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LÉPISME ⋆

François Boulier a Lilianne Denis�Vidal aGhislaine Joly�Blan
hard b François Lemaire a

aUniversité Lille 1, 59655 Villeneuve d'As
q Fran
e
bUniversité de Te
hnologie de CompiègneAbstra
tWe present a �rst version of a software dedi
ated to an appli
ation of a 
lassi
alnonlinear 
ontrol theory problem to the study of 
ompartmental models in biology.The software is being developed over a new free 
omputer algebra library dedi
atedto di�erential and algebrai
 elimination.Key words: di�erential elimination, 
ompartmental models, biology, software.

1 Introdu
tionThe a
ronym LÉPISME 1 (see the URL www.lil.fr/̃ lemaire/lepisme) standsfor � logi
iel dédié à l'estimation de paramètres et à l'identi�
ation systéma-tique de modèles� whi
h means, in Fren
h: software dedi
ated to parametersestimation and to systemati
 identi�
ation of models. A lepism is also a smallinse
t, sometimes 
alled �silver �sh� that 
an be found in humid and darkpla
es. Fining a lepism is also assumed to bring lu
k.The software we present in this paper is dedi
ated to the parameters estima-tion problem in 
ompartmental models, whi
h are modelling tools quite usedin biology (Cherruault, 1998). There are di�erent issues. First issue: provid-ing a tool permitting to pra
tiotioners to prove that some of their models arefalse. Indeed, biologi
al systems are very di�
ult to model: there are thirty
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thousands of genes, hundreds of thousands of proteins in the 
ase of humanbeings, how many possible intera
tions ? Tools able to take as input models,measures and prove that models are wrong are ne
essary. Our software is anattempt in that dire
tion. Se
ond issue: involving non trivial 
omputer alge-bra methods in su
h an integrated software. Indeed, many 
omputer algebramethods exist in 
omputer algebra systems but there are basi
ally never usedin s
ienti�
 software whi
h are not primarily dedi
ated to 
omputer algebra.Our software is built over a 
omputer algebra library that we wrote in theC programming language (see the URL www.li�.fr/̃ boulier/BLAD). Our goalwhile developing this library was to provide sort of an analogue, in the 
ontextof di�erential elimination, of the impressive GNU Multi Pre
ision library, alibrary easy to plug in any software, dedi
ated to big numbers only. Thirdissue: hiding the te
hni
al aspe
ts of the involved 
omputer algebra methods(di�erential regular 
hains, di�erential elimination theory . . . ) whi
h are a
-tually impossible to understand by almost any resear
her working outside our
ommunity. We believe that this legibility issue is 
ru
ial to develop the useof 
omputer algebra in s
ienti�
 
omputing.Any 
ompartmental model 
an be translated as a system of nonlinear, ordi-nary di�erential equations depending on paramaters. We restri
t ourselves topolynomial systems, the other ones falling outside the s
ope of our methods.The problem we address 
an be stated as follows: given a polynomial para-metri
 system of ODE and a set of measures (i.e. �les of points (ti, x(ti)))for some of the variables (
alled observed variables), estimate the value of theparameters whi
h �ts the measures the best. There exist 
lassi
al methods(Walter, 1994). They assume that approximate values for the parameters areknown in advan
e. They improve then these initial values by means of optimi-sation methods (nonlinear least squares, whi
h amount to Newton's method).Their drawba
k is obvious: they lead quite often to wong values of the pa-rameters (lo
al minima) even when the parameters values are theoreti
allyuniquely determined by the measures (i.e. when the model is globally observ-able). The method we develop was validated a few years ago in (Noiret, 2000;Denis-Vidal et al., 2001, 2003). Stated in a nutshell, the idea is: by means ofdi�erential elimination (Boulier et al., 1995, 1997, 2001), the nonlinear leastsquares problem (whi
h require the knowledge of an initial value) 
an be re-formulated as a linear least square problem, for whi
h no a priori knowledgeis ne
essary. More pre
isely, by a mixed numeri
 (linear least squares) andsymboli
 (di�erential elimination) algorithm, one 
an automati
ally provideto the user an approximate guess of the parameters values whi
h 
an then beused as a starting point by the 
lassi
al optimisation method. Our method
annot guarantee that the provided starting point a
tually leads to the globalminimum but this is already an improvement.Our proje
t presents an interesting feature: it is 
omplementary to the ex-isting methods; it does not repla
e them. Our software only relies on open2



sour
e software. It is a
tually prote
ted by the GNU General Publi
 Li
ense.The paper is organised as follows: we �rst re
all the basi
s on 
ompartmen-tal models, identi�ability and parameters estimation. Se
ond we des
ribe themixed numeri
 and smboli
 method that we apply. Last we des
ribe the soft-ware, fo
using on the 
omputer algeba BLAD libraries.2 Compartmental models, identi�ability and parameters estima-tionThe problem states: given a 
ompartmental model and a set of measures,estimate the values of the model parameters.2.1 Compartmental modelsThe following 
ompartmental model admits a pharma
okineti
s interpreta-tion. It des
ribes the evolution of (say) a medi
al produ
t between the blood(
ompartment 1) and some organ (
ompartment 2). The arrows denote ex-
hanges between 
ompartments: the produ
t 
an go from ea
h 
ompartmentto the other one. It 
an also exit from the blood by the a
tion of kidneys.
x1 x2

k12

k21

ke, Ve

To ea
h 
ompartment is asso
iated a time varying variable: xi(t) denotes theamount of produ
t present in 
ompartment i at time t. In order to derive asystem of di�erential equations from the model, one still needs to make someassumptions about the ex
hanges: it is assumed that the ex
hanges betweenthe two 
ompartments are linear and that the produ
t exits from the blood bya Mi
haelis�Menten rea
tion. This being pre
ised, the 
ompartmental modelis equivalent to a system of parametri
 ODE:
ẋ1 = −k12 x1 + k21 x2 −

Ve x1

ke + x1

, ẋ2 = k12 x1 − k21 x2.In addition to the model, we assume we are given some measures. Here, weassume that x1(t) is known for t = t0, t1, . . . , tN and that x2(t) is known tobe zero at the origin: x2(t0) = 0. We may also make some assumptions on themodel parameters k12, k21, ke, Ve. Here, we assume ke is known: ke = 7.To allow the reader to reprodu
e our results, we 
onsider in this paper a �le of3



31 measures generated from t0 = 0 to t30 = 1.5 with k12 = 0.5, k21 = 3, Ve =
101, x1(0) = 50. We did not put any noise in our measures.2.2 Identi�ability and parameters estimationA system identi�
ation based on physi
al laws often involves a parameter esti-mation. Before performing an estimation problem, it is ne
essary to investigateits identi�ability. This a mathemati
al and a priori problem. We state it infor-mally over our example: assume that the fun
tion x1(t) and all its derivativesof various orders are perfe
tly known ( (e.g. error free) and well "behaved"(e.g. not identi
ally zero), would the parameters of the model be uniquely de-termined? If the answer is yes, the model is said to be globally identi�able. Ifthe model parameters may take a �nite set of values then the model is said tobe lo
ally identi�able otherwise it is said to be unidenti�able.The notion of identi�ability has already been presented as an important notionin (Koopmans and Reiersol, 1950). But it was only in 1970 that Bellman andÅström (1970) have given formal basis for identi�ability analysis of dynami
alsystems.In the 
ase of linear models several methods are available to analyse identi�a-bility. The following approa
hes are readily used. One is based on the transferfun
tion (Bellman and Åström, 1970), an other uses the Markov parametermatrix (Grewal and Glover, 1976), then the exhaustive modelling has beendeveloped (Walter, 1994; Le
ourtier, 1985).In the 
ase of nonlinear models these approa
hes 
annot be used and othermethods have been proposed. The linearization of the model has been 
onsid-ered by Grewal and Glover (1976). Some approa
hes are based on the Taylorseries expansion (Pohjanpalo, 1978) or on generating power series (Walterand Le
ourtier, 1982; Le
ourtier, 1985; Le
ourtier et al., 1987). The similaritytransformation, based on the lo
al isomorphism theorem, is another way toanalyze identi�ability of nonlinear 
ontrolled model (Vajda et al., 1989). It isan extension to the nonlinear 
ase of the exhaustive modelling approa
h. Morere
ently appro
hes based on di�erential algebra have been proposed (Ollivier,1997; Diop and Fliess, 1991; Ljung and Glad, 1994). Finally the identi�abil-ity question was re
ently addressed using probabilisti
 methods (Sedoglavi
,2002).This investigation is the �rst step of the parameter estimation whi
h is a pra
-ti
al question. It only makes sense if the model is at least lo
ally identi�able.There exists a substantial litterature 
on
erning the parameter estimation(Ljung, 1989). Generally the estimation methods are based on the 
hoi
e of a
riterion depending on the parameters and on the minimization of this 
rite-rion. The quadrati
 
riteria are the most used. But few methods 
ombine bothidenti�bility and estimation (Ljung and Glad, 1994; Denis-Vidal et al., 2003).When the test of identi�ability is done by di�erential elimination methods,4



relations between parameters,inputs and outputs are obtained. Thus it shouldbe interesting to use these relations in the parameter estimation.In this 
ontribution we propose an algorithm whi
h links identi�ability withnumeri
al parameter estimation.In the following we assume we deal with a 
ompartment model whi
h is atleast lo
ally identi�able. Our example is globally identi�able.
2.3 A numeri
al algorithmEstimating parameters may be solved by means of purely numeri
al methodse.g. by nonlinear least squares. We have implemented this well known methodusing the Levenberg�Marquardt algorithm (Gill et al., 1988) whi
h is a variantof the Newton method. We state it over our example.Algorithm: optimize(1) Assign random values to the parameters k̄12, k̄21, V̄e (re
all that ke isknown).(2) Integrate numeri
ally the di�erential system. This provides some valuesfor x1(t) whi
h are denoted x̄1(t0), x̄1(t1), . . . , x̄1(tN).(3) The 
riterion to minimize is r = f 2

1 + · · ·+ f 2
N where fi = x1(ti)− x̄1(ti).Evaluate it. If the error is small enough stop 
omputations else updatethe values of the parameters by the Levenberg�Marquardt method andgo to step 2.Remarks. The problem of su
h a method is well known: the algorithm mayvery well end up in a lo
al minimum and miss the a
tual values of the pa-rameters. Trying with Ve = 90, k12 = 0.4, k21 = 0.01 one ends up with

k12 = 0.77, k21 = 0.17, V e = 82.82 and a 3. 10−1 error.The method may also fail (
omputations being interrupted by a �timeout�ex
eption in our implementation) when the adaptive step�size numeri
al in-tegrators of the Gnu S
ienti�
 Library enter di�
ult areas. Try with Ve =
40, k12 = 0.4, k21 = 0.01.The method needs to integrate not only the two ODE system but also six extraODE (the Fisher sensibility matrix) whi
h give the sensitivities of x1(t) and
x2(t) w.r.t. the variation of ea
h parameter. These six ODE are symboli
allygenerated by our BLAD libraries. 5



3 Guessing a good starting point3.1 OverviewThe numeri
al algorithm optimize presented above is sensitive to the valuesof the parameters you start with. It is proved in (Noiret, 2000; Denis-Vidalet al., 2003) that optimize 
an be greatly improved by guessing good initialvalues for the parameters using the following 
omputer algebra method, basedon di�erential elimination.Let's assume that the right hand sides of the system equations are multivariaterational fra
tions.Algorithm: guess1. Di�erential elimination. By di�erential elimination methods, 
ompute aset of di�erential polynomials whi
h are 
onsequen
es of the dynami
al sys-tem and whi
h only involve the measured variables, some of their derivativesof various orders and the unknown system parameters. Those di�erential poly-nomials, often 
alled �input/output equations�, have the form c1 t1 + · · ·+ cq tqwhere the t1, . . . , tq are polynomials over the alphabet of the measured vari-ables and their derivatives and the 
oe�
ients c1, . . . , cq are multivariate poly-nomials over the alphabet of the system parameters. We 
all them �blo
ks ofparameters�. Our example leads to only one input/output equation: the blo
ksof unknown parameters are en
losed between square bra
kets. They are mul-tiplied by power produ
ts of the measured variables (x1 and its derivatives)and the known parameter ke:
ẍ1 (x1 + ke)

2 + [k12 + k21] ẋ1 (x1 + ke)
2 + [Ve] ẋ1 ke + [k21 Ve] x1 (x1 + ke).2. Estimating the blo
k values. Using the measures, evaluate numeri
ally thepolynomials ti for many di�erent values of the time t = t0, . . . , tN . This pro-vides an overdetermined linear system of N + 1 equations whose unknownsare the blo
ks of parameters ci. Solve this system using (say) the linear leastsquares method. This provides estimated values c̄i for the ci. Over our exam-ple, one gets

(k12 + k21) = 2.1, Ve = 87.29, k21 Ve = 144.01.Compare with the right values: (k12 + k21) = 3.5, Ve = 101, k21 Ve = 303.3. Estimating the parameters values. Form a polynomial system ci = c̄i for
1 ≤ i ≤ q (ea
h ci being repla
ed by its expression in the parameters and ea
h
c̄i being approximated by a numeri
al value) and solve it (see subse
tion 3.46



for details). The solution of the polynomial system provides estimated valuesfor the system parameters. Over our example, one gets
k12 = 0.45, k21 = 1.65, Ve = 87.29.If one provides the above values to the optimize algorithm, one gets the rightvalues with a 10−5 error.3.2 Di�erential eliminationThe di�erential method used in LÉPISME is PODI (Boulier et al., 2001) whi
his a variant of PARDI for ordinary di�erential equations. The �input/output�equations are obtained by 
omputing a di�erential regular 
hain 2 of the initialsystem for a spe
ial ranking. We do not re
all details of the underlying theory(the di�erential algebra (Ritt, 1950; Kol
hin, 1973)) for reasons of brevity. Weonly explain how our algorithm works on our example.Our example 
an be viewed as follows C : ẋ1 = −k12 x1 + k21 x2 − Ve x1

ke+x1

,
ẋ2 = k12 x1 − k21 x2, k̇12 = k̇21 = V̇E = k̇E = 0 where the parameters are seenas 
onstant fun
tions of the time.The system C is a di�erential regular 
hain of the di�erential ideal I that itde�nes w.r.t the ranking R : · · · > ẍ1 > ẍ2 > ẋ1 > ẋ2 > x1 > x2 > · · · >
k̇12 > k̇21 > V̇E > k̇E > k12 > k21 > VE > kE.This means that C 
an be viewed as the following rewriting system: ẋ1 →
−k12 x1 + k21 x2 −

Ve x1

ke+x1

, ẋ2 → k12 x1 − k21 x2, k̇12 → 0, k̇21 → 0, V̇E →

0, k̇E → 0. Derivatives of the left hand sides of the rewriting rules 
an berewritten by di�erentiating the right hand sides (for example the term ẍ1 
anbe rewritten using the derivative of the �rst rule).A normal form algorithm is des
ribed in (Boulier and Lemaire, 2000) (it isbased on the Ritt pseudo redu
tion). Be
ause C is a di�erential regular 
hain,we have the ni
e property p ∈ I ⇐⇒ NF(p, C) = 0The whole idea to 
ompute the �input/output� equations is to 
ompute adi�erential regular 
hain C of I for a well 
hosen ranking R. On our example,it su�
es to 
hoose R : · · · >
...
x 2 > ẍ2 > x2 > · · · >

...
x 1 > ẍ1 > x1 > · · · >

k̇12 > k̇21 > V̇E > k̇E > k12 > k21 > VE > kE.The input/output equation whi
h only involves x1, its derivatives and theparameters is a �smallest� polynomial of I w.r.t R. It must belong to C.
2 a di�erential regular 
hain is equivalent to a Ritt 
hara
teristi
 set7



Although it is possible to 
ompute C dire
tly using a generi
 method likeRosenfeld�Gröbner (available in the MAPLE pa
kage Diffalg), it is more e�-
ient to reuse the known di�erential regular 
hain C to guide the 
omputationsusing the membership test provided by C: this is done by PODI. Moreover,
PODI is written to handle prime ideals (whi
h is the 
ase on our example).The set C is 
omputed by 
onverting the system C into C. The set C is buildin
rementally by taking the equations in C one by one. PODI performs thefollowing steps on our example:
• step 1: set C = ∅
• step 2: pi
k an equation in C, say ẋ1 = −k12 x1 +k21 x2−

Ve x1

ke+x1

. For the newranking R, the leading variable of this equation is x2. Writing the equationas a rewriting rule, set: C = {x2 →
1

k21

(ẋ1 + k12 x1 + Ve x1

ke+x1

)}

• step 3: pi
k the equation ẋ2 = k12 x1−k21 x2. Before inserting it in C, rewriteit using C yielding an equation with leading variable ẍ1. We now have:
C =











x2 →
1

k21

(ẋ1 + k12 x1 + Ve x1

ke+x1

),

ẍ1 → −(k12 + k21) ẋ1 −
Ve ẋ1 ke

(x1+ke)2
− k21 Ve x1

(x1+ke)The algorithm PODI terminates for the equations are pairwise irredu
ible.At step 3, it got to make sure using the known 
hain C that k12 is nonzerodivisor modulo I. Over this example, there are no purely algebrai
 simpli�-
ations to perform over the result. The se
ond equation in C is pre
isely the�input/output� equation presented at the beginning of the se
tion.
3.3 Estimating the blo
ks valuesThe di�
ulty 
omes from the fa
t that one needs to estimate the values of ẋ1and ẍ1 at t0, t1, . . . , tN and this 
annot be done very pre
isely. Observe thatone 
ould work around the equation and transform it as an integral equation.This would improve the result but one 
annot anyway 
ompletely eva
uatethe di�
ulty.In our implementation we interpolate the values of x1 and evaluate derivativesover the interpolating 
urves. We use the splines of degree 3 provided by theGnu S
ienti�
 Library. Céline Noiret used interpolation polynomials of higherdegrees. 8



3.4 Estimating the parameters valuesSolving the system ci = c̄i leads to di�
ulties: the system 
an be over orunder determined and involves only exa
t 
oe�
ients apart the c̄i. Severalapproa
hes are possible.A numeri
al approa
h. One 
an dire
tly solve the system with numeri
almethods (as Céline Noiret does with nonlinear least squares). However theobtained solution is only meaningful if the system is globally identi�able and ifthe numeri
al algorithm has not been stu
k in a lo
al minimum. Note that thelo
al/global identi�ability 
ould be tested using probabilisti
 tests (Sedoglavi
,2002).Symboli
 solving. This is what we use in the 
urrent version of LÉPISME.It 
onsists in symboli
ally solving w.r.t. to the parameters the system ci = biwhere the bi are new indeterminates. We use the PALGIE algorithm. If theparameters are rational fun
tions of the bi's, the system is globally identi�-able. If the parameters are impli
it fun
tions of the bi's, the system is lo
allyidenti�able. Otherwise, the system is not identi�able.This method is naive and 
an require extensive 
omputations. It 
ould beoptimized using the following ideas. First, one 
an get rid of non identi�ablesystems by performing a probabilisti
 test over the model equations using(Sedoglavi
, 2002). Then, the idea 
onsists in symboli
ally solving the system
ci = c̄i (repla
ing the c̄i by rational numbers). However, a di�
ulty arises:there sometimes exist algebrai
 relations between the ci that the c̄i may notsatisfy. By over
oming this di�
ulty, one 
ould be redu
ed to the problem ofsolving a zerodimensional algebrai
 system. Advantage of this method: onegets all the possible values for the parameters.Last, in our implementation of guess, when many di�erent input/output equa-tions are available, we �rst solve the simplest ones (the ones of lowest order)and rewrite the other ones using the obtained values. This turns out to providemore a

urate results than solving all equations together.4 The softwareThe software is de
omposed in di�erent layers. The lower layers may beused independently of the upper ones. It has been developed using the au-tomake/auto
onf system whi
h makes it easy to test if some parti
ular soft-wares or libraries (e.g. GB+RS, TRIADE (Moreno Maza, 2000), SCILAB,MATLAB . . . ) are available on the user's 
omputer. It relies on the Gnu S
i-9



enti�
 Library for numeri
al 
omputations and on the Gnu Multiple Pre
isionlibrary for big numbers. Today, the software is restri
ted to small globallyidenti�able un
ontrolled models but this is going to 
hange.LÉPISME interfa
e: model solver model editor JAVALÉPISME 
ore methods: optimize, guess JGraph C and JAVABLAD GSL CGMP C
4.1 The LÉPISME graphi
al interfa
eThe interfa
e is made of two distin
t appli
ations: amodel editor whi
h permitsto the user to enter the model graphi
ally and a model solver whi
h permitsto laun
h the LÉPISME 
ore methods: optimize and guess.The main fun
tionnality of the model editor is to graphi
ally manipulate (
re-ation/modi�
ation by mouse) 
ompartmental models des
ribed by graphs: theuser 
an easily enter a 
ompartmental model in a graphi
al way, avoiding typ-ing equations dire
tly.The model solver looks is a graphi
al interfa
e permitting to the user to laun
hthe LÉPISME 
ore methods (re
all that the identi�ability methods are notyet implemented and do not even appear on the model solver). The main goalof this interfa
e is to hide as mu
h as possible to the user the te
hni
al 
onsid-erations. For instan
e, the model equations, the 
omputed regular di�erential
hains, the blo
ks of parameters are never displayed.Con
erning the implementation, we have 
hosen to write the interfa
e inJAVA. The reasons for this are the portability and the large builtin fa
ilities to
reate graphi
al appli
ations that JAVA provides. Moreover, 
ompartmentalmodels are ni
ely implemented using obje
ts : any new type of ex
hange 
anbe introdu
ed by only 
oding a few new 
lasses. The display and manipula-tion of the 
ompartmental models are a
hieved using the graph manipulatinglibrary JGraph (see http://www.jgraph.
om) 3 .
3 JAVA itself does not provide su
h graph libraries10



4.2 The LÉPISME 
ore methodsThe algorithms optimize and guess are implemented as two exe
utables inthe C programming language. They take as input 
ompartmental models de-s
ribed in a model �le and a data �le (this design is inspired from that of theAMPL (Fourer et al., 1993) mathemati
al programming software) generatedby the graphi
al interfa
e. A model �le is a text �les 
omposed of se
tions de-s
ribing the 
ompartments, the ex
hanges, the parameters and the 
ommands.A data �le is a text �le 
omposed of one se
tion 
ontaining the numeri
al val-ues of the known parameters and 
ompartments. By splitting the model anddata �les, one 
an 
onsider di�erent data �les (i.e. di�erent sets of measures)
orresponding to the same model.We are today working on 
hanging the syntax of our �les. We plan to swit
hto an SBML syntax. SBML is a variant of the XML data des
ription languagesuited to biologi
al models. It is an a
ronym standing for �Systems BiologyMarkup Language� (Hu
ka et al., 2004). The use of this standard would in-
rease the interoperability of our software with other softwares dedi
ated tomodelling biologi
al systems. In parti
ular, we 
ould o�er to the user thealternative software su
h as say, Cell Designer (see the URL www.systems-biology.org), in pla
e of our model editor.4.3 The BLAD librariesThe BLAD libraries (read �Bibliothèques Lilloises d'Algèbre Di�érentielle�),written in the C programming language are dedi
ated to di�erential elimina-tion. Their �rst version was released in August 2004, by the Computer Algebrateam of the university Lille 1 (see the URL www.li�.fr/̃boulier/BLAD). Thereare four libraries, the lower ones being independent of the upper ones. Thefollowing table gives the library names and some of their key features.BAD di�erential elimination methods: PARDI, Rosenfeld�GröbnerBAP multivariate polynomials over GMPBAV di�erential rankings, orderingsBA0 memory management, ex
eption handling, parsersThe BAD library. The main data stru
ture provided by the BAD library isa uni�ed 
on
ept of �regular 
hain� whi
h applies as well to the algebrai
 asto the di�erential setting. The 
on
ept of regular 
hain generalizes the oneof �
hara
teristi
 set�. In the algebrai
 
ase, it was initiated in (Kalkbrener,1993) and then mu
h developed in the 
omputer algebra team of Daniel Lazard11



(Moreno Maza, 1997; Aubry et al., 1999; Aubry, 1999). The above de�nitionwas adapted to the di�erential setting in (Lemaire, 2002) under the name:�di�erential regular 
hain�.In the BAD library, a regular 
hain is de�ned by two sets of polynomials andtwo sets of properties. The two sets of polynomials are on the one hand themathemati
al regular 
hain itself and on the other hand an heuristi
 set ofpolynomials whi
h lie in the ideal de�ned by the 
hain and help pro
essingredu
tions. This is indeed an idea borrowed from Faugère: do not forget poly-nomials whi
h arise early in 
omputations: they often turn out to simplify alot redu
tions.The two sets of properties are on the one hand a set of stru
tural propertiesand on the other hand a set of desired properties. Stru
tural properties areproperties of the 
hain whi
h 
annot be 
hanged or a
hieved algorithmi
ally:does the 
hain de�ne a di�erential or a nondi�erential ideal ? is the ideal de-�ned by the 
hain prime or not ? The desired properties are properties of the
hain whi
h 
an be 
hanged or a
hieved algorithmi
ally: is the 
hain primi-tive ? is it squarefree ? is it autoredu
ed ? (Aubry et al., 1999) is it stronglynormalized (Boulier and Lemaire, 2000) ? is it 
oherent (Rosenfeld, 1959) ?There are relationships between these properties: if the ideal is di�erentialthen the 
hain must be squarefree; the 
oheren
e property only makes sensefor systems of PDE.The main implemented algorithms are the PARDI (Boulier et al., 2001) andthe Rosenfeld�Gröbner (Boulier et al., 1995, 1997) simpli�ers. The normal for-mal algorithm de
sribed in (Boulier and Lemaire, 2000) is implemented too. Aspe
ial 
are was given to the implementation of the Ritt redu
tion algorithm:There are di�erent implementations whi
h di�er of the way polynomials arerepresented. In parti
ular the implementation whi
h seems the most e�
ienttries to keep polynomials fa
tored (not ne
essarily 
ompletely) and to per-form pseudoredu
tions fa
torwise. Indeed, after a few steps and be
ause ofthe pseudoredu
tion algorithm, the simpli�ers su
h as PARDI tend to pro-du
e polynomials whi
h involve as fa
tors powers of initials and separants ofother polynomials used for simpli�
ation.The BAP library. It primarily aims at implementing di�erential polynomialsfor the BAD library. It implements them as multivariate polynomials over(mainly) the ring of the integers. For instan
e the di�erential polynomial ẋ−t xis viewed in the BAD library as an element of the di�erential polynomial ring
Q(t){x}. It is viewed, in the BAP library, as a plain multivariate polynomialin Z[t, x, ẋ].A spe
ial 
are was taken to implement the g
d of two multivariate polynomialsover the ring of the integer numbers. It was implemented using modular and12



ideal�adi
 methods as des
ribed in (Geddes et al., 1992) and is thus 
lose tothat of the MAPLE software. It is a very large and di�
ult algorithm whi
hrelies for instan
e on the fa
torization of multivariate polynomials to avoidthe expression swell in the Hensel lifting (Zassenhaus, 1969) and whi
h makesuse of multivariate polynomials with 
oe�
ients in Z/pkZ.Sin
e the BAP library polynomials are assumed to be involved in simpli�
a-tion pro
esses of di�erential polynomials whi
h involve many parameters, aspe
ial 
are was taken for implementing di�erentiation. Ea
h parameter k ishandled internally as a plain di�erential indeterminate (thus en
oding a timevarying fun
tion) and the dynami
al system in 
onsideration is enlarged withan extra rule k̇ = 0 to express the fa
t that it's value does not a
tually varywith the time. Without any further 
are, some expression swell would ariseduring di�erentiation: this operation would �rst generate monomials involvingderivatives of the parameters; these monomials would afterwards be rewrit-ten to zero. To avoid this behaviour, the di�erentiation algorithm re
eives asan extra argument a table of the variables whose derivatives are going to beredu
ed to zero in order not to generate the pointless monomials.The representation of the polynomials is a variant of the so 
alled distributedrepresentation. During the design of the library, the following features weredesired:(1) to provide an easy a

ess to the 
oe�
ients of the polynomials w.r.t. anysubset of its variables,(2) to permit some 
ompression me
hanism.Here are some reasons whi
h make the �rt point important: the pseudoredu
-tion is involved in many algorithms and it implies to a

ess to the 
oe�
ientsof a polynomial w.r.t. its leading variable; the key algorithms based on Henselliftings need also to a

ess to the 
oe�
ients of the polynomials w.r.t. somevariable, usually 
hosen heuristi
ally; many basi
 algorithms su
h as the mul-tipli
ation of two polynomials P and Q are mu
h more e�
ient if one 
ansplit the set of the variables into three sets (that whi
h appear in P but notin Q, that whi
h appear in Q and not in P and that whi
h appear in both)and view P and Q as polynomials with 
oe�
ients in the ring of polynomialswhi
h depend on their 
ommon variables.The se
ond point was motivated by the size of some intermediate polynomialswhi
h already rea
hed (even for tra
table problems) hundreds of thousands ofmonomials.We 
hose a variant of the distributed representation. In this variant, polynomi-als are de�ned as �pie
es� of an underlying sorted linear 
ombination of terms.The underlying linear 
ombination is made of a dynami
al array of numeri
al
oe�
ients and a dynami
al array of terms. Di�erent representations of terms13



are provided. For instan
e, terms may be stored in a hash table (equality testbetween terms gets very fast) or stored dire
tly in the array, in a 
ompressedway. Compression is a
hieved by keeping up to date, for ea
h polynomial, abound d on its degree w.r.t. ea
h variable v. Then, in ea
h term t, the degree
deg(t, v) is stored on about log2(d) bits.A polynomial is either a full linear 
ombination of terms or a �pie
e� of it.For instan
e, a 
oe�
ient of polynomial w.r.t. its leading variable is de�nedby a �rst monomial, a last monomial and the (leading) variable, whi
h mustbe fa
tored out from the terms of the linear 
ombination in order to get theterms of the 
oe�
ient. The me
hanism is more 
ompli
ated to a

ess to the
oe�
ients of a polynomial w.r.t. a non leading variable: one makes use ofan indire
tion array in order to provide the monomial whi
h 
onstitute the
oe�
ient.Of 
ourse, some iterators are provided to make it easy for algorithms to runover the 
oe�
ients of the polynomials.The BAV library. It implements the variables over whi
h polynomials arebuilt. Variables may be derivatives of dependent variables, independent vari-ables or mere 
onstants. Many di�erential rankings (i.e. total orderings on thein�nite set of the derivatives of the dependent variables) are implemented andmore generally orderings whi
h are not rankings (i.e. not 
ompatible with thea
tion of the derivations). These latter ones turn out to be very useful forimplementing e�
ient versions of many algorithms on polynomials.The BA0 library. It implements the low level me
hanisms. In parti
ular, itprovides two memory management me
hanisms: an implementation of themethod des
ribed in (Faugère, 1998) whi
h is used by Faugère and Rouillierin their software and a two sta
ks me
hanism. Both me
hanisms share thefollowing feature: ea
h fun
tion 
an only re
over the memory that it used orthe memory that the subfun
tions it 
alled used: a fun
tion 
annot re
overthe memory wasted by its 
alling fun
tions.Be
ause of this feature, the Faugère and Rouillier method is very e�
ient foriterative algorithms in whi
h ea
h loop performed in a given fun
tion needs arelatively small amount of memory: in this 
ase, memory 
an just be wasted upto saturation and 
ompletely re
overed in one operation. It seems less suitablefor very re
ursive methods (su
h as triangular sets ones) where memory mustbe re
overed mu
h more regularly. The two sta
ks me
hanism provides thena simple and quite e�
ient alternative.The library provides also an ex
eption handling me
hanism whi
h permits tostop gra
efully 
omputations whi
h ex
eed some given bounds in time or inmemory. This me
hanism is also used within the BLAD library. It was quiteeasy to design be
ause of the 
arried out memory management me
hanisms.14



Indeed, the only di�
ulty arising when implementing su
h me
hanisms 
on-sists in re
overing the memory used between the moment where the ex
eption
at
hing point was set and the moment where the ex
eption was thrown.The library provides powerful parsers whi
h turn out to be very interesting forperforming esily some data type 
onversions. Su
h 
onversions are very rarewithin the BLAD library but very 
ommon in the LÉPISME 
ore methods.Big numbers are handled by GMP.5 Con
lusionSymboli
 methods are usually very di�
ult to understand by pra
titioners(spe
ialists spend years studying them). For this reason, we believe that it isvery important to develop 
omplete softwares (up to the graphi
al interfa
e)in order to prove the usefulness of symboli
 methods. For the same reason,usual 
omputer s
ientists will never be able to understand our methods a

u-rately enough to implement them: resear
h papers often do not even mentionsome very di�
ult and ne
essary subalgorithms (e.g. the multivariate polyno-mials g
d used to fa
tor out 
ontents from equations). It is thus our task toimplement the 
omplete softwares.This large work was strongly motivated by many dis
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