread and the processor. Sharing 

a recovery or maintenance facility between several 

components leads to a recovery or maintenance 

dependency. Functional and structural dependencies can 

be grouped into an architecture-based dependency class, 



 

as they are triggered by physical or logical connections 

between the dependent components at architectural level. 

Instead, recovery and maintenance dependencies are not 

always visible at architectural level. 

A structured approach is necessary to model dependencies 

in a systematic way, to promote model reusability, to 

avoid errors in the resulting model of the system and to 

facilitate its validation. In our approach, the AADL 

dependability-oriented model is built in a progressive and 

iterative way. More concretely, in a first iteration, we 

propose to build the model of the system’s components, 

representing their behavior in the presence of their own 

faults and recovery events only. The components are thus 

modeled as if they were isolated from their environment. 

In the following iterations, dependencies between basic 

error models are introduced progressively.  

This approach is part of a complete framework that allows 

the generation of dependability analysis and evaluation 

models from AADL models. An overview of this 

framework is presented in Figure 2.  

 

Figure 2. Modeling framework 

The first step is devoted to the modeling of the application 

architecture in AADL (in terms of components and 

operational modes of these components). The AADL 

architecture model may be available if it has been already 

built for other purposes. 

The second step concerns the specification of the 

application behavior in the presence of faults through 

AADL error models associated with components of the 

architecture model. The error model of the application is a 

composition of the set of component error models.  

The architecture model and the error model of the 

application form the dependability-oriented AADL model, 

referred to as the AADL dependability model.  

The third step aims at building an analytical dependability 

evaluation model, from the AADL dependability model, 

based on model transformation rules.  

The fourth step is devoted to the dependability evaluation 

model processing that aims at evaluating quantitative 

measures characterizing dependability attributes. This step 

is entirely based on existing processing tools.  

The iterative approach can be applied to the second step 

of the modeling framework only or to the second and third 

steps together. In the latter case, semantic validation based 

on the analytical model, after each iteration, is helpful to 

identify specification errors in the AADL dependability 

model.  

Due to space limitations, we focus only on the first and 

second steps in this paper. A transformation from AADL 

to generalized stochastic Petri nets (GSPN) for 

dependability evaluation purposes is presented in [12].  

4. AADL dependability model construction 

To illustrate the proposed approach, the rest of this section 

presents successively guidelines for modeling an 

architecture-based dependency (structural or functional) 

and a recovery and maintenance dependency. More 

general practical aspects for building the AADL 

dependability model are given at the end of this section. 

Note that we illustrate the principles using the graphical 

notation for AADL composite components (system 

components). However, they apply to all types of 

components and connections. 

4.1. Architecture-based dependency 

The dependency is modeled in the error models associated 

with the dependent components, by specifying 

respectively outgoing and incoming propagations and 

their impact on the corresponding error model. An 

example is shown in Figure 3: Component 1 sends data to 

Component 2, thus we assume that, at the error model 

level, the behavior of Component 2 depends on that of 

Component 1.  

 

Figure 3. Architecture-based dependency  

Instances of the same error model, shown in Figure 1, are 

associated both with Component 1 and with Component 2. 

However, the AADL dependability model is asymmetric 

because of the unidirectional connection between 

Component 1 and Component 2. Thus, the out 

propagation KO declared in the error model instance 

associated with Component 2 is inactive (i.e., even if it 

occurs, it cannot propagate to Component 1). 

The out propagation KO from the error model instance 

of Component 1, together with its Occurrence property 

and the AADL transition triggered by it form the “sender” 

part of the dependency. It means that when Component 1 

fails, it sends a propagation through the unidirectional 

connection. The in propagation KO from the error model 

instance of Component2 together with the AADL 

transition triggered by it form the “receiver” part of the 

dependency. Thus, an incoming propagation KO causes 

the failure of the receiving component.  

In real applications, architecture-based dependencies 

usually require using more advanced propagation 

controlling and filtering through Guard properties. In 



 

particular, Boolean expressions can be defined to specify 

the consequences of a set of propagations occurring in a 

set of sender components on a receiver component. 

4.2. Recovery and maintenance dependency 

Recovery and maintenance dependencies need to be 

described when recovery and maintenance facilities are 

shared between components or when the maintenance 

activity of some components has to be carried out 

according to a given order or a specified strategy (i.e., a 

thread can be restarted only if another thread is running). 

Components that are not dependent at architectural level 

may become dependent due to the recovery and 

maintenance strategy. Thus, the AADL dependability 

model might need some adjustments to support the 

description of dependencies related to the maintenance 

strategy. As error models interact only via propagations 

through architectural features (i.e., connections, bindings), 

the recovery and maintenance dependency between 

components’ error models must be supported by the 

architecture model. Thus, besides the architecture 

components, we may need to model (at architectural 

level) a component allowing to describe the recovery and 

maintenance strategy. Figure 4-a shows an example of 

AADL dependability model. In this architecture, 

Component 3 and Component 4 do not interact at the 

architecture level. However, if we assume that they share 

a recovery and maintenance facility, the recovery and 

maintenance strategy has to be taken into account in the 

error model of the application. Thus, it is necessary to 

represent the recovery and maintenance facility at the 

architectural level, as shown in Figure 4-b in order to 

model explicitly the dependency between Components 3 

and Component 4. 

Also, the error models of dependent components with 

regards to the recovery and maintenance strategy might 

need some adjustments. For example, to represent the fact 

that Component 3 can only restart if Component 4 is 

running, one needs to distinguish between a failed state of 

Component 3 and a failed state where Component 3 is 

allowed to restart. 

 

 

 

- a -  - b -  

Figure 4. Maintenance dependency 

4.3. Practical aspects 

The order for modeling dependencies does not impact the 

final AADL dependability model. However, it may 

impact the reusability of parts of the model. Thus, the 

order may be chosen according to the context of the 

targeted analysis. For example, if the analysis is meant to 

help the user to choose the best-adapted structure for a 

system whose functions are completely defined, it may be 

convenient to introduce first functional dependencies 

between components and then structural dependencies, as 

the model corresponding to functional dependencies is to 

be reused. Generally, recovery and maintenance 

dependencies are modeled at the end, as one important 

aim of the dependability evaluation is to find the best-

suited recovery and maintenance strategies for an 

application. Recovery and maintenance dependencies may 

have an impact on the system’s structure.  

Not all the details of the architecture model are necessary 

for the AADL dependability model. Only components that 

have associated error models and all connections and 

bindings between them are necessary. This allows a 

designer to evaluate dependability measures at different 

stages in the development cycle by moving from a lower 

fidelity AADL dependability model to a detailed one. In 

some cases, not all components having associated error 

models are part of the AADL dependability model. The 

AADL Error Model Annex offers two useful abstraction 

options for error models of components composed of 

subcomponents: 

− The first option is to declare an abstract error model 

for a system component. In this case, the 

corresponding component is seen as a black box (i.e., 

the detailed subcomponents’ error models are not part 

of the AADL dependability model). This option is 

useful to abstract away modeling details in case an 

architecture model with too detailed error models 

associated with components does exist for other 

purposes. Issues linked to the relationship between 

abstract and concrete error models have been 

mentioned in [13].  

− The second option is to define the state of a system 

component as a function of its subcomponents’ states. 

This option can be used to specify state classes for 

the overall application. These classes are useful in the 

evaluation of measures. If the user wishes to evaluate 

reliability or availability, it is necessary to specify the 

system states that are to be considered as failed states. 

If in addition, the user wishes to evaluate safety, it is 

necessary to specify the system states that are 

considered as catastrophic. 

5. Example 

In this section we illustrate our modeling approach on a 

small software architecture representing a process whose 

functional role is to compute a result. The computation is 

divided in three sub computations, each of them being 



 

performed by a thread. The thread Compute2 uses the 

result obtained by the thread Compute1 and the thread 

Compute3 uses the result obtained by the thread 

Compute2 to compute the result expected from the 

process. The three threads are connected through data 

connections according to the pipe and filter architectural 

style [14]. Due to space limitations, we only take into 

account two dependencies: 

− An architecture-based dependency between the 

computing threads: a failure in one of the computing 

threads may cause the failure of the following thread 

(with a probability p). In some cases, cascading 

failures can occur. 

−  A recovery dependency: Compute3 can only recover 

if Compute1 and Compute2 are error free. We assume 

that Compute2 can recover if Compute1 is not error 

free. 

The AADL dependability model of this application is 

shown in Figure 5 using the AADL graphical notation. 

 

Figure 5. AADL dependability model 

The AADL dependability model of this application is 

built in three iterations. The computing threads’ behavior 

in the presence of their own fault and recovery events is 

represented in the first iteration. The propagation KO 

together with corresponding transitions are added in a 

second iteration to represent the architecture-based 

dependency. The thread Compute1 can have an impact on 

Compute2 and Compute2 can have an impact on 

Compute3. We remind that the opposite is not possible, as 

the connections between threads are unidirectional. The 

recovery dependency is modeled in the third iteration. It 

requires the existence of a Recovery thread in the 

architecture model (see light grey part of Figure 5). Its 

role is to send (through the out port to3) a 

RecoverAuthorize propagation to Compute3 if Compute1 

and Compute2 are error free. 

Figure 6-a shows the error model Comp.general 

associated with threads Compute1 and Compute2. Figure 

6-b shows the error model Comp3.general associated with 

the threads Compute3. The three iterations are 

highlighted. Each line tagged with a (+) sign is added to 

the error model corresponding to the previous iteration 

while each line tagged with a (-) sign is removed from it 

during the current iteration. The first and second iterations 

are the same for all three computing threads. In the third 

iteration, it is necessary to distinguish between a failed 

state and a failed state from which Compute3 is 

authorized to restart. This leads to removing a transition 

declared in the first iteration, and adding a state 

(CanRecover) and two transitions linking it to the state 

machine. 

Figure 7 shows the Guard_Out property applied to port 

to3 of the Recovery thread in the third iteration. This 

property specifies that a RecoverAuthorize propagation is 

sent to Compute3 through port to3 when OK propagations 

are received through ports in1 and in2 (meaning that 

Compute1 and Compute2 are error free). The Recovery 

thread has an associated error model that is not shown 

here. It declares in and out propagations used in the 

Guard_Out property. 

The main idea of this method is to verify and validate the 

model at each iteration. If a problem arises during 

iteration i, only the part of the current AADL 

dependability model corresponding to iteration i is 

questioned. Thus, the validation process is facilitated 

especially in the context of complex systems. 

6. Conclusion 

This paper presented an iterative approach for system 

dependability modeling using AADL. This approach is 

meant to ease the task of analyzing dependability 

characteristics and evaluating dependability measures for 

the AADL users community. Our approach assists the 

user in the structured construction of the AADL 

dependability model (i.e., architecture model and 

dependability-related information). To support and trace 

model evolution, this approach proposes that the user 

builds the model iteratively. Components’ behaviors in 

the presence of faults are modeled in the first iteration as 

if they were isolated. Then, each iteration introduces a 

new dependency between system components. Error 

models representing the behavior of several types of 

system components and several types of dependencies 

may be placed in a library and then instantiated to 

minimize the modeling effort and maximize the 

reusability of models. 

The OSATE toolset is able to support our modeling 

approach. It also allows choosing component models and 

error models from libraries. For the sake of illustration, 

we used simple examples in this paper. We have already 

applied the iterative modeling approach to a system with 

multiple dependencies in [12] and we plan to validate it 

against other complex case studies. 

 

 



 

 

Error Model Type [Comp] 
 

error model Comp 

features 

-- iteration 1 
(+) Error_Free: initial error state; 

(+) Failed: error state; 

(+) Fail: error event  

(+) {Occurrence => Poisson λ}; 
(+) Recover: error event 

(+) {Occurrence => Poisson µ}; 

-- iteration 2 
(+) KO: in out error propagation  

(+) {Occurrence => fixed p}; 
-- iteration 3 
(+) OK: out error propagation   

(+) {Occurrence => fixed 1}; 

end Comp; 

 Error Model Type [Comp3] 
 

error model Comp3 

features 

-- iteration 1 
(+) Error_Free: initial error state; 

(+) Failed: error state; 

(+) Fail: error event  

(+) {Occurrence => Poisson λ}; 
(+) Recover: error event 

(+) {Occurrence => Poisson µ}; 

-- iteration 2 
(+) KO: in out error propagation  

(+) {Occurrence => fixed p}; 
-- iteration 3 
(+) CanRecover: error state; 

(+) OK: in error propagation; 
end Comp3; 

Error Model Implementation [Comp.general] 
 

error model implementation Comp.general 

transitions 
-- iteration 1 
(+) Error_Free-[Fail]->Failed; 

(+) Failed-[Recover]->Error_Free; 

-- iteration 2 
(+) Error_Free-[in KO]->Failed; 

(+) Failed-[out KO]->Failed; 

-- iteration 3 
(+) Error_Free-[out OK]->Error_Free; 
end Comp.general; 

 

 

 Error Model Implementation [Comp3.general] 
 

error model implementation Comp3.general 

transitions 
-- iteration 1 
(+) Error_Free-[Fail]->Failed; 

(+) Failed-[Recover]->Error_Free; 

-- iteration 2 
(+) Error_Free-[in KO]->Failed; 

(+) Failed-[out KO]->Failed; 

-- iteration 3 
(-) Failed-[Recover]->Error_Free; 
(+) Failed-[RecoverAuthorize]->CanRecover; 

(+) CanRecover-[Recover]->Error_Free; 
end Comp3.general; 

a: Error Model for Compute1 and Compute2   b: Error Model for Compute3 

Figure 6. Error model for Compute1 / Compute2 
 

Guard_Out [port Recovery.to3] 
 

-- iteration 3 
(+) Guard_Out => 

(+) RecoverAuthorize when    
(+) (from1[OK]and from2[OK]) 

(+) mask when others 

(+) applies to to3; 

Figure 7. Guard_Out property (port Recovery.to3) 
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