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Abstract 

New trends in parallel methods used to solve Finite Element matrix systems are presented: standard 

iterative and direct solving methods first, and then domain decomposition methods. For example, the 

current status and properties of two prevailing programming environments (PVM and MPI) are finally 

given and compared when implemented together with a Finite Element Time Domain formulation. 
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1. Introduction 

Numerical computation is more and more used in engineering sciences to develop new devices or to 

optimize existing one. Only parallel computers provide the increase in computing performances 

necessary to solve today’s problems. Two reasons may be highlighted: large memory is required because 

of a large amount of data, or speed is required to obtain the solution [1].  

We have previously presented a survey of the parallelization of numerical techniques used in 

computational electromagnetics [2]. In this paper, it is proposed to focus now our attention on numerical 

solving methods for the parallelized Finite Element Method (FEM) in electromagnetics [3]. The objective 

is actually to describe lately appeared methods which can be useful to solve efficiently linear systems 

issued from FE discretization. The main characteristic of such systems is that they are generally sparse. 

The FEM is attractive for modeling 2D and 3D devices because of its adaptability for designing complex 

systems with highly heterogeneous materials. Modeling realistic devices requires the solution of a large 



problem which can be afforded only by parallel computation [4]. 

The first section deals with standard numerical solving methods, such as preconditioned conjugate 

gradient. In the second section, domain decomposition methods (DDM) are described. Since these 

methods are less known in computational electromagnetics, their basic principle is presented.  Special 

attention is also paid to multilevel methods, which can be seen as a DDM method from a strict 

mathematical point of view. As example, the last section shows the implementation of a Finite Element 

Time Domain (FETD) algorithm used for a wave propagation problem. A comparison between the two 

message passing libraries PVM and MPI  is also performed. 

2. Standard Parallel Solving Methods  for the FEM 

2.1. The Conjugate Gradient Method 

The Conjugate Gradient (CG) method is one of the most popular linear solvers for Finite Element 

(FE) analysis, since it is well adapted to solve sparse matrix systems. In order to improve the solving, 

preconditioning techniques have to be used together with the solving method. The basic idea consists in 

replacing the initial system A x = b by a new system  
 

bMb~ and AMA~with 

b~xA~   bAx
11 −− ==

=⇔=                                  (1)  

 

where M is the preconditioning matrix. Two conditions are required for efficiency:  

- the conditioning number of the new matrix Ã has to be lower than the initial conditioning number,  

- and the matrix system M has to be to not expensive to build or to solve. 
Several preconditioning techniques exist: Incomplete Cholesky (ICP), SSOR, Diagonal (DP) 

preconditioning. The following example shows the efficiency of the preconditioning method. It is used 

for the modeling of radiofrequency hyperthermia [5]. The problem is computed with more than 130 000 

degrees of freedom. From Table I, by comparing both DP and ICP, it is shown that better results are 

obtained with the ICP in terms of number of iterations. On the other hand, since the cost of one iteration 

is greater than when using the DP, the total CPU time of computation is larger. In this case, the best 

results are obtained with a SSOR preconditioning: both number of iterations and CPU time are divided by 

two. 

TABLE I: COMPARISON OF THE EFFICIENCY OF SEVERAL PRECONDITIONING TECHNIQUES FOR THE CG 

METHOD 

Preconditioning method Number of iterations CPU time 

Diagonal 13561 22356 s 



Incomplete Cholesky 7551 25761 s 

SSOR 3481 12225 s 

 
Several papers published recently propose new parallel-processing techniques of the preconditioned 

CG solver.  

In [6], a parallelized transient eddy current FE analysis is presented. Due to the presence of moving 

conductors, the right-hand side of the system of equations is changed at each time step. First-order brick-

type edge elements are used for the FE discretization. Parallel solving is performed using the ICCG, 

leading to difficulties due to the forward-backward substitutions. Two parallel implementations are 

compared. First, on Np processors, the block ICCG (BICCG) method divides the global matrix into Np 

submatrices and performs the IC factorization for the local submatrix in each processor, with the entries 

between different processors being ignored in the factorization. Second, a renumbering process allows to 

reorder the matrix into a form similar to the dissection ordering case (PICCG-RP) (fig. 1). Since no 

entries are neglected during the preconditioning step, a better convergence rate is observed with the 

PICCG-RP method, leading to a better parallel efficiency (fig. 2). 
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Fig. 1. Basic principle of the renumbering process [6]. 

This reordering technique is extended in [7] for the same 3D eddy-current analyses. The key of the 

method is coloring of the unknowns. Several colors are assigned to the unknowns, such that the 

unknowns belonging to the same color must have no data dependency on each other. Due to the presence 

of edge elements, the assignment is algebraic: it is carried out by using only information obtained from a 

coefficient matrix. This method is actually a complete black-box solver, and its implementation appears 

to be easy. Parallel performances obtained on a distributed memory Fujitsu VPP-800 are also better than 

when using a classical BICCG (fig. 3). It is also shown that the use of many colors improves the 

convergence rate, but it causes an increase in communication costs and a decline in parallelism. For the 

example of transient eddy currents analysis, made of more than 106 unknowns, best results are obtained 

with 60 colors. 
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Fig. 2. Comparison of several preconditioning techniques for the CG solver [5]. Computation is performed on a Hitachi SR2201. 
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Fig. 3. Comparison of multi-color method  for the CG solver  and BICCG [6] for a transient eddy currents problem (1011920 

unknowns).  

 

The Conjugate Gradient Squared (CGS) is also used for the modeling of 2D open-region frequency-

domain scattering problems by the FEM in [8]. By modifying the computation sequence in the algorithm, 

the synchronization overhead is reduced by a factor of two. The basic idea of this modification is to 

merge the inner products present in the CGS algorithm so that they can be evaluated using a single global 

summing operation per iteration of the “while” loop. From both theoretical and experimental analyses it 

is found that this Modified CGS (MCGS) algorithm becomes slightly faster as the number of processors 

increases. A set of algorithms  is then proposed, where either CGS or MCGS is selected depending on the 

number of unknowns and number of processors. 

2.2. Other parallel standard iterative methods 

Other parallel iterative solvers may be used for the FE method and can be more efficient than the 

preconditioned CG. As example, the Quasi-Minimal Residual (QMR) method and the BI-Conjugate 

Gradient STAbilized (BICGSTAB) method are compared in [9] for the computation of 2D axisymmetric 

magnetic and electric fields on printed circuit board (PCB) containing magnetic films. Both solvers and 



preconditioners are parallelized by matrix and vector partitioning, the mesh partition being obtained by 

using METIS [10]. The results obtained on different parallel machines show the efficiency of this 

approach (Table II). 

TABLE  II:  SPEEDUP ON 48 PROCESSORS FOR A 16593 DOF MATRIX [9]. COMPUTATION ON A NEC CENJU-4. 

Solver Speedup 

ILUT perconditioned BICGSTAB  14.4 

Diagonaly scaled BICGSTAB 22.9 

Diagonaly scaled QMR 31.9 

 

2.3. Direct methods 

Iterative solvers are not suitable for any type of problem. For example, the matrix equations obtained 

from the FEM with perfect matched layers (PML) can be rather ill-conditioned and can lead to very slow 

or non-convergent results. Direct solvers have then to be employed, since they are much more robust, 

reliable and efficient. As example, a sparse LU decomposition solver is presented in [11]. It is used to 

compute 3D microstrip discontinuities. Several implementation techniques are used to speedup the 

computation: dynamic partial pivoting, reordering scheme, supernodal approach. The parallel version of 

the package is implemented on a PC-based parallel platform, leading to decent speedups (fig. 4). 
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Fig.4. LU decomposition for the computation of 3D microstrip discontinuities (21408 dof) [11]. 

3. Domain Decomposition Methods 

A natural way to create solvers for partial differential equations on parallel computers is the 

decomposition technique based on a decomposition of the spatial domain of the problem into 

subdomains. Most domain decomposition methods can be classified as either overlapping or 

nonoverlapping subdomain approach. For storage and time efficiency, iterative algorithms are preferred 

to direct solvers. To make the methods numerically scalable, a global coupling between subdomains must 

be introduced, using a coarse global mesh for example.  
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Fig.5. Overlapping (left) and nonoverlapping (right) domains. 

3.1. Overlapping domains methods 

Overlapping domains methods are easy to implement as additive Schwarz iteration. In this method, 

the computation is first performed on each subdomain with known boundary condition and with 

unknown boundary condition on the interface with other subdomains. From this computation, new 

boundary conditions are obtained on the interfaces and transferred to the other subdomains. This process 

is made iteratively until convergence (fig. 6). On each subdomain, an exact solver (LU) or an iterative 

solver can be used. Of course, this method is easy to parallelize, since each subdomain can be computed 

in parallel. So it is well adapted to coarse grain parallelism. 
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Fig.6. Basic idea of the additive Schwarz iteration. 

 

On the other hand, the performance of multiplicative Schwarz iteration is often better, since the 

unknown boundary conditions are faster approximated (fig.7). However this method seems to be more 

difficult to parallelize, since it appears to be sequential by nature. The technique of multicoloring must 

then be used to improve its  parallel efficiency .  
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Fig.7. Basic idea of the multiplicative Schwarz iteration 

3.2. Non overlapping domain methods 

Algorithms with non overlapping domains involve Schur complement systems. If the system matrix is 

made of four blocks, the Schur complement matrix S is defined by: 
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It is then shown that solving the global system leads first to solve the Schur system: 
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The unknowns located on the interface separating two neighbouring subdomains give the Schur 

complement system.  Since the subdomains Ωi become then disconnected, the corresponding block 

matrices Ai become also disconnected, allowing an easy parallelization (fig. 8). The Schur matrix system 

is solved by  the CG method for symmetric definite matrix or more generally by Krylov subspace method 

such as GMRES. Parallel interface preconditioners are often introduced to improve the convergence. 

Many ways for preconditioning exist in the literature for 2D problems. Preconditioners which not destroy 

the original scalability and which are not expensive are complicated to obtain for complex geometries and 

irregular discretizations. 
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Fig. 8. Basic idea of the Schur complement system method. 

 

A smart manner to obtain non overlapping domain decomposition algorithm showing a good parallel 

efficiency is to enforce the continuity of boundary conditions by introducing  Lagrange multipliers [12]. 

The FE Tearing and Interconnecting method is an important class of such hybrid methods [13]. It can be 

viewed as a dual Schur Complement method . The Lagrange multipliers are solution of a small-size linear 

system compared to the global problem size. When solved with an iterative method (CG or BiCG 

method), the corresponding matrix does not need to be explicitly assembled. Each local field problem can 

be treated independently on each processor. In [14] the resulting algorithm for the solution of the vector 

wave equation discretized with tetrahedral elements is presented . It is used to modelize 3D PEC wedge 

in a rectangular cavity. The continuity of tangential electric fields on the interface between subdomains is 

used to build the Schur system. This system is calculated using parallel conjugate gradient,  while the 

local matrices Ai factorized only once. From Fig. 9, this algorithm is shown to be highly scalable. 

 

An other interesting advantage of the FETI method follows from [15]. For the solution of Maxwell’s 

equation in the frequency domain, its performance is less affected by the presence of perfectly matched 

layers solution than a direct iterative method (a divide-and-conquer-type preconditioned  BiCGM). On 

the other hand, the convergence of the method is sensitive  to irregular subdomains. The question of  

constructing efficient parallel preconditionners is also a remaining problem for such a method. 
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Fig.9. Speedup of the FETI algorithm for the computation of a PEC wedge into a cavity [13]. Computation is 

performed on a 32-node Intel iSPC/860 hypercube. 



The domain decomposition approach offers many opportunities for the coupling of boundary element 

method (BEM) and FEM. An unified variational formulation has been proposed in [16]. In [17, 18], the 

z-component of the vector potential is determined from the solution of linear, symmetric but indefinite 

system of coupled equations which are reformulated as symmetric and positive definite systems. A 

different way to exploit the BEM-FEM coupling is presented in [19] for 3D transient problem. In this 

case, the coupling with the BEM is made necessary due to the presence of moving part into the 

electromechanical device. The developed method is based on a Dirichlet-Neumann algorithm: sequential 

solutions of the FEM part are linked within a preconditioned GMRES method together with parallel 

solution of the BEM part (fig. 10). On a NEC-SX4 with 16 processors, the obtained speedup is about 6. 
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Fig. 10.  BEM-FEM coupling (left) to modelize electromechanical device (right) with moving part [19]. 

3.3. Multilevel methods 

Multilevel methods can be included in the class of decomposition method, since these algorithms have 

similarities with Schwarz type domain decomposition method with inexact solvers. Different grid levels 

or subspaces play the role of subregions. Schematically, each iteration may be seen as performed into 3 

steps (fig. 11). A few iterations are first performed on a fine grid, leading to an approximative solution uh. 

This leads to a residual vector rh which is transferred to the coarse grid and then exactly computed 

(second step). The solution is finally re-transferred onto the fine grid, allowing to modify the previous 

values of uh. It is followed by a post-smoothing step.  

Multilevel methods can be generalized to several grid sizes. Two types of multigrid methods exist 

[20]: 

- the Geometric Multigrid Method (GMM), based on the effective use of mesh grids, 

- the Algebraic Multigrid Method (AMG), where there is no mesh, and the building of the operators is 

based on the values of the coefficients of the matrix. 
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Fig. 11. Basic idea of the multilevel method (example with 2 grids). 

Parallel implementation of the AMG is presented in [21] for eddy-current analyses and magnetostatics 

analyses. The parallel performance of the algorithm is improved in the setup phase by the use of long-

range interpolation instead of the conventional direct interpolation. The numerical results obtained with a 

rectangular domain show that the AMG is a fast solver, since the CPU time is divided by 10 compared to 

a classical ICCG (Table III). As shown in Fig. 12, this intrisic property is not destroyed by the 

parallelization of the method, since both speedups remain comparable. 

TABLE III: COMPARISON OF CPU TIMES (IN S) OBTAINED WITH THE AMG AND ICCG SOLVERS ON A 80601 

DEGREES OF FREEDOM PROBLEM.  

Number of processors AMG ICCG 

1 513 5219 

2 273 3163 

4 153 1748 

8 97.2 998 

16 67.5 630 
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Fig. 12. Speedup of AMG and ICCG methods [19]. 

 



It would be of great interest to test the AMG method with more complicated domains, since the GMG 

requires a hierarchy of coarse grids which is actually difficult to manage in 3D. An experience of 

implementation of the GMG has been reported in [22] for 3D magnetostatics. Note that all these methods 

(domain decomposition or multigrid methods) can be used as preconditioners  for the Conjugate Gradient 

algorithm [23]. 

4. An example: the Finite Element Time Domain method for wave propagation 

Flexibility of the finite element technique and right physical sense of the edge elements make this 

formulation useful in modeling of electromagnetic phenomena. High performance simulation of the time 

domain problem enables to reduce either memory cost or time of computation. As example of 

implementation, the properties of the vector finite element time domain algorithm are evaluated in the 

known distributed multi-computer environments MPI and PVM [24-27]. 

4.1. Finite Element formulation 

The distribution of electric field is given by time dependent vector wave equation 
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where μ, σ, ε are the parameters of the media and Jimp is the source current. The domain of analysis is 

truncated with first order Engquist-Majda absorbing boundary condition (ABC) [27]. In the case of the 

excitation by a plane wave, according to general Galerkin scheme, the weak form of eq. (4) is given by 

expression 
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where W is the test vector function, SABC is the external surface of the model and Ei is the incident field. 

This equation is discretized in time domain and in space domain to yield a system of linear equations 

which must be solved. Space discretization is achieved using incomplete first order H(curl, Ω) tetrahedral 

edge elements. Considering the central Euler difference approximations of the first and the second order 

derivatives, the final form of the equation is  
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where R, T, S are mass, damping and stiffness matrices. The fn vector represents the dynamic load in 



the analyzed model. 

4.2. Distributed implementation of the formulation 

The Single Program Multiple Data (SPMD) paradigm is used in the elaborated parallel code. Because 

the unknowns are connected with the edges, the set of edges is decomposed in the distributed algorithm. 

Since the matrices are assembled with respect to the degrees of freedom, there are no geometrical 

restrictions of the data decomposition.  

Each computing unit assembles the matrices only for its local subset of degrees of freedom. During 

the assembling stage, the processing units have to exchange information only about the spatial 

distribution of boundary conditions (fig. 13). The numerical integration of (5) requires the solution of the 

linear system A xn = bn (fig. 14). Conjugate gradient method with diagonal preconditioning is used. The 

basic matrix and vector operations in the solver procedure are parallelized. The interdependence of the 

processes is different in the assembling stage and in the time integration loop. The assembling thread in a 

processing unit is loosely connected with the others threads, while the subtasks in the distributed 

implementation of the CG algorithm are tightly coupled. 
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Fig. 13. Relation between two processes in the assembling stage. 
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Fig. 14. Relation between two processes in the time integration loop. 

4.3. Comparison of PVM and MPI performances 

Both implementations of the FEM algorithm with PVM and MPI have been tested on an 

heterogeneous cluster of 4 PC. The modelized problem is the propagation of a plane wave in free space. 



Several mesh sizes have used for the comparison. The total time of execution of the PVM version is 

about 20% longer than the MPI implementation of the algorithm. However the relative parameters of 

PVM implementation are better (fig. 13, 14). The speedup of MPI and PVM implementations depends on 

the numbers of unknowns in the analysed model. If the relation between time of computation and time of 

data transfer is small (i.e. for relatively small model) the PVM and MPI implementations do not cause the 

speedup of the calculation process. The performance of the MPI version is shown to be a non-monotone 

function. The model of medium size gives the best speedup of the computation (about 2.7 for 4 

processing units). The speedups of PVM and MPI are approximately equal only for this type of the FEM 

model. The efficiency and speedup of MPI version decrease when the limit of RAM memory in the 

cluster is achieved. The efficiency of MPI version converges to 0.5 for the largest FEM model. In this 

case the speedup and efficiency of PVM implementation achieve the ideal values. 
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Fig. 13. Speedup of the FETD algorithm-A: 6930 DOF, B: 77832 DOF,  C: 187488 DOF. 
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Fig. 14. Efficiency of MPI and PVM implementations for cluster with 2 and 4 processing units. 

 

These results indicate better numerical performance of PVM version of the presented FETD 

algorithm. However, the configuration of the hardware seems to have significant influence on the 

performance of the parallel algorithm. 



7. Conclusion 

It appears from this review that the parallelization of standard solving methods, such as Conjugate 

Gradient method preconditioned with classical technique (SSOR, Incomplete Cholesly, …), has reached a 

sufficient maturity level. On the other hand, progress have to be made regarding the use of new methods, 

such as domain decomposition techniques or multigrid solvers.  These methods  may be used themselves 

as preconditioning techniques for Krylov subspace methods. Domain decomposition methods may be 

classified into overlapping and non-overlapping methods. Regarding the overlapping methods, additive 

Schwarz method is easy to parallelize, and it is well adapted to coarse grain parallelism. On the other 

hand, multiplicative Schwarz iteration is often better, but it appears more difficult to parallelize. Non 

overlapping domains involve Schur complement systems, and a good parallel efficiency may be obtained 

by introducing  Lagrange multipliers to enforce the continuity of boundary conditions. Multilevel 

methods can be included in the class of decomposition method. These methods are generally efficient 

when implemented on sequential computer, and only some parallel implementations have been reported 

yet. However more complex geometries and domains have to solved in order to obtain  more significant 

results. 

Like in many other disciplines, computational electromagnetics requires a computing power 

considerably higher than that offered by today’s conventional supercomputers, and parallel computing is 

destined to have a large influence in the next scientific developments.  
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