
HAL Id: hal-00140355
https://hal.science/hal-00140355v1

Submitted on 6 Apr 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lessons Learned from the deployment of a
high-interaction honeypot

Eric Alata, Vincent Nicomette, Mohamed Kaâniche, Marc Dacier, Matthieu
Herrb

To cite this version:
Eric Alata, Vincent Nicomette, Mohamed Kaâniche, Marc Dacier, Matthieu Herrb. Lessons Learned
from the deployment of a high-interaction honeypot. European Dependable Computing Conference,
Oct 2006, France. pp.39-44. �hal-00140355�

https://hal.science/hal-00140355v1
https://hal.archives-ouvertes.fr

Lessons learned from the deployment of a high-interaction honeypot

E. Alata1, V. Nicomette1, M. Kaâniche1, M. Dacier2, M. Herrb1

1LAAS-CNRS, University of Toulouse, 7 Avenue du Colonel Roche, 31077 Toulouse Cedex 4, France
2Eurécom, 2229 Route des Crêtes, BP 193, 06904 Sophia Antipolis Cedex, France

{alata, nicomette, kaaniche, herrb}@laas.fr; dacier@eurecom.fr

Abstract

This paper presents an experimental study and the lessons

learned from the observation of the attackers when logged on a
compromised machine. The results are based on a six months
period during which a controlled experiment has been run with
a high interaction honeypot. We correlate our findings with
those obtained with a worldwide distributed system of low-
interaction honeypots.

1. Introduction

During the last decade, several initiatives have been
developed to monitor and collect real world data about
malicious activities on the Internet, e.g., the Internet
Motion Sensor project [1], CAIDA [2] and Dshield [3]. The
CADHo project [4] in which we are involved is
complementary to these initiatives and is aimed at:
• deploying a distributed platform of honeypots [5] that

gathers data suitable to analyze the attack processes
targeting a large number of machines on the Internet;

• validating the usefulness of this platform by carrying out
various analyses, based on the collected data, to
characterize the observed attacks and model their
impact on security.

A honeypot is a machine connected to a network but
that no one is supposed to use. If a connection occurs, it
must be, at best an accidental error or, more likely, an
attempt to attack the machine.

The first stage of the project focused on the
deployment of a data collection environment (called
Leurré.com [6]) based on low-interaction honeypots. As
of today, around 40 honeypot platforms have been
deployed at various sites from academia and industry in
almost 30 different countries over the five continents.
Several analyses and interesting conclusions have been
derived based on the collected data as detailed e.g., in
[4,5,7-9]. Nevertheless, with such honeypots, hackers can
only scan ports and send requests to fake servers without
ever succeeding in taking control over them. The second
stage of our project is aimed at setting up and deploying
high-interaction honeypots to allow us to analyze and
model the behavior of malicious attackers once they have
managed to compromise and get access to a new host,
under strict control and monitoring. We are mainly
interested in observing the progress of real attack
processes and the activities carried out by the attackers in
a controlled environment.

In this paper, we describe the lessons learned from the
development and deployment of such a honeypot. The
main contributions are threefold. First, we do confirm the
findings discussed in [9] showing that different sets of
compromised machines are used to carry out the various
stages of planned attacks. Second, we do outline the fact
that, despite this apparent sophistication, the actors
behind those actions do not seem to be extremely skillful,
to say the least. Last, the geographical location of the
machines involved in the last step of the attacks and the
link with some phishing activities shed a geopolitical and
socio-economical light on the results of our analysis.

The paper is organized as follows. Section 2 presents
the architecture of our high-interaction honeypot and the
design rationales for our solution. The lessons learned
from the attacks observed over a period of almost 4.5
months are discussed in Section 3. Finally, Section 4
concludes and discusses future work. An extended version
of this paper detailing the context of this work and the
related state-of-the art is available in [10].

2. Architecture of our honeypot

In our implementation, we decided to use VMware [11]
and to install virtual operating system upon it. Compared
to solutions based on physical machines, virtual
honeypots provide a cost effective and flexible solution
that is well suited for running experiments to observe
attacks.

The objective of our experiment is to analyze the
behavior of the attackers who succeed in breaking into a
machine. The vulnerability that they exploit is not as
crucial as the activity they carry out once they have broken
into the host. That's why we chose to use a simple
vulnerability: weak passwords for ssh user accounts. Our
honeypot is not particularly hardened for two reasons.
First, we are interested in analyzing the behavior of the
attackers even when they exploit a buffer overflow and
become root. So, if we use some kernel patch such as Pax
[12], our system will be more secure but it will be
impossible to observe some behavior. Secondly, if the
system is too hardened, the intruders may suspect
something abnormal and then give up.

In our setup, only ssh connections to the virtual host
are authorized so that the attacker can exploit this
vulnerability. A firewall blocks all connection attempts
from the Internet, but those to port 22 (ssh). Also, any
connection from the virtual host to the outside is blocked

Proceedings of the Sixth European Dependable Computing Conference (EDCC'06)
0-7695-2648-9/06 $20.00 © 2006

to avoid that intruders attack remote machines from the
honeypot. This does not prevent the intruder from
downloading code, using the ssh connection1.

Our honeypot is a standard Gnu/Linux installation,
with kernel 2.6, with the usual binary tools. No additional
software was installed except the http apache server.
This kernel was modified as explained in the next
subsection. The real host executing VMware uses the
same Gnu/Linux distribution and is isolated from outside.

In order to log what the intruders do on the honeypot,
we modified some drivers functions (tty_read and
tty_write), as well as the exec system call in the Linux
kernel. The modifications of tty_read and tty_write
enable us to intercept the activity on all the terminals of
the system. The modification of the exec system call
enables us to record the system calls used by the intruder.
These functions are modified in such a way that the
captured information is logged directly into a buffer of the
kernel memory of the honeypot itself.

Moreover, in order to record all the logins and
passwords tried by the attackers to break into the
honeypot we added a new system call into the kernel of
the virtual operating system and we modified the source
code of the ssh server so that it uses this new system call.
The logins and passwords are logged in the kernel
memory, in the same buffer as the information related to
the commands used by the attackers.

The activities of the intruder logged by the honeypot
are preprocessed and then stored into an SQL database.
The raw data are automatically processed to extract
relevant information for further analyses, mainly: i) the IP
address of the attacking machine, ii) the login and the
password tested, iii) the date of the connection, iv) the
terminal associated (tty) to each connection, and v) each
command used by the attacker.

3. Experimental results

This section presents the results of our experiments.
First, we give global statistics in order to give an overview
of the activities observed on the honeypot, then we
characterize the various intrusion processes. Finally, we
analyze in detail the behavior of the attackers once they
break into the honeypot. In this paper, an intrusion
corresponds to the activities carried out by an intruder
who has succeeded to break into the system.

3.1. Global statistics

The high-interaction honeypot has been deployed on
the Internet and has been running for 131 days during
which 480 IP addresses have tried to contact its ssh port.
It is worth comparing this value to the amount of hits
observed against port 22, considering all the other low-
interaction honeypot platforms we have deployed in the
rest of the world (40 platforms). In the average, each
platform has received hits on port 22 from around
approximately 100 different IPs during the same period of
time. Only four platforms have been contacted by more

1 We have sometimes authorized http connections for a short time, by
checking that the attackers were not trying to attack other remote hosts.

than 300 different IP addresses on that port and only one
was hit by more visitors than our high interaction
honeypot. Even better, the low-interaction platform
maintained in the same subnet as the high-interaction
honeypot experimented only 298 visits, i.e. less than two
thirds of what the high-interaction did see. This very
simple and first observation confirms the fact already
described in [9] that some attacks are driven by the fact
that attackers know in advance, thanks to scans done by
other machines, where potentially vulnerable services are
running. The existence of such a service on a machine will
trigger more attacks against it. This is what we observe
here: the low interaction machines do not have the ssh
service open, as opposed to the high interaction one, and,
therefore get less attacked than the one where some target
has been identified.

The number of ssh connection attempts to the
honeypot we have recorded is 248717 (we do not consider
here the scans on the ssh port). This represents about
1900 connection attempts a day. Among these 248717
connection attempts, only 344 were successful. Table 1
represents the user accounts that were mostly tried (the
top ten) as well as the number of different passwords that
have been tested by the attackers. It is noteworthy that
many user accounts corresponding to usual first names
have also regularly been tested on our honeypot. The total
number of accounts tested is 41530.

Account Number of
connection
attempts

Percentage of
connection
attempts

Number of
passwords

tested
root 34251 13.77% 12027
admin 4007 1.61% 1425
test 3109 1.25% 561
user 1247 0.50% 267
guest 1128 0.45% 201
info 886 0.36% 203
mysql 870 0.35% 211
oracle 857 0.34% 226
postgres 834 0.33% 194
webmaster 728 0.29% 170
Table 1: ssh connection attempts and number of

passwords tested
Before the real beginning of the experiment

(approximately one and a half month), we had deployed a
machine with a ssh server correctly configured, offering
no weak account and password. We have taken advantage
of this observation period to determine which accounts
were mostly tried by automated scripts. Using this
acquired knowledge, we have created 17 user accounts and
we have started looking for successful intrusions. Some of
the created accounts were among the most attacked ones
and others not. As we already explained in the paper, we
have deliberately created user accounts with weak
passwords (except for the root account). Then, we have
measured the time between the creation of the account
and the first successful connection to this account, then
the duration between the first successful connection and
the first real intrusion (as explained in section 3.2, the
first successful connection is very seldom a real intrusion
but rather an automatic script which tests passwords).

Proceedings of the Sixth European Dependable Computing Conference (EDCC'06)
0-7695-2648-9/06 $20.00 © 2006

Table 2 summarizes these durations (UAi means User
Account i).

User
Account

Duration between
creation and first

successful connection

Duration between first
successful connection

and first intrusion
UA1 1 day 4 days
UA2 Half a day 4 minutes
UA3 15 days 1 day
UA4 5 days 10 days
UA5 5 days null
UA6 1 day 4 days
UA7 5 days 8 days
UA8 1 day 9 days
UA9 1 day 12 days
UA10 3 days 2 minutes
UA11 7 days 4 days
UA12 1 day 8 days
UA13 5 days 17 days
UA14 5 days 13 days
UA15 9 days 7 days
UA16 1 day 14 days
UA17 1 day 12 days

Table 2: History of breaking accounts

The second column indicates that there is usually a gap
of several days between the time when a weak password is
found and the time when someone logs into the system
with this password to issue some commands on the now
compromised host. This is a somehow a surprising fact
and is described with some more details here below. The
particular case of the UA5 account is explained as follows:
an intruder succeeded in breaking the UA4 account. This
intruder looked at the contents of the /etc/passwd file in
order to see the list of user accounts for this machine. He
immediately decided to try to break the UA5 account and
he was successful. Thus, for this account, the first
successful connection is also the first intrusion.

3.2. Intrusion process

In the section, we present the conclusions of our
analyses regarding the process to exploit the weak
password vulnerability of our honeypot. The observed
attack activities can be grouped into three main
categories: 1) dictionary attacks, 2) interactive intrusions,
3) other activities such as scanning, etc.

Figure 3: Classification of observed IP addresses
As illustrated in figure 3, among the 480 IP addresses

that were seen on the honeypot, 197 performed dictionary
attacks and 35 performed real intrusions on the honeypot
(see below for details). The 248 IP addresses left were
used for scanning activity or activity that we did not

clearly identified. Among the 197 IP addresses that made
dictionary attacks, 18 succeeded in finding passwords.
The others (179) did not find the passwords either because
their dictionary did not include the accounts we created or
because the corresponding weak password had already
been changed by a previous intruder. We have also
represented in Figure 3 the corresponding number of IP
addresses that were also seen on the low-interaction
honeypot deployed in the context of the project in the
same network (between brackets). Whereas most of the IP
addresses seen on the high interaction honeypot are also
observed on the low interaction honeypot, none of the 35
IPs used to really log into our machine to launch
commands have ever been observed on any of the low
interaction honeypots that we do control in the whole
world! This striking result is discussed hereafter.

3.2.1. Dictionary attack. The preliminary step of
the intrusion consists in dictionary attacks2. In general, it
takes only a couple of days for newly created accounts to
be compromised. As shown in Figure 3, these attacks have
been launched from 197 IP addresses. By analysing more
precisely the duration between the different ssh
connection attempts from the same attacking machine, we
can say that these dictionary attacks are executed by
automatic scripts. As a matter of fact, we have noted that
these attacking machines try several hundreds, even
several thousands of accounts in a very short time.

We have made then further analyses regarding the
machines that succeed in finding passwords, i.e., the 18 IP
addresses. By searching the leurré.com database
containing information about the activities of these
addresses against the other low interaction honeypots we
found four important elements of information. First, we
note that none of our low interaction honeypot has an ssh
server running, none of them replies to requests sent to
port 22. These machines are thus scanning machines
without any prior knowledge on their open ports. Second,
we found evidences that these IPs were scanning in a
simple sequential way all addresses to be found in a block
of addresses. Moreover, the comparison of the
fingerprints left on our low interaction honeypots
highlights the fact that these machines are running tools
behaving the same way, not to say the same tool. Third,
these machines are only interested in port 22, they have
never been seen connecting to other ports. Fourth, there is
no apparent correlation as far as their geographical
location is concerned: they are located all over the world.

In other words, it comes from this analysis that these
IPs are used to run a well known program. The detailed
analysis of this specific tool is outside the scope of the
paper but, nevertheless, it is worth mentioning that the
activities linked to that tool, as observed in our
Leurré.com database, indicate that it is unlikely to be a
worm but rather an easy to use and widely spread tool.

3.2.2. Interactive attack: intrusion. The second
step of the attack consists in the real intrusion. We have
noted that, several days after the guessing of a weak

2 We consider as “dictionary attack” any attack that tries more than 10
different accounts and passwords.

Proceedings of the Sixth European Dependable Computing Conference (EDCC'06)
0-7695-2648-9/06 $20.00 © 2006

password, an interactive ssh connection is executed on
our honeypot to issue several commands. We believe that,
in those situations, a real human being, as opposed to an
automated script, is connected to our machine. This is
explained and justified in Section 4.3. As shown in Figure
3, these intrusions come from 35 IP addresses never
observed on any of the low-interaction honeypots.

Whereas the geographic localisation of the machines
performing dictionary attacks is very blur, the machines
that are used by a human being for the interactive ssh
connection are, most of the time, clearly identified. We
have a precise idea of their country, geographic address,
the responsible of the corresponding domain.
Surprisingly, these machines, for half of them, come from
the same country, an European country not usually seen
as one of the most attacking ones as reported, for
instance, by the www.leurrecom.org web site.

We then made analyses in order to see if these IP
addresses had tried to connect to other ports of our
honeypot except for these interactive connections; and the
answer is no. Furthermore, the machines that make
interactive ssh connections on our honeypot do not make
any other kind of connections on this honeypot, i.e, no
scan or dictionary attack. Further analyses, using the data
collected from the low-interaction honeypots deployed in
the CADHo project, revealed that none of the 35 IP
addresses have ever been observed on any of our
platforms deployed in the word. This is interesting
because it shows that these machines are totally dedicated
to this kind of attack (they only targeted our high-
interaction honeypot and only when they knew at least
one login and password on this machine).

We can conclude for these analyses that we face two
groups of attacking machines. The first group is composed
of machines that are specifically in charge of making
dictionary attacks. Then the results of these dictionary
attacks are published somewhere. Then, another group of
machines, which has no intersection with the first group,
comes to exploit the weak passwords discovered by the
first group. This second group of machines is, as far as we
can see, clearly geographically identified and commands
are executed by a human being. A similar two steps
process was already observed in the CADHo project when
analyzing the data collected from the low-interaction
honeypots (see [9] for more details).

3.3. Behavior of attackers

This section is dedicated to the analysis of the behavior
of the intruders. We first characterize the intruders, i.e.
we try to know if they are humans or programs. Then, we
present in more details the various actions they have
carried out on the honeypot. Finally, we try to figure out
what their skill level seems to be.

We concentrate the analyses on the last three months
of our experiment. During this period, some intruders
have visited our honeypot only once, others have visited it
several times, for a total of 38 ssh intrusions. These
intrusions were initiated from 16 IP addresses and 7
accounts were used. Table 3 presents the number of
intrusions per account, IP addresses and passwords used
for these intrusions. It is of course difficult to be sure that

all the intrusions for a same account are initiated by the
same person. Nevertheless, in our case, we noted that:
• most of the time, after his first login, the attacker

changes the weak password into a strong which, from
there on, remains unchanged.

• when two different IP addresses access the same
account (with the same password), they are very close
and belong to the same country or company.

These two remarks lead us to believe that there is in
general only one person associated to the intrusions for a
particular account.

Account Number of
intrusions

Number of
passwords

Number of IP
addresses

UA2 1 1 1
UA4 13 2 2
UA5 1 1 1
UA8 1 1 1
UA10 9 2 2
UA13 6 1 5
UA16 5 1 3
UA17 2 1 1
Table 3: Number of intrusions per account

3.3.1. Type of the attackers: humans or

programs. Before analyzing what intruders do when
connected, we can try to identify who they are. They can
be of two different natures. Either they are humans, or
they are programs which reproduce simple behaviors. For
all intrusions but 12, intruders have made mistakes when
typing commands. Mistakes are identified when the
intruder uses the backspace to erase a previously entered
character. So, it is very likely that such activities are
carried out by a human, rather than programs.

When an intruder did not make any mistake, we
analyzed how the data were transmitted from the attacker
machine to the honeypot. We can note that, for ssh
communications, data transmission between the client
and the server is asynchronous. Most of the time, the ssh
client implementation uses the function select() to get
user input. So, when the user presses a key, this function
ends and the program sends the corresponding value to
the server. In the case of a copy and a paste into the
terminal running the client, the select() function also
ends, but the program sends all the values contained in
the buffer used for the paste into the server. We can
assume that, when tty_read() returns more than one
character, these values have been sent after a copy and a
paste. If all the activities during a connection are due to a
copy and a paste, we can strongly assume that it is due to
an automatic script. Otherwise, this is quite likely a
human being who uses shortcuts from time to time (such
as CTRL-V to paste commands into its ssh session). For 7
out of the last 12 activities without mistakes, intruders
have entered several commands on a character-by-
character basis. This, once again, seems to indicate that a
human being is entering the commands. For the 5 others,
their activities are not significant enough to conclude:
they have only launched a single command, like w, which
is not long enough to highlight a copy and a paste.

Proceedings of the Sixth European Dependable Computing Conference (EDCC'06)
0-7695-2648-9/06 $20.00 © 2006

3.3.2. Attacker activities. The first significant
remark is that all of the intruders change the password of
the hacked account. The second remark is that most of
them start by downloading some files. In all cases, but
one, the attackers tried to download some malware to the
compromised machines. In a single case, the attacker has
first tried to download an innocuous, yet large, file to the
machine (the binary for a driver coming from a known
web site). This is probably a simple way to assess the
connectivity quality of the compromised host.

The command used by the intruders to download the
software is wget. To be more precise, 21 intrusions upon
38 include the wget command. These 21 intrusions
concern all the hacked accounts. As mentioned in
section 2, outgoing http connections are forbidden by the
firewall. Nevertheless, the intruders still have the
possibility to download files through the ssh connection
using sftp command (instead of wget). Surprisingly, we
noted that only 30% of the intruders did use this ssh
connection. 70% of the attackers were unable to download
their malware due to the absence of http connectivity!
Three explanations can be envisaged at this stage. First,
they follow some simplistic cookbook and do not even
known the other methods at their disposal to upload a file.
Second, the machines where the malware resides do not
support sftp. Third, the lack of http connectivity made
the attacker suspicious and he decided to leave our
system. Surprisingly, the first explanation seems to be the
right one in our case as we noticed that the attackers leave
after an unsuccessful wget and come back a few hours or
days later, trying the same command again as if they were
hoping it to work at that time. Some of them have been
seen trying this several times. It can be concluded that:
i) they are apparently unable to understand why the
command fails, ii) they are not afraid to come back to the
machine despite the lack of http connectivity,
iii) applying such brute force attack reveals that they are
not aware of any other method to upload the file.

Once the attackers manage to download their malware
using sftp, they try to install it (by decompressing or
extracting files for example). 75% of the intrusions that
installed software did not install it on the hacked account
but rather on standard directories such as /tmp, /var/tmp
or /dev/shm (which are directories with write access for
everybody). This makes the hacker activity more difficult
to identify because these directories are regularly used by
the operating system itself and shared by all the users.

Additionally, we have identified four main activities of
the intruders. The first one is launching ssh scans on
other networks but these scans have never tested local
machines. Their idea is to use the targeted machine to
scan other networks, so that it is more difficult for the
administrator of the targeted network to localize them.
The program used by most intruders, which is easy to find
on the Internet, is pscan.c.

The second type of activity consists in launching irc
clients, e.g., emech [13] and psyBNC. Names of binary files
have regularly been changed by intruders, probably in
order to hide them. For example, the binary files of emech
have been changed to crond or inetd, which are well
known Unix binary file names and processes.

The third type of activity is trying to become root.
Surprisingly, such attempts have been observed for 3
intrusions only. Two rootkits were used. The first one
exploits two vulnerabilities: a vulnerability which
concerns the Linux kernel memory management code of
the mremap system call [14] and a vulnerability which
concerns the internal kernel function used to manage
process's memory heap [15]. This exploit could not
succeed because the kernel version of our honeypot does
not correspond to the version of the exploit. The intruder
should have realized this because he checked the version
of the kernel of the honeypot (uname -a). However, he
launched this rootkit anyway and failed. The other rootkit
used by intruders exploits a vulnerability in the program
ld. Thanks to this exploit, three intruders became root
but the buffer overflow succeeded only partially. Even if
they apparently became root, they could not launch all
desired programs (removing files for example caused
access control errors).

The last activity observed in the honeypot is related to
phishing activities. It is difficult to make precise
conclusions because only one intruder has attempted to
launch such an attack. He downloaded a forged email and
tried to send it through the local smtp agent. But, as far as
we could understand, it looked like a preliminary step of
the attack because the list of recipient emails was very
short. It seems that is was just a preliminary test before
the real deployment of the attack.

3.3.3. Attackers skill. Intruders can roughly
speaking be classified into two main categories. The most
important one is relative to script kiddies. They are
inexperienced hackers who use programs found on the
Internet without really understanding how they work. The
next category represents intruders who are more
dangerous. They are named “black hat”. They can make
serious damage on systems because they are expert in
security and they know how to exploit vulnerabilities on
various systems.

As already presented in §3.3.2. (use of wget and sftp),
we have observed that intruders are not as clever as
expected. For example, for two hacked accounts, the
intruders don't seem to really understand the Unix file
access rights (it's very obvious for example when they try
to erase some files whereas they don't have the required
privileges). For these two same accounts, the intruders
also try to kill the processes of other users. Many
intruders do not try to delete the file containing the
history of their commands or do not try to deactivate this
history function (this file depends on the login shell used,
it is .bash_history for example for the bash). Among the
38 intrusions, only 14 were cleaned by the intruders (11
have deactivated the history function and 3 have deleted
the.bash_history file). This means that 24 intrusions left
behind them a perfectly readable summary of their
activity within the honeypot.

The IP address of the honeypot is private and we have
started another honeypot on this network. This second
honeypot is not directly accessible from the outside, it is
only accessible from the first honeypot. We have modified
the /etc/motd file of the first honeypot (which is
automatically printed on the screen during the login

Proceedings of the Sixth European Dependable Computing Conference (EDCC'06)
0-7695-2648-9/06 $20.00 © 2006

process) and added the following message: “In order to
use the software XXX, please connect to A.B.C.D”.
In spite of this message, only one intruder has tried to
connect to the second honeypot. We could expect that an
experienced hacker will try to use this information. In a
more general way, we have very seldom seen an intruder
looking for other active machines on the same network.

One important thing to note is relative to
fingerprinting activity. No intruder has tried to check the
presence of VMware software. For three hacked accounts,
the intruders have read the contents of the file
/proc/cpuinfo but that's all. None of the methods
discussed on Internet was tested to identify the presence
of VMware software [16,17]. This probably means that the
intruders are not experienced hackers.

4. Conclusion

In this paper, we have presented the results of an
experiment carried out over a period of 6 months during
which we have observed the various steps that lead an
attacker to successfully break into a vulnerable machine
and his behavior once he has managed to take control
over the machine.

The findings are somehow consistent with the informal
know how shared by security experts. The contributions of
the paper reside in performing an experiment and
rigorous analyses that confirm some of these informal
assumptions. Also, the precise analysis of the observed
attacks reveals several interesting facts. First of all, the
complementarity between high and low interaction
honeypots is highlighted as some explanations can be
found by combining information coming from both set
ups. Second, it appears that most of the observed attacks
against port 22 were only partially automated and carried
out by script kiddies. This is very different from what can
be observed against other ports, such as 445, 139 and
others, where worms have been designed to completely
carry out the tasks required for the infection and
propagation. Last, honeypot fingerprinting does not seem
to be a high priority for attackers as none of them has
tried the known techniques to check if they were under
observation. It is also worth mentioning a couple of
important missing observations. First, we did not observe
scanners detecting the presence of the open ssh port and
providing this information to other machines in charge of
running the dictionary attack. This is different from
previous observations reported in [9]. Second, as most of
the attacks follow very simple and repetitive patterns, we
did not observe anything that could be used to derive
sophisticated scenarios of attacks that could be analyzed
by intrusion detection correlation engine. Of course, at
this stage it is too early to derive definite conclusions from
this observation.

Therefore, it would be interesting to keep doing this
experiment over a longer period of time to see if things do
change, for instance if a more efficient automation takes
place. We would have to solve the problem of weak
passwords being replaced by strong ones though, in order
to see more people succeeding in breaking into the
system. Also, it would be worth running the same
experiment by opening another vulnerability into the

system and verifying if the identified steps remain the
same, if the types of attackers are similar. Could it be, at
the contrary, that some ports are preferably chosen by
script kiddies while others are reserved to some more elite
attackers? This is something that we are in the process of
assessing.

Acknowledgement. This work has been partially
supported by: 1) CADHo, a research action funded by the French
ACI “Securité & Informatique” (www.cadho.org), 2) the
CRUTIAL IST-027513 project (crutial.cesiricerca.it), and 3) the
ReSIST IST- 026764 project (www.resist-noe.org).

5. References
[1] M. Bailey, E. Cooke, F. Jahanian, J. Nazario, The Internet

motion sensor - a distributed blackhole monitoring
system. Network and Distributed Systems Security Symp.
(NDSS 2005), San Diego, USA, 2005.

[2] CAIDA Project. Home Page of the CAIDA Project,
http://www.caida.org.

[3] http://www.dshield.org. Home page of the DShield.org
Distributed Intrusion Detection System.

[4] E. Alata, M. Dacier, Y. Deswarte, M. Kaaniche, K.
Kortchinsky, V. Nicomette, V. Hau Pham, and F. Pouget,
Collection and analysis of attack data based on honeypots
deployed on the Internet. QOP 2005, 1st Workshop on
Quality of Protection (co-located with ESORICS and
METRICS), Sept. 15, Milan, Italy, 2005.

[5] F. Pouget, M. Dacier, V. Hau Pham. Leurre.com: on the
advantages of deploying a large scale distributed
honeypot platform. In Proc. of ECCE'05, E-Crime and
Computer Conference, Monaco, 2005.

[6] Home page of Leurré.com: http://www.leurre.org.

[7] Project Leurré.com. Publications web page:
http://www.leurrecom.org/paper.htm.

[8] M. Dacier, F. Pouget, H. Debar. Honeypots: practical
means to validate malicious fault assumptions. 10th IEEE
Pacific Rim Int. Symp., pp. 383--388, Tahiti, 2004.

[9] F. Pouget, M. Dacier, V. Hau Pham, “Understanding
threats: a prerequisite to enhance survivability of
computing systems”, Int. Infrastructure Survivability
Workshop IISW'04, (25th IEEE Int. Real-Time Systems
Symp. (RTSS 04)), Lisboa, Portugal, 2004.

[10] E. Alata, V. Nicomette, M. Kaaniche, M. Dacier, M. Herrb,
Lessons learned from the deployment of a high-
interaction honeypot: Extended version. LAAS Report,
July 2006.

[11] Inc. VMware. Available on: http://www.vmware.com
[12] The PaX Team. Available on: http://pax.grsecurity.net.

[13] EnergyMech team. Energymech. Available on:
http://www.energymech.net.

[14] US-CERT. Linux kernel mremap(2) system call does not
properly check return value from do_munmap() function.
Available on: http://www.kb.cert.org/vuls/id/981222.

[15] US-CERT. Linux kernel do_brk() function contains
integer overflow. http://www.kb.cert.org/vuls/id/981222.

[16] J. Corey, Advanced honeypot identification and
exploitation. Phrack, N 63, Available on:
http://www.phrack.org/fakes/p63/p63-0x09.txt.

[17] T. Holz and F. Raynal, Detecting honeypots and other
suspicious environments. In Systems, Man and
Cybernetics (SMC) Information Assurance Workshop.
Proc. from the Sixth Annual IEEE, pages 29--36, 2005.

Proceedings of the Sixth European Dependable Computing Conference (EDCC'06)
0-7695-2648-9/06 $20.00 © 2006

