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Generalization of the Ideal Crack Model
in Eddy-Current Testing

Ph. Beltrame and N. Burais

Abstract—In the ideal crack model in eddy-current testing
frame, the field-flaw is equivalent to a current dipole layer on
its surface. This model has shown its efficiency, as well for the
computing accuracy, as for the CPU time. The goal of this paper
is to improve this model taking into account the inclination, the
conductance, and the low thickness of the crack.

Index Terms—Eddy-current testing, integral equations, mod-
elization, thin crack.

1. INTRODUCTION

HE THIN CRACK problem in eddy-current testing—i.e.,
the crack thickness e (Fig. 1) is small compared with its
other dimensions and to the skin depth 6—constitutes a major
difficulty for the simulation. It is commonly assumed that a sur-
face crack is “ideal”: being infinitesimally thin and allowing
no current to flow across it. Then, Bowler [1] showed that the
crack is equivalent to a current dipole surface of density p =
pn, where n is the crack normal (Fig. 1). A boundary integral
method is used because only the flaw domain has to be meshed.
The density is solution of an integral equation on the crack sur-
face. The variation of the coil impedance is directly obtained
from this density. Because of the hypersingular kernel of this
equation, a regularization method is required to solve it [2]. This
is applied to compute the density for a straight crack, i.e.,« = 0
(Fig. 1), using a collocation method with second-order shape
functions. The case of two straight parallel cracks in a tested
piece was treated in [3]. A particular interest was related to
the representation of the eddy-current distribution in the cracks
neighborhood which posed a problem of evaluation of quasisin-
gular integrals. This paper aims at generalizing the ideal crack
model to take into account others parameters: equivalent crack
conductance v, inclination « and low thickness e. The origi-
nality of this last one is to avoid a three-dimensional (3-D) mesh
for the crack by using the fact that the thickness is very thin.
Let us recall the relation between the perturbed electric cur-
rent density J, the unperturbed one Jy and the density p ob-
tained by [1]

I@) = Jo(r) = k2 / G(r',r)p(r)n(r)dS(r) (1)
S

where k is the propagation constant of the tested-piece, G is the
electric-electric Green tensor and r’ a point in the tested piece.
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Fig. 1. Schematic configuration for the crack detection.

Fig. 2. Schematic representation of the coil displacement on the tested piece.
If it is on the crack then the integral has to be interpreted as the
Finite Part of Hadamard, noted F'P.

Finally the simulations are based on the parameters of the
Team Workshop 15 [1], noted TW15 in the following, and we
will indicate only the eventually changes. The sensor can move
on the tested piece in the 6 direction (Fig. 2).

II. CRACK CONDUCTIVITY

A relative conductivity of a crack was studied by Villone and
Harfield [4] with two methods: finite element and integral equa-
tions. The formulation of the last one differs from our case and
is applied for the high frequency approximation.

A. Formulation

The closure of crack may ultimately produce electrical con-
tacts. In order to simulate the effects of current leakage across
crack, an equivalent conductivity o ¢ of the crack is introduced.
Then, the flow J.n crossing this surface is proportional to the
density p [4]. Then, from (1), we deduce

Jon(r) = w]@ — K2FP /E(r'./r).p(r)dS(r) )
S

where the relative conductance is introduced
50 f
e(oo —oy)
with og the conductivity of the tested piece.
With the collocation method described in [2], we have only
to add the constant - in the contributions of the shape functions
of the central node in the self-terms.

Y= (€)
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Fig. 3. Impedance change |AZ| vs the conductance 7.
B. Results

From the TW15, we have only changed the frequency and
introduce a relative conductance of the crack. Fig. 3 shows
the sensor response (impedance change) versus . Naturally
the impedance change is decreasing while the conductance
is increasing. For v < 6.1073 the difference between the
impedance change with a nonzero conductance v and the ideal
case is smaller than 1%. More the frequency increases, more
the sensor response falling gets sooner and faster: the response
is 10% decreasing for v = 0.2 when f = 4000 Hz and for
v = 1.5 when f = 500 Hz. We have compared the variations
of AZ between with or without conductance for a deplacement
of the coil in the direction § = 90° (Fig. 4). The shape of the
variations of modulus or the dephasage are similar between
both cases. We note that the dephasage is decreasing too if

7 # 0.

III. INCLINED CRACK
A. Equations

The equations deduced from (1) enable to compute the den-
sity p and the impedance change AZ for all inclinations .
However, we can notice that for the equation giving p, it is better
to write the singular part of the integrand in the local basis of the
crack (n, tq, t2) (Fig. 1), so it has exactly the same regulariza-
tion expression than the one presented in [2] for a straight crack
(a = 0). Indeed, the singular kernel of the Green tensor is the
one of an infinite piece in all directions and so it does not de-
pend on the crack position.

The difficulty is for the eddy-current J representation at the
crack surface. If the crack is straight, then eddy-current on the
crack is the gradient of the density p. On the other hand, if the
crack is inclined of an angle «, it is necessary to take into ac-
count the reflexion terms G g [5]

J¢ (ro) = Jmi(ro)_%atier / t;.Gr(ro,r).p(r)dS(r) (4)
S

where r¢ is a point of the crack surface, the index ;, designates
projection with respect the direction t;, J;, in the differentiation
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in this last direction, and € = %1 is the positive or negative face
of the crack.

B. Results

For the simulations, the crack has the inclination « and at
the depth d = 0 or d = §. We have chosen three different di-
rections for the displacement of the coil § = 0°, 45°, 90°. The
AZ amplitude decreases when the crack inclination « increases
(Fig. 5). This relative decrease is more stressed when 6 is in-
creasing in the range [0° ... 90°]. The impedance change mod-
ulus during a coil displacement is more important when the coil
is located on the side of the crack inclination. The dephasage
varies a lot when the coil center is in the neighborhood of the
crack (the last signature curve). For § = 45° and 90°, then the
AZ modulus decreases suddenly, whereas for # = 0° the max-
imum is reached when the center coil is at the origin. Then, this
last direction is the least efficient. The most efficient direction
is obtained for 6 = 90°.

IV. THIN THICKNESS MODEL
A. Motivation

The previous computing in the ideal crack model frame with
second-order elements [2] and improving with special elements
[6] shows that the impedance change differs from the experi-
ment from some percents. This small difference could be ex-
plained by the fact: the real crack has a nonzero thickness and
the ideal crack model neglects the influence of this last one. The
volume integral method (VIM) overcomes this problem [7], but
the mesh is 3-D and the unknown is a density current vector
with three components, instead a scalar unknown on a two-di-
mensional mesh in the ideal crack case. So the VIM requires
more memory and CPU time. In fact, this model does not use
the hypothesis of a thin crack.

The main idea of the thin thickness model is to deduce the
impedance change, AZ(e), of a crack with the thickness e from
the impedance change A Z of the ideal one, adding a correcting
term in the case ¢ < 1. More precisely, we search the first-order
approximation of the function AZ(e)

AZ(e) = AZy+ e. K 5)

where K is a constant to determine.
Yet, let us recall the expression of the impedance change in
the generic case [§]

AZ(e) = /Jo.n[v]dS—}—jw/Jo.AdT 6)
s v

where A is the magnetic vector potential with Coulomb gauge
and v: the electric potential. This last one is discontinuous
through the crack and the jump [v] is related to the density p
density: p = (09— of)[v]. The first integral on the crack surface
S corresponds to the electric perturbation (deviation of the
electric field lines) and the second one is the magnetic energy
change in the crack volume V. Naturally, in the ideal crack
model the crack volume tends to zero and this contribution
vanishes. In the thin thickness model, this last one is taken into
account.
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Fig. 4. Variations of the module (a) and dephasage (b) of the impedance change vs a sensor deplacement with or without a crack conductivity.
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Fig. 5. Signatures for three different directions of coil displacements. (a) § = 0°,d = 0;(b) 8 = 0°,d = 6;(c) 8§ = 45°,d = 0;and (d) § = 90°,d = 0.

Because of the variations of the potentials A and V' versus
the thickness e are small and the potential vector is continuous
through the crack [5], we assume the following approximations:

1) the potential values of the potentials A and V' in the inte-
grals are those computed in the ideal crack case;

2)

Then,

the potential A is constant in the volume crack with re-
spect to the normal n.
(6) is written as

s
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Fig. 6. Convergence with the thin thick model (solid line) and the ideal crack
model (dashed lines) for the coil position (x, y) = (9 mm, 0 mm).

B. Computing of the Constant K

The main difficulty is to find the potential vector A at the
crack surface S, in the Appendix we prove that the potential is
given by

___p(ro) 9*Gy(r,ro)
An(rg)= —n 5 +FP/p(r) IO dS, (8)
s

Ati(ro) = | Bol(ro) + /ER(nro)(p(r)n)ds,, t
5

" 9%
~ [ o) 5 o). ©
S

The constant K is obtained by the integration on the surface
crack of the integrand Jo.A. The integrand is evaluated at the
nodes of the mesh and assuming that the integrand is quadratic
on each element, the integration is easily deduced. Let us notice
that the integrand cannot be evaluted at the crack edges because
the regularization fails in this case (the gradient of p is infinite).

C. Validation

In order to validate this model, the TW 15 problem is solved.
The computation of the ideal crack was improved by using spe-
cial elements at the crack edges. When the thickness is taken into
account, the theoretical value differs from less than 1% from the
experiment while in the case of the ideal crack it was about 2.5%
with special elements (Fig. 6). We have shown in [5] that the
thickness influence depends strongly on the ratio e/6. So, the
thin thickness model permits to perform the impedance change
computing when ¢/§ < 10%

V. CONCLUSION

The ideal crack model was improved by introducing the for-
mualtions for three parameters: v, «, and e. The study of the in-
fluence of these parameters allows determining their relevance
in the inverse problem. The thin thickness model is relevant for
e/6 < 10% and the main advantage to a direct method, such
the VIM, is that we have to add a correcting term after the pro-
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cessing. Furthermore, with these formulations, it will not be dif-
ficult to introduce a variable conductance and thickness.

APPENDIX
EXPRESSION OF A ON THE CRACK SURFACE

In the (A, V) formulation frame with the Coulomb gauge, the
electric field on the crack surfaces ¢ = +1 is decomposed into
two parts

E€ = jwogA® — Vv©. (10)
We can prove that the electric scalar potential v is solution of
the problem [5]

—Av =0 in tested piece without crack (11D

7]
a—v =0 on tested piece boundaries (12)

n
[v] = P on s (13)
opg—O0f
7]
{aﬂ =0 on S. (14)
The solution of this problem is well-known
0
V(') = / o) 9 (Ve Gy(r, ') dS, (15)
o—of0n,

where GG, is the elementary solution of the Poisson equation
in the tested piece domain with Neumann boundaries. When 7’/
tends to a point on S, then the last equation is interpreted as the
finite part of Hadamard. Then for the component n we obtain
the (8). For the tangential components, we obtain

) . 0’G,
JwAy = Ji, - GFP/P(I‘)M
5

The dependence of the crack side e is not real because the poten-
tial A is continuous through the crack. In fact, the singular part
of the integral is (¢/2)0y,p, i.e., exactly the one of G, because
the strong singularity comes from the electrostatic part of Green
functions [2]. Using (4), the discontinuities vanish and we ob-
tain (9), where gp is the reflexion terms of the Green function
G,.

ds(r).  (16)
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