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Computing Methods of Hypersingular Integral
Applied to Eddy-Current Testing

Ph. Beltrame and N. Burais

Abstract—The detection of thin-opening cracks is an important
part of the eddy-current nondestructive testing (NDT). The inte-
gral formulation is well adapted for this modelization if the ge-
ometry of the tested piece is simple. However, some integrals in-
volved in the computation contain strong singularities. The aim of
this paper is to improve the classical numerical resolution using a
general computing method of hypersingular integral.

Index Terms—Eddy-current, hypersingular integral, modeliza-
tion, nondestructive testing.

I. INTRODUCTION

EDDY-CURRENT testing for the detection of cracks is
widely used in the inspection of aeroplanes wings or

of tubes in nuclear power plants. A driving coil generates a
time-varying field inducing eddy-current in a conducting piece
(Fig. 1). A flaw perturbs the eddy-current distribution and,
hence, the coil impedance . Numerical methods to solve
Maxwell’s equations are required to evaluate this perturbation.
The field computation is fully three–dimensional (3-D) and
reveals important variations of the electromagnetic field near
crack [1].

In order to tackle this problem, we consider the perturbation
problem: the difference between the unperturbed problem and
the full problem with crack. The flaw is the secondary current
source. A boundary integral method is used, thus only the flaw
domain has to be meshed. For simple geometries of the tested
piece (without crack), the elementary solution (dyadic Green
function) can be found out. An integral equation of the current
source is obtained (volume integral method). A common ap-
proximation is that crack width is neglected and that eddy-cur-
rent cannot flow through the flaw. So, the crack is equivalent
to a dipole current surface, which is solution of a Fredholm’s
equation with a hypersingular kernel [2]. Only piecewise con-
stant dipole densities are used [2], [3] because it is difficult to
accurately evaluate the hypersingular integral.

This paper is devoted to the numerical resolution of this inte-
gral equation. In Section II, we give a simple picture of hypersin-
gular integration and the main idea of regularization methods.
Section III presents two regularized formulas of hypersingular
integral for arbitrary shape functions, under existence require-
ments. In Section IV, constant, bilinear, and quadratic shape
functions are used and their effectiveness is compared.
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Fig. 1. Schematic configuration for the crack detection. Team Workshop
Problem 15.

II. FORMULATION

The integral equation of the dipole density is in a slightly
different form than in [2]

(1)

where is the incident current in the plate, is the propagation
constant of the tested piece, is the projection of on the
crack surface , , , is the
distance between and the image source ( does not vanish
except at the crack mouth), is the
tangential Laplacian, is the scalar
free-space Green function, and, finally, contains reflection
terms of Green function.

The second integral of (1) is regular, however, the first one
has a hypersingular kernel ( term). Let us denote the
limit on the observation point of the integral of the source
term. A fundamental step is the transformation of this limit into
an integral of the finite part of Hadamard ( ) sense

(2)

However, in generic case, a jump term [4] must be added to .
In our case, it vanishes (see the Appendix). The calculation of
such integrals is not easy and a Gauss quadratic scheme leads
to important numerical errors. In order to understand the speci-
ficity of this integration, we give a simple picture of the integra-
tion in the electrostatic case.

III. SIMPLE PICTURE OF INTEGRATION IN SOURCE REGION

The presence of singularity in the integral ensues from the
source kind. In the present case, the source is a surface cur-
rent dipole, i.e., two elementary currents in opposite directions.
Let us consider the electrostatic case. An elementary current is
equivalent to an electrostatic charges dipole with a pair of
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Fig. 2. Punctual electrostatic quadrupole.

Fig. 3. Polar coordinates, and the exclusion disk for the integration.

opposite charges at the ends of the current element. Then,
the current dipole is equivalent to a quadrupole (Fig. 2). The
quadrupole moment is given by: , where is the
electrostatic dipole moment: . Each charge and dipole
density diverges separately when and tend to zero, how-
ever, they vanish in the whole quadrupole. Indeed, the singular
surface density associated to the punctual quadrupole is [5]:

, where is the Dirac distribution. It can
be proved: , and , i.e., the total
charges and dipoles moments vanish.

In the finite part integration, charges and dipoles terms must
be regrouped together. After integration, they may vanish.

IV. REGULARIZATION METHODS

We assume that the dipole density verify the regularity re-
quirement described in [6]. This regularity property is required
by the nature of hypersingularity, no matter what method used.
It is practical to introduce polar coordinates center at
(Fig. 3). Two regularization methods are proposed.

A. Regularization of Second-Order

This method is based on the Guiggiani algorithm [6]. We used
the expression (12) proved in the Appendix

(3)

1) Isolating the Singularities: Let us write the series expan-
sion with respect to of the integrand of (3)

(4)

where

and , are bounded functions on and depend on and
, respectively. The terms in parentheses are weakly singular,

thus we can take the limit . We study the integrals

and where the integrands are first and second term of (4),
respectively.

2) Regrouping Terms Together:

(5)

We have , so the divergent dipole term vanishes

(6)

The first one diverges (charges term), however, vanishes with
the divergent term of (3). The second is called a free-term.

Finally, the integral can be expressed only using regular or
weakly singular integrals

(7)

B. Integration by Parts and First-Order Regularization

Integration by parts of a slightly modified form of (3) de-
creases the singularity

(8)

This integral is interpreted as the Cauchy principal value (CPV).
The same method as previous adapted to CPV gives the regu-
larized form

(9)

The curvilinear integral on the boundary is regular because
the point is not on .

C. Validation

In order to compute weakly singular integrals in (7) and (9),
polar transform is applied. Then, they are computed by
a Gaussian quadrature scheme.

The formulas (7) and (9) are validated for the particular case:
, , and is a circle of unit radius.

Analytically, and using (7) and (9) we find .

V. NUMERICAL SCHEMES

Equation (1) is solved by a collocation method. The varia-
tional formulation is longer because it requires a double surface
integration. The surface crack is discretized by a regular mesh
with rectangular elements. This regular mesh allows to decrease
the size of elementary matrix [2]. Let us introduce the global
numbering of nodes and the local numberings where
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Fig. 4. Analytical and numerical solutions of the dipole density on a crack for
a 2-D problem.

is the th element and is the local number of the node.
The relation between both numbering is . On
each element, the dipole density is interpolated by shape func-
tions : . So, the linear
system is obtained. The elements of the vectors are

, . The matrix elements are given
by the sum

(10)
If locates in (self-term), the finite part of Hadamard to
compute integral is used, else a Gaussian quadrature scheme is
applied. The matrix is full and self-term is preponderant on the
diagonal. Most elements far from the diagonal can be neglected,
particularly reflection terms. A term is neglected if

(11)

where is the self-term and is the number of nodes. This
criterion allows to decrease up to 70% CPU time of matrix con-
struct.

A. Zeroth-Order Scheme

There are piecewise constant functions. The collocation point
and the node are at the middle of the rectangle. This method was
already studied in [2] and [7]. The regularized formula proposed
in [7] is a particular case of (7).

B. First-Order Scheme

The shape functions are bilinear. The mesh elements have
four nodes at the corners. Because the gradient is not continuous
at the nodes, the collocation point is at the middle of the element.
(nonconforming element). Large oscillations of density arise
between two elements. To illustrate this, let us consider a 2-D
case of an infinite crack along and the low frequency limit
case (direct current). The dipole density on the crack is given
analytically [8]. Fig. 4 shows the numerical solution. Even if
values at collocation points are correct, the computation fails at
the nodes. In the 3-D case, similar oscillations arise.

Fig. 5. The geometry and parameters of the studied problem.

Fig. 6. TEAM Workshop Problem No. 15 validation. The modulus of
impedance change computation versus the coordinate of the coil axis.

This is a consequence of the lack of the jump term. In fact, the
self-term of first-order scheme is very close to the constant func-
tions one. Thus, the numerical scheme cannot correctly evaluate
the derivate of solution on each element.

The first-order scheme is not better than zeroth-order.

C. Second-Order Scheme

We consider nine nodes elements. The collocation point is
in the middle of the rectangle. At the other nodes, we add gra-
dient continuity requirements: two equations for corners and
one equation at the middle of the element edge. The system is
overdetermined, hence, it is solved in the least squares sense.

VI. RESULTS

As a numerical example, the TEAM Workshop Problem no
15 has been solved. The studied geometry is shown in Fig. 5.
The thickness of the crack is assumed to be 0, and we consider
the plate as a half-space conductor.

A. Validation

Fig. 6 shows impedance change for different coil posi-
tions for zeroth-order and second-order schemes for 20 10
and 10 5 elements, respectively. The relative difference is in-
ferior to 8%.

B. Effectiveness of the Methods

The influence of the mesh size (nodes number) on the
computation accuracy (Fig. 7) is studied. The difference be-
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Fig. 7. Impedance change for the coil position mm computed with
zero and second-order schemes versus nodes number.

Fig. 8. Eddy-current distribution (arrows) on the crack. The solid lines are the
demarcations between regions 1, 2, or 3.

tween the both schemes is of order 5%. The zeroth-order overes-
timates the impedance change. The main reason is that constant
shape functions do not vanish at the crack edges. Bowler [2] has
used a weight factor to minimize this effect. This problem does
not occur for second-order scheme. Another source of numerical
errors of zeroth-order scheme is that shape function derivates at
the collocation point vanish. Nevertheless, for the integra-
tion (contrary to classical integration) the derivates have an im-
portant influence on the result: 50% of the self-term for a square
element of length . This influence decreases with element
size. For constant functions at each collocation point, this in-
fluence is neglected, thus the solution is accurate only for fine
meshes.

The second-order scheme underestimates the experimental
result. A reason is that we have neglected the crack width. A
grid of 10 5 elements gives a good estimation: error inferior
to 2%.

C. Example of Eddy-Current Distribution

Electrical field is obtained by the gradient of . This gradient
is evaluated with formal derivation, so no numerical error is in-
troduced. Fig. 8 shows eddy-current distribution at the coil po-
sition 9.5 mm (impedance change maximum). In region 1,
eddy-current flows round left the crack: 14% of the incident cur-
rent. In region 2, eddy-current flows under the crack (49%). And
in region 3, eddy-current flows round right the crack (37%).

VII. CONCLUSION

A simple physical interpretation of hypersingular integral is
given. Two methods of regularization are described. These for-
mulas allow to accurately evaluate the finite part of Hadamard
for arbitrary shape functions, which have regularity require-
ments. A collocation method to solve integral equation is de-
veloped using constant, bilinear, and quadratic shape functions.
An oscillation problem arises for linear scheme. The quadratic
scheme is more effective than zeroth-order scheme.

APPENDIX

Krishnasamy et al. [4] shows the general relationship for
hyper singular integral

(12)

where . The second term added to the is the
jump term. The constant is defined by the limit

(13)

Let us show . In order to simplify the proof, we suppose
that the crack surface is plane. Integration by parts gives

(14)

The first integral is interpreted as the rest of CPV, thus, it tends
to zero with . The second one, for symmetry reason, is zero.
Then, . In analogous way, . In conclusion, the
jump term is null.
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