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Abstract

We present a first version of a software dedicated to an application of a classical
nonlinear control theory problem to the study of compartmental models in biology.
The software is being developed over a new free computer algebra library dedicated
to differential and algebraic elimination.
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1 Introduction

The acronym LEPISME! (see the URL www.lil.fr/lemaire/lepisme) stands
for “logiciel dédié a [’estimation de paramétres et a lidentification systéma-
tique de modéles” which means, in French: software dedicated to parameters
estimation and to systematic identification of models. A lepism is also a small
insect, sometimes called “silver fish” that can be found in humid and dark
places. Fining a lepism is also assumed to bring luck.

The software we present in this paper is dedicated to the parameters estima-
tion problem in compartmental models, which are modelling tools quite used
in biology (Cherruault, 1998). There are different issues. First issue: provid-
ing a tool permitting to practiotioners to prove that some of their models are
false. Indeed, biological systems are very difficult to model: there are thirty
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thousands of genes, hundreds of thousands of proteins in the case of human
beings, how many possible interactions ? Tools able to take as input models,
measures and prove that models are wrong are necessary. Our software is an
attempt in that direction. Second issue: involving non trivial computer alge-
bra methods in such an integrated software. Indeed, many computer algebra
methods exist in computer algebra systems but there are basically never used
in scientific software which are not primarily dedicated to computer algebra.
Our software is built over a computer algebra library that we wrote in the
C programming language (see the URL www.lifl.fr/boulier/BLAD). Our goal
while developing this library was to provide sort of an analogue, in the context
of differential elimination, of the impressive GNU Multi Precision library, a
library easy to plug in any software, dedicated to big numbers only. Third
issue: hiding the technical aspects of the involved computer algebra methods
(differential regular chains, differential elimination theory ... ) which are ac-
tually impossible to understand by almost any researcher working outside our
community. We believe that this legibility issue is crucial to develop the use
of computer algebra in scientific computing.

Any compartmental model can be translated as a system of nonlinear, ordi-
nary differential equations depending on paramaters. We restrict ourselves to
polynomial systems, the other ones falling outside the scope of our methods.
The problem we address can be stated as follows: given a polynomial para-
metric system of ODE and a set of measures (i.e. files of points (¢;, x(t;)))
for some of the variables (called observed variables), estimate the value of the
parameters which fits the measures the best. There exist classical methods
(Walter, 1994). They assume that approximate values for the parameters are
known in advance. They improve then these initial values by means of optimi-
sation methods (nonlinear least squares, which amount to Newton’s method).
Their drawback is obvious: they lead quite often to wong values of the pa-
rameters (local minima) even when the parameters values are theoretically
uniquely determined by the measures (i.e. when the model is globally observ-
able). The method we develop was validated a few years ago in (Noiret, 2000;
Denis-Vidal et al., 2001, 2003). Stated in a nutshell, the idea is: by means of
differential elimination (Boulier et al., 1995, 1997, 2001), the nonlinear least
squares problem (which require the knowledge of an initial value) can be re-
formulated as a linear least square problem, for which no a priori knowledge
is necessary. More precisely, by a mixed numeric (linear least squares) and
symbolic (differential elimination) algorithm, one can automatically provide
to the user an approximate guess of the parameters values which can then be
used as a starting point by the classical optimisation method. Our method
cannot guarantee that the provided starting point actually leads to the global
minimum but this is already an improvement.

Our project presents an interesting feature: it is complementary to the ex-
isting methods; it does not replace them. Our software only relies on open



source software. It is actually protected by the GNU General Public License.
The paper is organised as follows: we first recall the basics on compartmen-
tal models, identifiability and parameters estimation. Second we describe the
mixed numeric and smbolic method that we apply. Last we describe the soft-
ware, focusing on the computer algeba BLAD libraries.

2 Compartmental models, identifiability and parameters estima-
tion

The problem states: given a compartmental model and a set of measures,
estimate the values of the model parameters.

2.1 Compartmental models

The following compartmental model admits a pharmacokinetics interpreta-
tion. It describes the evolution of (say) a medical product between the blood
(compartment 1) and some organ (compartment 2). The arrows denote ex-
changes between compartments: the product can go from each compartment
to the other one. It can also exit from the blood by the action of kidneys.

S o

k12

ka1

To each compartment is associated a time varying variable: z;(¢) denotes the
amount of product present in compartment ¢ at time ¢t. In order to derive a
system of differential equations from the model, one still needs to make some
assumptions about the exchanges: it is assumed that the exchanges between
the two compartments are linear and that the product exits from the blood by
a Michaelis-Menten reaction. This being precised, the compartmental model
is equivalent to a system of parametric ODE:

Ve

ke—f-l’l

Ty = —kio Ty + Koy wy — ;o= k1o 1 — k21 To.

In addition to the model, we assume we are given some measures. Here, we
assume that xq(¢) is known for ¢ = tg, t1, ..., ty and that z5(¢) is known to
be zero at the origin: xo(ty) = 0. We may also make some assumptions on the
model parameters kqo, ko1, ke, V.. Here, we assume k. is known: k., = 7.

To allow the reader to reproduce our results, we consider in this paper a file of



31 measures generated from tg = 0 to t39 = 1.5 with ki3 = 0.5, koy =3, V, =
101, x1(0) = 50. We did not put any noise in our measures.

2.2 Identifiability and parameters estimation

A system identification based on physical laws often involves a parameter esti-
mation. Before performing an estimation problem, it is necessary to investigate
its identifiability. This a mathematical and a priori problem. We state it infor-
mally over our example: assume that the function z(¢) and all its derivatives
of various orders are perfectly known ( (e.g. error free) and well "behaved"
(e.g. not identically zero), would the parameters of the model be uniquely de-
termined? If the answer is yes, the model is said to be globally identifiable. If
the model parameters may take a finite set of values then the model is said to
be locally identifiable otherwise it is said to be unidentifiable.

The notion of identifiability has already been presented as an important notion
in (Koopmans and Reiersol, 1950). But it was only in 1970 that Bellman and
Astrém (1970) have given formal basis for identifiability analysis of dynamical
systems.

In the case of linear models several methods are available to analyse identifia-
bility. The following approaches are readily used. One is based on the transfer
function (Bellman and Astrom, 1970), an other uses the Markov parameter
matrix (Grewal and Glover, 1976), then the exhaustive modelling has been
developed (Walter, 1994; Lecourtier, 1985).

In the case of nonlinear models these approaches cannot be used and other
methods have been proposed. The linearization of the model has been consid-
ered by Grewal and Glover (1976). Some approaches are based on the Taylor
series expansion (Pohjanpalo, 1978) or on generating power series (Walter
and Lecourtier, 1982; Lecourtier, 1985; Lecourtier et al., 1987). The similarity
transformation, based on the local isomorphism theorem, is another way to
analyze identifiability of nonlinear controlled model (Vajda et al., 1989). It is
an extension to the nonlinear case of the exhaustive modelling approach. More
recently approches based on differential algebra have been proposed (Ollivier,
1997; Diop and Fliess, 1991; Ljung and Glad, 1994). Finally the identifiabil-
ity question was recently addressed using probabilistic methods (Sedoglavic,
2002).

This investigation is the first step of the parameter estimation which is a prac-
tical question. It only makes sense if the model is at least locally identifiable.
There exists a substantial litterature concerning the parameter estimation
(Ljung, 1989). Generally the estimation methods are based on the choice of a
criterion depending on the parameters and on the minimization of this crite-
rion. The quadratic criteria are the most used. But few methods combine both
identifibility and estimation (Ljung and Glad, 1994; Denis-Vidal et al., 2003).
When the test of identifiability is done by differential elimination methods,



relations between parameters,inputs and outputs are obtained. Thus it should
be interesting to use these relations in the parameter estimation.

In this contribution we propose an algorithm which links identifiability with
numerical parameter estimation.

In the following we assume we deal with a compartment model which is at
least locally identifiable. Our example is globally identifiable.

2.3 A numerical algorithm

Estimating parameters may be solved by means of purely numerical methods
e.g. by nonlinear least squares. We have implemented this well known method
using the Levenberg—Marquardt algorithm (Gill et al., 1988) which is a variant
of the Newton method. We state it over our example.

Algorithm: optimize

(1) Assign random values to the parameters kia, ko1, V. (rvecall that k, is

known).
(2) Integrate numerically the differential system. This provides some values
for x1(t) which are denoted z(ty), Z1(t1), ..., T1(tn)-

(3) The criterion to minimize is r = f2 +--- 4+ f& where f; = z1(t;) — T1(;).
Evaluate it. If the error is small enough stop computations else update
the values of the parameters by the Levenberg—Marquardt method and
go to step 2.

Remarks. The problem of such a method is well known: the algorithm may
very well end up in a local minimum and miss the actual values of the pa-
rameters. Trying with V, = 90, k13 = 0.4, ks; = 0.01 one ends up with
kio = 0.77, ko1 = 0.17, Ve = 82.82 and a 3. 107! error.

The method may also fail (computations being interrupted by a “timeout”
exception in our implementation) when the adaptive step—size numerical in-
tegrators of the Gnu Scientific Library enter difficult areas. Try with V, =
40, k12 = 0.4, koy = 0.01.

The method needs to integrate not only the two ODE system but also six extra
ODE (the Fisher sensibility matrix) which give the sensitivities of x;(¢) and
x9(t) w.r.t. the variation of each parameter. These six ODE are symbolically
generated by our BLAD libraries.



3 Guessing a good starting point

3.1 Overview

The numerical algorithm optimize presented above is sensitive to the values
of the parameters you start with. It is proved in (Noiret, 2000; Denis-Vidal
et al., 2003) that optimize can be greatly improved by guessing good initial
values for the parameters using the following computer algebra method, based
on differential elimination.

Let’s assume that the right hand sides of the system equations are multivariate
rational fractions.

Algorithm: guess

1. Differential elimination. By differential elimination methods, compute a
set of differential polynomials which are consequences of the dynamical sys-
tem and which only involve the measured variables, some of their derivatives
of various orders and the unknown system parameters. Those differential poly-
nomials, often called “input/output equations”, have the form ¢, t1+- - - +¢, ¢,
where the ¢;,... ,t, are polynomials over the alphabet of the measured vari-
ables and their derivatives and the coefficients ¢y, ... , ¢, are multivariate poly-
nomials over the alphabet of the system parameters. We call them “blocks of
parameters”. Our example leads to only one input /output equation: the blocks
of unknown parameters are enclosed between square brackets. They are mul-
tiplied by power products of the measured variables (z; and its derivatives)
and the known parameter k,:

il (331 -+ k’e)Q + [k’lg -+ k‘zl] jfl (1‘1 + ke)2 + [Ve] jfl k‘e + [kgl Ve] I (1‘1 + ke).

2. Estimating the block values. Using the measures, evaluate numerically the
polynomials t; for many different values of the time ¢t = ty,... ,ty. This pro-
vides an overdetermined linear system of N + 1 equations whose unknowns
are the blocks of parameters ¢;. Solve this system using (say) the linear least
squares method. This provides estimated values ¢; for the ¢;. Over our exam-
ple, one gets

(k1o + koy) = 2.1, V. =87.20, ko V, = 144.01.
Compare with the right values: (k12 + k21) = 3.5, V. = 101, kg V. = 303.

3. Estimating the parameters values. Form a polynomial system ¢; = ¢; for
1 <i < g (each ¢; being replaced by its expression in the parameters and each
¢; being approximated by a numerical value) and solve it (see subsection 3.4



for details). The solution of the polynomial system provides estimated values
for the system parameters. Over our example, one gets

1{112 = 045, le == 165, ‘/e - 8729

If one provides the above values to the optimize algorithm, one gets the right
values with a 107 error.

3.2 Differential elimination

The differential method used in LEPISME is PODI (Boulier et al., 2001) which
is a variant of PARDI for ordinary differential equations. The “input/output”
equations are obtained by computing a differential regular chain? of the initial
system for a special ranking. We do not recall details of the underlying theory
(the differential algebra (Ritt, 1950; Kolchin, 1973)) for reasons of brevity. We
only explain how our algorithm works on our example.

Ve 21
ke+zl ’

Ty = k1g 1 — ko1 X2, k1o = ko1 = Vg = kg = 0 where the parameters are seen
as constant functions of the time.

Our example can be viewed as follows C' : &1 = —kiox1 + kog 29 —

The system C' is a differential regular chain of the differential ideal I that it
qleﬁneg W.r.t'the mnkmg R:-oo >0 > 09 >21 > Tg >T] > Xy > 00 >
kio > koy > Vi > kg > k1o > koy > Vi > kg.

This means that C' can be viewed as the following rewriting system: i; —

—k1o 71 + ko1 o — k‘:f;l, Ty — kigxy — ka1 xe, k12— 0, ko —0, Vgp—
0, kg — 0. Derivatives of the left hand sides of the rewriting rules can be
rewritten by differentiating the right hand sides (for example the term %1 can

be rewritten using the derivative of the first rule).

A normal form algorithm is described in (Boulier and Lemaire, 2000) (it is
based on the Ritt pseudo reduction). Because C'is a differential regular chain,
we have the nice property p € I <= NF(p,C) =0

The whole idea to compute the “input/output” equations is to compute a
differential regular chain C of I for a well chosen ranking R. On our example,
it suffices to choose R : -+ > Ty > Fg > g > --- > T >0 >x1 > -+ >
]‘{312>i€21>VE>].€E>I<?12>]€21>VE>/{ZE.

The input/output equation which only involves zy, its derivatives and the
parameters is a “smallest” polynomial of / w.r.t R. It must belong to C.

2 a differential regular chain is equivalent to a Ritt characteristic set



Although it is possible to compute C directly using a generic method like
Rosenfeld-Grobner (available in the MAPLE package Diffalg), it is more effi-
cient to reuse the known differential regular chain C' to guide the computations
using the membership test provided by C': this is done by PODI. Moreover,
PODI is written to handle prime ideals (which is the case on our example).

The set C is computed by converting the system C into C. The set C is build
incrementally by taking the equations in C' one by one. PODI performs the
following steps on our example:

o step 1:set C =)

e step 2: pick an equation in C, say &1 = —kio T1 + koy T2 — =5

o ke+x1
ranking R, the leading variable of this equation is x5. Writing the equation
o, . . - . 1 . Ve
as a rewriting rule, set: C' = {zy — E(Sﬂl + ko xy + ﬁ)} B
e step 3: pick the equation x5 = k15 x1 —kso1 2. Before inserting it in C, rewrite

it using C yielding an equation with leading variable i;. We now have:

. For the new

15 Ve
C T2 7 5 ($1 + k22 + ke+az1)’

Vedr1ke _ ka1 Vex
xl“l’ke)Q (xl+k‘e)

1 — — (kg + ko1) &1 — {

The algorithm PODI terminates for the equations are pairwise irreducible.
At step 3, it got to make sure using the known chain C that ks is nonzero
divisor modulo I. Over this example, there are no purely algebraic simplifi-
cations to perform over the result. The second equation in C is precisely the
“input /output” equation presented at the beginning of the section.

3.8  Estimating the blocks values

The difficulty comes from the fact that one needs to estimate the values of i
and Z; at tg, t1, ..., ty and this cannot be done very precisely. Observe that
one could work around the equation and transform it as an integral equation.
This would improve the result but one cannot anyway completely evacuate
the difficulty.

In our implementation we interpolate the values of 1 and evaluate derivatives
over the interpolating curves. We use the splines of degree 3 provided by the
Gnu Scientific Library. Céline Noiret used interpolation polynomials of higher
degrees.



3.4 Estimating the parameters values

Solving the system ¢; = ¢; leads to difficulties: the system can be over or
under determined and involves only exact coefficients apart the ¢;. Several
approaches are possible.

A numerical approach. One can directly solve the system with numerical
methods (as Céline Noiret does with nonlinear least squares). However the
obtained solution is only meaningful if the system is globally identifiable and if
the numerical algorithm has not been stuck in a local minimum. Note that the
local /global identifiability could be tested using probabilistic tests (Sedoglavic,
2002).

Symbolic solving. This is what we use in the current version of LEPISME.
It consists in symbolically solving w.r.t. to the parameters the system c¢; = b;
where the b; are new indeterminates. We use the PALGIE algorithm. If the
parameters are rational functions of the b;’s, the system is globally identifi-
able. If the parameters are implicit functions of the b;’s, the system is locally
identifiable. Otherwise, the system is not identifiable.

This method is naive and can require extensive computations. It could be
optimized using the following ideas. First, one can get rid of non identifiable
systems by performing a probabilistic test over the model equations using
(Sedoglavic, 2002). Then, the idea consists in symbolically solving the system
¢; = ¢; (replacing the ¢; by rational numbers). However, a difficulty arises:
there sometimes exist algebraic relations between the ¢; that the ¢; may not
satisfy. By overcoming this difficulty, one could be reduced to the problem of
solving a zerodimensional algebraic system. Advantage of this method: one
gets all the possible values for the parameters.

Last, in our implementation of guess, when many different input/output equa-
tions are available, we first solve the simplest ones (the ones of lowest order)
and rewrite the other ones using the obtained values. This turns out to provide
more accurate results than solving all equations together.

4 The software

The software is decomposed in different layers. The lower layers may be
used independently of the upper ones. It has been developed using the au-
tomake /autoconf system which makes it easy to test if some particular soft-
wares or libraries (e.g. GB+RS, TRIADE (Moreno Maza, 2000), SCILAB,
MATLAB ... ) are available on the user’s computer. It relies on the Gnu Sci-



entific Library for numerical computations and on the Gnu Multiple Precision
library for big numbers. Today, the software is restricted to small globally
identifiable uncontrolled models but this is going to change.

LEPISME interface: model solver model editor JAVA
LEPISME core methods: optimize, guess JGraph C and JAVA
BLAD GSL C
GMP C

4.1 The LEPISME graphical interface

The interface is made of two distinct applications: a model editor which permits
to the user to enter the model graphically and a model solver which permits
to launch the LEPISME core methods: optimize and guess.

The main functionnality of the model editor is to graphically manipulate (cre-
ation/modification by mouse) compartmental models described by graphs: the
user can easily enter a compartmental model in a graphical way, avoiding typ-
ing equations directly.

The model solver looks is a graphical interface permitting to the user to launch
the LEPISME core methods (recall that the identifiability methods are not
yet implemented and do not even appear on the model solver). The main goal
of this interface is to hide as much as possible to the user the technical consid-
erations. For instance, the model equations, the computed regular differential
chains, the blocks of parameters are never displayed.

Concerning the implementation, we have chosen to write the interface in
JAVA. The reasons for this are the portability and the large builtin facilities to
create graphical applications that JAVA provides. Moreover, compartmental
models are nicely implemented using objects : any new type of exchange can
be introduced by only coding a few new classes. The display and manipula-
tion of the compartmental models are achieved using the graph manipulating
library JGraph (see http://www.jgraph.com)?.

3 JAVA itself does not provide such graph libraries
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4.2 The LEPISME core methods

The algorithms optimize and guess are implemented as two executables in
the C programming language. They take as input compartmental models de-
scribed in a model file and a data file (this design is inspired from that of the
AMPL (Fourer et al., 1993) mathematical programming software) generated
by the graphical interface. A model file is a text files composed of sections de-
scribing the compartments, the exchanges, the parameters and the commands.
A data file is a text file composed of one section containing the numerical val-
ues of the known parameters and compartments. By splitting the model and
data files, one can consider different data files (i.e. different sets of measures)
corresponding to the same model.

We are today working on changing the syntax of our files. We plan to switch
to an SBML syntax. SBML is a variant of the XML data description language
suited to biological models. It is an acronym standing for “Systems Biology
Markup Language” (Hucka et al., 2004). The use of this standard would in-
crease the interoperability of our software with other softwares dedicated to
modelling biological systems. In particular, we could offer to the user the
alternative software such as say, Cell Designer (see the URL www.systems-
biology.org), in place of our model editor.

4.8 The BLAD libraries

The BLAD libraries (read “Bibliothéques Lilloises d’Algébre Différentielle”),
written in the C programming language are dedicated to differential elimina-
tion. Their first version was released in August 2004, by the Computer Algebra
team of the university Lille 1 (see the URL www.lifl.fr/boulier/BLAD). There
are four libraries, the lower ones being independent of the upper ones. The
following table gives the library names and some of their key features.

BAD | differential elimination methods: PARDI, Rosenfeld—Grébner

BAP | multivariate polynomials over GMP

BAYV | differential rankings, orderings

BAO | memory management, exception handling, parsers

The BAD library. The main data structure provided by the BAD library is
a unified concept of “regular chain” which applies as well to the algebraic as
to the differential setting. The concept of regular chain generalizes the one
of “characteristic set”. In the algebraic case, it was initiated in (Kalkbrener,
1993) and then much developed in the computer algebra team of Daniel Lazard

11



(Moreno Maza, 1997; Aubry et al., 1999; Aubry, 1999). The above definition
was adapted to the differential setting in (Lemaire, 2002) under the name:
“differential regular chain”.

In the BAD library, a regular chain is defined by two sets of polynomials and
two sets of properties. The two sets of polynomials are on the one hand the
mathematical regular chain itself and on the other hand an heuristic set of
polynomials which lie in the ideal defined by the chain and help processing
reductions. This is indeed an idea borrowed from Faugére: do not forget poly-
nomials which arise early in computations: they often turn out to simplify a
lot reductions.

The two sets of properties are on the one hand a set of structural properties
and on the other hand a set of desired properties. Structural properties are
properties of the chain which cannot be changed or achieved algorithmically:
does the chain define a differential or a nondifferential ideal 7 is the ideal de-
fined by the chain prime or not ? The desired properties are properties of the
chain which can be changed or achieved algorithmically: is the chain primi-
tive 7 is it squarefree ? is it autoreduced ? (Aubry et al., 1999) is it strongly
normalized (Boulier and Lemaire, 2000) ? is it coherent (Rosenfeld, 1959) 7
There are relationships between these properties: if the ideal is differential
then the chain must be squarefree; the coherence property only makes sense
for systems of PDE.

The main implemented algorithms are the PARDI (Boulier et al., 2001) and
the Rosenfeld-Grobner (Boulier et al., 1995, 1997) simplifiers. The normal for-
mal algorithm decsribed in (Boulier and Lemaire, 2000) is implemented too. A
special care was given to the implementation of the Ritt reduction algorithm:
There are different implementations which differ of the way polynomials are
represented. In particular the implementation which seems the most efficient
tries to keep polynomials factored (not necessarily completely) and to per-
form pseudoreductions factorwise. Indeed, after a few steps and because of
the pseudoreduction algorithm, the simplifiers such as PARDI tend to pro-
duce polynomials which involve as factors powers of initials and separants of
other polynomials used for simplification.

The BAP library. It primarily aims at implementing differential polynomials
for the BAD library. It implements them as multivariate polynomials over
(mainly) the ring of the integers. For instance the differential polynomial —t z
is viewed in the BAD library as an element of the differential polynomial ring
Q(t){x}. It is viewed, in the BAP library, as a plain multivariate polynomial
in Z[t, z, %]

A special care was taken to implement the ged of two multivariate polynomials
over the ring of the integer numbers. It was implemented using modular and

12



ideal-adic methods as described in (Geddes et al., 1992) and is thus close to
that of the MAPLE software. It is a very large and difficult algorithm which
relies for instance on the factorization of multivariate polynomials to avoid
the expression swell in the Hensel lifting (Zassenhaus, 1969) and which makes
use of multivariate polynomials with coefficients in z/p*z.

Since the BAP library polynomials are assumed to be involved in simplifica-
tion processes of differential polynomials which involve many parameters, a
special care was taken for implementing differentiation. Each parameter £ is
handled internally as a plain differential indeterminate (thus encoding a time
varying function) and the dynamical system in consideration is enlarged with
an extra rule & = 0 to express the fact that it’s value does not actually vary
with the time. Without any further care, some expression swell would arise
during differentiation: this operation would first generate monomials involving
derivatives of the parameters; these monomials would afterwards be rewrit-
ten to zero. To avoid this behaviour, the differentiation algorithm receives as
an extra argument a table of the variables whose derivatives are going to be
reduced to zero in order not to generate the pointless monomials.

The representation of the polynomials is a variant of the so called distributed
representation. During the design of the library, the following features were
desired:

(1) to provide an easy access to the coefficients of the polynomials w.r.t. any
subset of its variables,
(2) to permit some compression mechanism.

Here are some reasons which make the firt point important: the pseudoreduc-
tion is involved in many algorithms and it implies to access to the coefficients
of a polynomial w.r.t. its leading variable; the key algorithms based on Hensel
liftings need also to access to the coefficients of the polynomials w.r.t. some
variable, usually chosen heuristically; many basic algorithms such as the mul-
tiplication of two polynomials P and () are much more efficient if one can
split the set of the variables into three sets (that which appear in P but not
in @, that which appear in @ and not in P and that which appear in both)
and view P and () as polynomials with coefficients in the ring of polynomials
which depend on their common variables.

The second point was motivated by the size of some intermediate polynomials
which already reached (even for tractable problems) hundreds of thousands of
monomials.

We chose a variant of the distributed representation. In this variant, polynomi-
als are defined as “pieces” of an underlying sorted linear combination of terms.
The underlying linear combination is made of a dynamical array of numerical
coefficients and a dynamical array of terms. Different representations of terms

13



are provided. For instance, terms may be stored in a hash table (equality test
between terms gets very fast) or stored directly in the array, in a compressed
way. Compression is achieved by keeping up to date, for each polynomial, a
bound d on its degree w.r.t. each variable v. Then, in each term ¢, the degree
deg(t, v) is stored on about log,(d) bits.

A polynomial is either a full linear combination of terms or a “piece” of it.
For instance, a coefficient of polynomial w.r.t. its leading variable is defined
by a first monomial, a last monomial and the (leading) variable, which must
be factored out from the terms of the linear combination in order to get the
terms of the coefficient. The mechanism is more complicated to access to the
coefficients of a polynomial w.r.t. a non leading variable: one makes use of
an indirection array in order to provide the monomial which constitute the
coefficient.

Of course, some iterators are provided to make it easy for algorithms to run
over the coefficients of the polynomials.

The BAV library. It implements the variables over which polynomials are
built. Variables may be derivatives of dependent variables, independent vari-
ables or mere constants. Many differential rankings (i.e. total orderings on the
infinite set of the derivatives of the dependent variables) are implemented and
more generally orderings which are not rankings (i.e. not compatible with the
action of the derivations). These latter ones turn out to be very useful for
implementing efficient versions of many algorithms on polynomials.

The BAO library. It implements the low level mechanisms. In particular, it
provides two memory management mechanisms: an implementation of the
method described in (Faugére, 1998) which is used by Faugére and Rouillier
in their software and a two stacks mechanism. Both mechanisms share the
following feature: each function can only recover the memory that it used or
the memory that the subfunctions it called used: a function cannot recover
the memory wasted by its calling functions.

Because of this feature, the Faugére and Rouillier method is very efficient for
iterative algorithms in which each loop performed in a given function needs a
relatively small amount of memory: in this case, memory can just be wasted up
to saturation and completely recovered in one operation. It seems less suitable
for very recursive methods (such as triangular sets ones) where memory must
be recovered much more regularly. The two stacks mechanism provides then
a simple and quite efficient alternative.

The library provides also an exception handling mechanism which permits to
stop gracefully computations which exceed some given bounds in time or in
memory. This mechanism is also used within the BLAD library. It was quite
easy to design because of the carried out memory management mechanisms.
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Indeed, the only difficulty arising when implementing such mechanisms con-
sists in recovering the memory used between the moment where the exception
catching point was set and the moment where the exception was thrown.

The library provides powerful parsers which turn out to be very interesting for
performing esily some data type conversions. Such conversions are very rare
within the BLAD library but very common in the LEPISME core methods.
Big numbers are handled by GMP.

5 Conclusion

Symbolic methods are usually very difficult to understand by practitioners
(specialists spend years studying them). For this reason, we believe that it is
very important to develop complete softwares (up to the graphical interface)
in order to prove the usefulness of symbolic methods. For the same reason,
usual computer scientists will never be able to understand our methods accu-
rately enough to implement them: research papers often do not even mention
some very difficult and necessary subalgorithms (e.g. the multivariate polyno-
mials ged used to factor out contents from equations). It is thus our task to
implement the complete softwares.

This large work was strongly motivated by many discussions that the first
author had with members of the computer algebra team of Daniel Lazard a
few years ago.
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