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State filtering and change detection using TBM conflict
Application to human action recognition in athletics videos

Emmanuel Ramasso, Michèle Rombaut, Denis Pellerin

Abstract—In this paper, we propose a tool calledTemporal
Credal Filter with Conflict-based Model Change(TCF-CMC) to
smooth belief functions on-line in Transferable Belief Model
(TBM) framework. The TCF-CMC takes temporal aspects of
belief functions into account and relies on conflict information
explicitly modelled in TBM when combining beliefs. TBM fusion,
in addition to uncertainty, takes into account imprecision and
conflict inherent to features. The TCF-CMC takes part in a wider
system for human action recognition in videos. The whole system
is tested on51 videos (11000 images) with moving camera and
real conditions where the TCF-CMC improves running, jumping,
falling and standing-up actions recognition in high jump, pole
vault, long jump and triple jump activities. The TCF-CMC is
also compared to hidden Markov models. Lastly, a TBM rules-
based modelling is compared to Gaussian mixture.

Index Terms—Transferable Belief Model, Belief State Filtering,
Human Motion Analysis, Novelty Detection, Moving Camera.

I. I NTRODUCTION

H UMAN motion analysis [1] is usually based on probabil-
ity theory [2] and this paper proposes a new approach

based on Transferable Belief Model [3] (TBM). TBM is a
more general framework because it relies on belief functions
which generalize probability measures [4]. With TBM, a
variety of knowledge can be represented from certain and
precise up to total ignorance. Particularly, doubt and conflict
between hypotheses are explicit. Actually, TBM is a sound
framework which takes imprecision, uncertainty, inconsistency
and reliability of features into account. Many applications of
TBM exist but TBM-based human motion analysis in video is
just in its infancy. Some methods based on Dempster-Shafer’s
evidence theory [5] have been proposed to classify human
postures [6] and emotions [7]. However, these methods are
static since they do not include temporal evolution of belief
and features. As a solution, we have proposed the Temporal
Credal Filter with Conflict-based Model Change (TCF-CMC)
to take temporal aspects of belief functions into account.
It has been applied to improve human actions recognition
by smoothing belief and separating actions states [8]. The
TCF-CMC takes part in a wider system for human action
recognition utterly based on a TBM methodology [9].

In this paper, we propose two main contributions. Firstly,
the TCF-CMC to which is added an unsupervised and on-
line criterion used in both assessment of filtering and detec-
tion of new actions (novelty). TCF-CMC modelling is based
on joint belief functions and includes parameter adaptation.
Secondly, the complete system is tested on real videos of
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athletics jumps. The TCF-CMC is compared to probability-
based hidden Markov models [10] and a thorough analysis
allows to facilitate TCF-CMC’s parameters setting.

The remainder of the paper is as follows. Section II de-
scribes related work. The proposed architecture for human
action recognition as well as features and fusion process
are presented Section III. The TCF-CMC is then described
Section IV. The quality criterion which assesses the TCF-
CMC filtering is presented Section V. The system is tested
Section VI before concluding and providing future work.

II. RELATED WORK: PROBABILISTIC METHODS

Human motion analysis is of key of importance for many
multimedia applications such as human-computer interaction,
surveillance and video indexing and retrieval. The final goal
is the recognition of human actions, activities and interac-
tions [1]. This paper focuses on human action recognition.
In the state-of-the-art, state-space and template matching ap-
proaches are generally used. The latter have been used in [11]
with motion descriptors. In this paper, we focus on state-
space methods. They rely mainly on hidden Markov model
(HMM) [10] and dynamic Bayesian network (DBN) [12]. One
model is generally learned for each activity and the recognition
process (inference) determines the most likely one. DBNs,
partially coupled HMM and multi-observation HMM are ex-
ploited in [13] for causality discovery and events modelling.
In [14], a description and a comparison between DBN and
HMM is proposed for sports video sequence interpretation.
In [15], HMM are used for gesture recognition and on-line
learning of gestures. Recent works have focused on drawbacks
of the current approaches based on probabilities [16].

III. SYSTEM OVERVIEW AND FEATURES PRESENTATION

A. Architecture and features summary

The proposed human action recognition system [8] consists
of four steps: features extraction, convertion into beliefs,
fusion of beliefs according to rules and filtering by the TCF-
CMC and assumes 1) the human is tracked by the camera, 2)
trajectories of human’s head, center of gravity and end of legs
give sufficient information on actions and 3) a single human
is moving. These assumptions are not very strong compared
to the ones generally assumed [1] such as fixed view point,
camera calibration and video quality. The system is generic
enough to add new features and actions. Quality of filtering is
tackled in this paper and used for action discovery.

Features used in this paper have been described in [9] and
are roughly recalled hereafter. Numerical features are extracted
at each frame of the video. Three of them are computed by
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a camera motion estimator which are the horizontal (Phm)
and vertical (Pvm) motions and divergence (Pdiv). A tracking
algorithm provides human’s head, center of gravity and end of
legs position from which the variation of the center of gravity
(Pvcg), the angle between horizon and human axis (Pswing)
and a gait period (Pgait) are derived. The feature vector is
thusx = [Phm Pvm Pdiv Pvcg Pswing Pgait]

T .

B. Models of actions and fusion process

1) TBM background:We denoteΩA = {TA, FA} the set of
possible (symbolic) states called frame of discernment (FoD)
and standing foran actionA is true (TA) or false (FA). A
basic belief assignment (BBA)mΩA

P , defined on the power
set 2ΩA of ΩA and depending on the value of featureP , is
mΩA

P : 2ΩA → [0, 1], X → mΩA

P (X) and by construction
mΩA

P (∅) = 0 and
∑

X⊆ΩA
mΩA

P (X) = 1. A value mΩA

P (X)
expresses a confidence in propositionX ⊆ ΩA but does not
imply any additionnal claims regarding subsets ofX [4]. It is
a fundamental difference with probability theory.

The fusion process is performed frame by frame for each
action independently. Given two distinct BBAsmΩA

P1
and

mΩA

P2
, defined on the same FoDΩA, the combination is:

mΩA

P1

4©mΩA

P2
(E) =

∑

C4D=E

mΩA

P1
(C).mΩA

P2
(D) (1)

with 4 = ∩ (resp.∪) for the conjunctive (resp. disjunctive)
rule. The resulting BBA,mΩA

P1,P2,...,PK
, is defined onΩA.

2) Synthesizing belief functions from features:Two types of
observation models are tested. The first one, based on fuzzy-
sets, is described in [9] and consists of trapezoids providing
belief on actions related to features values. Beliefs are com-
bined according to predefined (fuzzy) rules. The combination
is performed using Transferable Belief Model’s rules [3]. The
second one [17] consists in 1) estimating probabilistic models
and 2) transforming and combining likelihoods to obtain a
belief function. The reader may refer to [17] to be convinced
about the contribution and usefulness of this methodology.

3) Integrating reliability of features:In TBM, reliability
coefficient decreases belief [3] of sources (camera motion es-
timation and tracking) that do not work in good conditions thus
is relevant for video analysis. Two coefficients are computed
on-line and automatically from features:αdist (tracking) is
related to the distance between center of gravity and head
and assumed quite constant between successive frames, and
αsup (camera) relies on the fact that silhouette’s size is quite
constant between successive frames.

IV. T EMPORAL CREDAL FILTER

The Temporal Credal Filter with Conflict-Based Model
Change (TCF-CMC) has been proposed to smooth belief
functions, making them consistent, and to separate belief
state [8]. At framef , the TCF-CMC robustly determines the
state of an actionA which can be eitherTA (A is true) orFA

(A is false). The TCF-CMC process consists of three steps
(Fig. 1): (i) Prediction, (ii) Fusion and (iii) Detection of model
change.

Fig. 1. TCF-CMC principle.

A. Prediction of the current BBA

1) BBA’s evolution model:The BBA of the current TCF-
CMC outputmΩf

A at framef is supposed close to the previous
onemΩf−1

A because human motions are continuous. A model
of evolution M is defined for each state of an actionA
with M ∈ {T ,F} (T for TA and F for FA). The BBA
corresponding to the modelT translates the rule “if actionA
was true atf − 1 (T f−1

A ⊆ Ωf−1
A ) then A will still be true

at f (T f
A ⊆ Ωf

A) with belief massγT ∈ [0, 1]”. A similar rule
exists for the modelF . These rules are translated into a BBA
on the joint setΩf

A×Ωf−1
A using the ballooning extension [17]

providing:

Model T

{

m
Ωf

A
×Ωf−1

A

T (ET ) = γT

m
Ωf

A
×Ωf−1

A

T (Ωf
A × Ωf−1

A ) = 1− γT

Model F

{

m
Ωf

A
×Ωf−1

A

F (EF ) = γF

m
Ωf

A
×Ωf−1

A

F (Ωf
A × Ωf−1

A ) = 1− γF

(2)

whereET = (T f
A∩T f−1

A )∪(F f
A∩F f−1

A )∪(T f
A∩F f−1

A ), EF =

(F f
A ∩F f−1

A )∪ (T f
A ∩ T f−1

A )∪ (F f
A ∩ T f−1

A ) andΩf
A ×Ωf−1

A

is the cartesian product of FoDs.

2) Building the predicted BBA:The predictionm̂
Ωf

A

M of the
current BBA is computed by:

m̂
Ωf

A

M = (m
Ωf

A
×Ωf−1

A

M ∩©mΩf−1

A
↑Ωf

A
×Ωf−1

A )↓Ω
f
A (3)

Before combination by the∩©-rule (Eq. 1), both BBAs must
be defined on the same FoD, in this caseΩf

A × Ωf−1
A , using

the vacuous extension operator [18] (“↑”) which provides
mΩf−1

A
↑Ωf

A
×Ωf−1

A (C) = mΩf−1

A (B) if C = B × Ωf
A, B ⊆

Ωf−1
A , and 0 otherwise. After combination the result is

projected (“↓ Ωf
A”) onto the current FoDΩf

A providing,

∀B ⊆ Ωf
A, m̂

Ωf
A
×Ωf−1

A
↓Ωf

A

M (B) =
∑

C m̂
Ωf

A
×Ωf−1

A

M (C), with
C ⊆ Ωf

A × Ωf−1
A , C ↓ Ωf

A = B.

B. Fusion of prediction and measure

Predictionm̂
Ωf

A

M and measurẽmΩf
A are combined by:

mΩf
A = m̂

Ωf
A

M ∩©m̃Ωf
A (4)

Conflict [3] denotedεf is quantified by the BBA value on
emptyset i.e.εf = mΩf

A(∅). A cumulative sum (CUSUM

process) ofεf is performed to detect model change.

C. Detection of model change by aCUSUM process

The CUSUM of εf is given atf by CS(f):

CS(f)← λ×CS(f − 1) + εf (5)
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whereλ ∈ [0, 1] is a fader coping with low conflict during a
long time and forgetting gradually past event. TheCUSUM is
robust because integrates conflict along time. WhenCS(f) >
Tw (warning threshold), the frame numberfw is stored and the
model is kept untilCS(f) > Ts (stop threshold), at framefs,
where the model is changed. The new model is applied from
fs and belief on[fs −W, fs] is compelled to be vacuous (all
belief on the whole FoD) to emphasize action states transition.

D. TCF-CMC output

When a conflict appears between prediction̂m
Ωf

A

M and
measurem̃Ωf

A , i.e. when0 < CS(f) < Ts, the prediction is
kept instead of an erroneous measurement to avoid propagating
conflict which is absorptive by the∩©-rule:

mΩf
A = m̂

Ωf
A

M ∩©m̃Ωf
A if εf ≤ δ∅ , andm̂

Ωf
A

M otherwise (6)

where δ∅ is a threshold reflecting a tolerance to the conflict
adaptively computed using the mean of conflict over a window
(sizeN ) of a few frames:δ∅ = 1/N ·

∑f

fi=(f−N−1) εfi
.

V. ON-LINE UNSUPERVISED QUALITY CRITERION

A. Local Quality recognition performance

An unsupervised quality criterion is computed to assess, on-
line, the quality of the filtering and, as well, the recognition by
TCF-CMC. The criterion has the particularity to be computed
automatically without any additionnal knowledge. We denote
LQfs:f

i,j [M](s) the Local Quality recognition performance
criterion of states ∈ {TA, FA} of actionAi within activity Sj

in interval of frames[fs, f ] (between the start framefs and
the current framef ) given the modelM. It is computed as
an on-line weighted mean by:

LQfs:f
i,j [M](s) =

(

1−
1

f − fs

)

· LQ
fs:(f−1)
i,j [M](s) (7)

+
mΩf

A(s)

f − fs

· (1− εf )

Eq. 7 embeds past events and innovation. Conflict weighs the
current belief. The qualityLQ is high when both the conflict
is low and the belief is high.

This criterion is used forfalse alarm detectionas follows:

if LQfs:f
i,j [M](s) < δFA then FALSE ALARM (8)

where δFA is the minimal quality value required to validate
an action. When a false alarm appears, the interval of frames
[fs, f ] is rescanned with the other model and with aCUSUM

always set to0 (not active).

B. On novelty detection

Adaptive systems are of great interest in most of appli-
cations related to Computer Vision. We propose to use the
quality criterion in order to detect new actions and to correct
features models. The procedure is simple: we consider a pool
of N possible actions. For each of them we have set up the
features models (gaussian or trapezoids). Given observations,
we perform the filtering based on the TCF-CMC. When all

actions quality criteria are low, we are facing a new action.
The decision rule to detect and create a new action is thus:

if ∀i,∀j, LQfs:f
i,j [T ](s) < δFA then NEW ACTION (9)

When a new action is detected on a given interval of frames
[fs, f ], then the features models are automatically computed.
For that, a feature vector containing the values of features in
this interval is created and could be analyzed by a learning
procedure, such as EM, in order to compute the models
corresponding to the new action.

VI. EXPERIMENTS

The system is tested for action recognition in athletics
jumps. The goal is to recognize3 actions: running, falling and
jumping (plus standing-up in some cases), within4 different
athletics jumps (activities): high jump, pole vault, triple jump
and long jump. Fig. 2 depicts the first three tests and the fourth
one concerns the analysis of the TCF-CMC parameters.

Fig. 2. Tests: dotted-lines boxes concern HMM and probabilities, bolded-
line for TBM (belief). Both used observations (obs.) obtained from features.
Probabilities are used to bet on actions. Left: some images from videos.

A. Database description and evaluation criteria

The database used for testing is made of51 videos acquired
by a moving camera and with several unknown view angles
(original conditions [1]). There are25 pole vaults (3000
frames),15 high jumps (2300frames),12 triple jumps (3200
frames) and11 long jumps (2200 frames). The videos are
from various sources (TV, DVD, VHS) compressed using divx
encoder in 25 fps and 352x288 size. About a half of the
database are indoor and another half outdoor meetings. In
addition to camera motion, illumination change, view variation
and other moving people, the challenge of the tests concerns
the fact that each video represent one jump and that each jump
is made of actions. Therefore, actions arenot pre-segmented
as usually done in experiments. We assume that the system
has to be able to detect actions separately within activities.

The database was manually annotated with states of actions
true and false. Evaluation relies on recall (R) and precision
(P) indexes withR = C∩R

C
, P = C∩R

R
, where C is the

reference set obtained by expert annotations,R is the set of
retrieved frames provided by the recognition module andC∩R
is the number of correctly retrieved frames. In order to obtain
only one criterion, theF1-measure, well-known in database
management, is used:F1 = 2×R×P

R+P
.
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B. Test 1: Improvement of belief on actions by the TCF-CMC

The goal is to improve belief on actions and separate action
states (true or false). Belief on each action is provided by
discriminant rules and trapezoids [9] in order to distinguish
all types of actions. The same TCF-CMC setting was done
for high jump, pole vault and long jump. For information we
set: λ = 0.9, γT = γF = 0.9, Ts = 2.9, Tw = 1, W = 5,
δFA = 60%. Concerning triple jump, actions are shorter thus
Ts was decreased a little. In order to bet on action state, we use
the pignistic probability (BetP) [3] defined asBetP(TA) =
(m(TA)+0.5∗m(TA∪FA))/(1−m(∅)). If BetP(TA) > 0.51
thenA is considered as true.

Tab. I (col. T1 and T2) shows an important gain obtained
thanks to the TCF-CMC which smooths belief and detects
some false alarms. Illustrations depicted Fig. 3 (right) show
that actions belief are smooth and consistent. Moreover, they
shed light on the need to use temporal contraints between
actions in order to avoid overlapping (see running and jump-
ing). Fig. 4 (lines 1 and 2) illustrates evolution ofCUSUM and
conflict which are generally high when an action is constrained
to be in one state, e.g. true, while data expressed the contrary,
e.g. false (when stop threshold is not reached). The fader
allows to smooth theCUSUM and to forget past event thus
avoiding some false alarms (see line 2, col 3). Lines 3 and 4
show the LQ recognition performance criterion (Eq. 7) used
for false alarms detection (Eq. 8). If the LQ of two different
actions are high then actions are overlapping thus LQ allows
to detect position of transitions. When all LQ are low, a new
action is detected. For instance interval[82, 87] is such a
case (since interval size is short, it is not necessary to learn
another action but this information can be exploited to adapt
the models by adding more variance in trapezoids/Gaussian
mixture models (MoG)). Action recognition is of good quality
if LQ is close to 1 during both true and false states (e.g.
jumping and running are good but not falling).

C. Test 2: TCF-CMC with trapezoids and rules vs. HMM

The goal is to compare HMM and TCF-CMC for the recog-
nition of the three actions plus another one calledstanding-
up (sometimes appears in some activities). HMM setting:16
models of HMM are built (one for each action within each
activity), each one is made of 2 states (true/false), observations
are continuous, modelled by MoG1 and assumed independent
conditioned on the state, Baulm-Welch algorithm [10] is
used to learn transition matrices, priors and MoG mixing
coefficients. Learning is performed on50−75% (according to
the jump) of the database and tests are done on the remainder.
Then,50 − 75% is again randomly selected, the test is rerun
and we compute the mean on both results.

Assessment: we apply the forward algorithm [10] to smooth
probabilities on states. At each frame, an action is true if its
probability is greater than0.51 (as for the TCF-CMC assess-
ment). The forward procedure assesses on-line the recognition
as the TCF-CMC does, so the comparison is relevant. Using
references, we computeF1-measures and results are given in

1Nb. of component is set up automatically using [19] and equals2 to 3
according to jumps. HMM implementation is embedded in BNT toolbox [12].

Tab. I, col. T2 and T3. Results are of good quality, close to
the TCF-CMC results. The great difference is the learning step
since75% of the learning set was necessary to learn MoGs
however the main advantage is that learning is automatic.
Obviously, integrating explicit duration, increasing the number
of states or the number of components might improve the
results but these results show that the TBM-based approach
is efficient. Note that standing up action is detected which is a
difficult task because it is changing and short. When sufficient
data are available, EM can learn associated models however,
no rules were provided for the trapezoids-based approach.

D. Test 3: TCF-CMC with Gaussian mixtures vs. HMM

We compare HMM to the TCF-CMC when observations
models are given by MoG for both of them. Likelihoods
provided MoG are transformed into belief functions using the
method proposed by Smets in [18] and exploited for target
identification in [17]. The method is based on the Generalized
Likelihood Principle and on the Generalized Bayesian Theo-
rem (GBT) [18]. Comparison results are gathered in columns
T3 andT4 in Tab. I and shed light on importance of doubt and
conflict: TBM modelling (using GBT) and TCF-CMC process
increase the recognition rate (as in [17]). This is explained by
three important characteristics of the proposed system: doubt
and conflict are explicitly modelled, and the TCF-CMC plays
a crucial role by separating actions states.

E. Test 4: TCF-CMC sensitivity to the parameters

In this section, the TCF-CMC sensitivity is analyzed accord-
ing to the two most important parameters which areTs (stop
threshold ofCUSUM) and λ (fader). We study the sensitivity
according to trapezoids-based and MoG-based feature models.
To measure the sensivity, we apply the TCF-CMC on10
videos sequences of high jump (66% of the database). We
compute theF1-measure for three actions. Fig. 5 pictorially
describes the results. Concerning trapezoids (top), several
common values can be chosen for the three actions (thus
the setting is easy): forλ = 0.9 and Ts = 2.9 we obtain
a performance> 72% for the three actions (this setting
was used in testT2). Sensitivity seems more important for
jumping action while running and falling actions are more
robust. Concerning MoG (bottom), jumping action is still
more sensitive to parameters changing than running and falling
actions. Compared to trapezoids and rules, the three frontiers
of decision (for each action) are quite different using MoG
whereas they are quite similar using the former (see gradual
changes in gray levels). Furthermore, the recognition rate sur-
face (in gray level) is smoother with trapezoids than with MoG
but locally better with the latter. Note on complexity: forK
actions,T images andn features, complexity isO(T ·K ·2n).

VII. C ONCLUSION AND FUTURE WORK

The proposed Temporal Credal Filter with Conflict-Based
Model Change (TCF-CMC), defined in Transferable Belief
Model (TBM) framework, worked well in smoothing belief
functions on-line. The TCF-CMC relies on conflict empha-
sized in the fusion process using TBM. Beliefs can be provided
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Fig. 3. Evolution of belief (∈ [0, 1]) of actions running (1st line), jumping (2nd line) and falling (3rd line) in a high jump before (left) and after (right)
filtering by TCF-CMC. Legend: States true (TA, in blue), false (FA, false), ignorance (TA ∪ FA, in green) and conflict (∅, in magenta).
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Fig. 4. Video of high jump, the same as Fig. 3. Lines 1 and 2: conflict and
CUSUM evolution during filtering. Lines 3 and 4: Local Quality recognition
performance evolution for each state (true and false) and each action.
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Fig. 5. TCF-CMC sensivity using trapezoids+rules (top) and MoG (bottom):
F1-mesure vs cusum’s stop threshold and fader for running (1st col.), jumping
(2nd col.) and falling (3rd col.) actions (mean on10 highjumps).

by a combination of features, independantly from the models
used for the convertion (trapezoids, gaussians or others). A
new criterion is also proposed for novelty detection. The TCF-
CMC improved human action recognition in51 real videos
of athletics jumps and good performance was obtained com-
pared to usual hidden Markov models. Parameters setting is
also easy. Fascinating future researches are actions sequences
(activity) recognition, pattern discovery and adaptation using

TABLE I
F1-MEASURE (IN %) AFTER TRAPEZOIDS AND RULES DETECTION

WITHOUT TCF-CMC (T1) AND WITH TCF-CMC (T2), AFTER HMM
WITH MOG (T3) AND AFTER TCF-CMC WITH MOG (T4).

HIGH JUMP T1 T2 T3 T4

running 69% 79% 81% 88%
jumping 61% 71% 67% 74%
falling 69% 76% 76% 81%

standing up − − 53% 58%

POLE VAULT T1 T2 T3 T4

running 71% 79% 75% 79%
jumping 61% 70% 63% 69%
falling 60% 74% 64% 68%

standing up − − 43% 53%

TRIPLE JUMP T1 T2 T3 T4

running 60% 72% 83% 92%
jumping 60% 65% 63% 68%
falling 55% 61% 56% 60%

standing up − − 58% 69%

LONG JUMP T1 T2 T3 T4

running 78% 82% 86% 95%
jumping 56% 63% 59% 72%
falling 66% 70% 65% 67%

standing up − − 43% 56%

TBM and notably the TCF-CMC, conflict information and the
quality criterion proposed in this paper.
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