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Abstract

This paper is devoted to the analysis of a second order method for recovering the a priori un-
known shape of an inclusion w inside a body  from boundary measurement. This inverse problem
- known as electrical impedance tomography - has many important practical applications and hence
has focussed much attention during the last years. However, to our best knowledge, no work has yet
considered a second order approach for this problem. This paper aims to fill that void: we investigate
the existence of second order derivative of the state u with respect to perturbations of the shape of
the interface dw, then we choose a cost function in order to recover the geometry of dw and derive
the expression of the derivatives needed to implement the corresponding Newton method. We then
investigate the stability of the process and explain why this inverse problem is severely ill-posed by
proving the compactness of the Hessian at the global minimizer.

Keywords: inverse problems, identification of inhomogenities, shape calculus, order two methods.

1 Introduction and statement of the results.

Let © be a bounded open set with smooth boundary in R? or R3. Consider a L™ function ¢ such
that there exists a real ¢ with o(z) > ¢ > 0. Consider the elliptic equation

—div (o(z)Vu) =0 in Q, (1)
with the Dirichlet boundary condition
u = f on Of. (2)
Define the Dirichlet-to-Neumann map as
Ao [0 (0nu)pq

where u solves (ﬂ),(ﬁ) and n is the outer unit normal vector to 9f2. The inverse conductivity problem
of Calderdn is to determine o from A,. Electrical impedance tomography aims to form an image
of the conductivity distribution ¢ from the knowledge of A,. When ¢ is smooth enough, one can
reconstruct o from A, (see the works of Sylvester and Uhlmann [R1], Nachmann [, [Ld] and Novikov
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[IL7]). When the conductivity distribution is only L>°, Astala and Péivirinta have recently shown in
[ that, in dimension two, the map A, determines o € L>(Q).

We are interested in a particular case of that problem: when a body is inserted inside a given
object with a distinct conductivity, the question of determining its shape from boundary measurement
arises in many fields of modern technology. In the context of the inverse problem of conductivity
of Calderdn, we restrict the range of admissible conductivity distributions to the family of piecewise
constant functions which take only two distinct values 01,02 > 0 which are assumed to be known.
The conductivity distribution is then defined by an open subset w as

0= 01X0\w T T2Xw- (3)

Here, the only unknown of the problem is w a subdomain of 2 with a smooth boundary dw; its outer
unit normal vector is denoted by n. The notation y., (respectively. xo\.) denotes the characteristic
function of w (respectively.  \ w). The second main difference arises from practical considerations:
it is unrealistic from the point of view of applications to know the full graph of Dirichlet-to-Neumann.
Therefore, we will assume that one has access to a single point in that graph. This non destructive
testing problem is usually written from a numerical point of view as the minimization of a cost
function: typically a least-square matching criterion. Many authors have investigated the steepest
descent method for this problem [IE, , E, B, m] with the methods of shape optimization since the
unknown parameter is a geometrical domain.

This work is devoted to the study of second order methods for this problem that has only be
considered before for simplified models in [E, E] By introducing second order methods, one aims to
reach two distinct objectives.

e On one hand, we provide all the needed material to design a Newton algorithm. We will give
differentiability results for the state function and for the objective that we have chosen to study
in this work. Nevertheless, we point out that the discretization of a Newton method for this
problem turns out to be very delicate; this is why, in the present paper, we will neither discuss
about this problem nor present numerical examples. This topic is actually the main objective
of a work in progress.

e On the other hand, we analyze rigorously the well-posedness of the optimization method. This is
justified by the huge numerical literature devoted to the numerical study of this question in the
field of inverse problems; the numerical experiments insist on the ill-posedness of this problem.
We will explain the instability in the continuous settings in terms of shape optimization. We
show that the shape Hessian is not coercive -in fact its Riesz operator is compact — and this
explains the unstability of the minimization process.

Let us describe the precise problem under consideration and the notations. We consider a bounded
domain Q C R? (d = 2 or 3) with a C2 boundary. It is filled with a material whose conductivity is o
and with an unknown inclusion w in  of conductivity oo # o1. We search to reconstruct the shape
of w by measuring on 92, the input voltage and the corresponding output current. In the sequel, we
fix dy > 0 and consider inclusions w such that w CC Qq, = {z € w, d(z,0Q) > dp}. We also assume
that the boundary dw is of class C*®. The inverse problem arises when one has access to the normal
vector derivative of the potential u that solves ([l)-(H) when the conductivity distribution is defined
by () . Assume that ones knows

010nu = g on 02, (4)

then the problem ([)-()-({@) is overdetermined. The electrical impedance tomography problem we
consider is to recover the shape of w from the knowledge of the single Cauchy pair (f,g).

In order to recover the shape of the inclusion w, an usual strategy is to minimize a cost function.
Many choices are possible; however it turns out that a Kohn and Vogelius type objective leads to a
minimization problem with nicer properties than the least squares fitting approaches (we refer to [E[]



for a comparison of different objectives with order one methods and to [E] for the case of a perfectly
insulated inclusion). Therefore, we study such a cost function in this work.

Let us define this criterion. Its distinctive feature is to involve two state functions ug and u,,: the
state ug solves ([[)-(f) while u,, solves ([])-(f]). The Kohn -Vogelius objective Jxy is then defined as:

Tiev(w) = /Qa|v<udfun>|2 (5)

Let us sum up the results of this paper concerning the minimization of this objective. We first prove
differentiability results for the state uq. In the sequel, we use the convention that a bold character
denotes a vector. If h denotes a deformation field, it can be written as h = h,; + h,n on dw. Note
also that in the following lines, n denotes the outer normal field to dw pointing into 2\ @. Hence, for
T € Ow, we define, when the limit exists, u™(x) (resp. (9,u)*(z)) as the limit of u(z + tn(z)) (resp.
(Vu(x £ tn(z),n(z))) when ¢ > 0 tends to 0. Note that h, is a vector while h,, is a scalar quantity.

The admissible deformation fields have to preserve 9) and the regularity of the boundaries:
therefore the space of admissible fields is

H = {h e (R R?), Supp(h) C Qu,}.

The following result concerns the first order derivative of the state functions ug and wu,. It was
derived in [ﬂ, @, E[]

Theorem 1 Let §2 be an open smooth subset of R (d =2 or 3) and let w be an element of Qq, with
a boundary of class C**. Then the state functions uq and u, are shape differentiable; furthermore
their shape derivative u!, and ul, belongs to H'(Q\ w) UH!(w) and satisfy

Aul, = 0inQ\w and in w,
[u’] = h @811_ on Ow
d gy ntd ) (6)
[Uanuil] = J|o]div; (h,Vrug) on Ow,
u; = 0 ondQ.
Aul, = 0inQ\© and in w,
[u’ ] = h @ u> on Ow
n n o1 ny ) (7)
[U@nuil] = |o]div; (h,Vruy) on Ow,
dul, = 0 on ON.

The main result of this work concerns the second order derivative. It is given is the following theorem.

Theorem 2 Let Q2 be an open smooth subset of R? (d = 2 or 3) and let w be an element of Qq,
with a C* boundary. Let hy and hy be two deformation fields in H. Then the state ug has a second
order shape derivative ul; € HY(Q\ @) UH(w) that solves

>

<
I

I

0 in Q\@ and in w,
(h1nh2nH —hy,.(Dnhg,)) [Onud) — (h1,[0n(ua)s] + hapn[0n(ua)i])
+ (th.thﬁn + hzT.Vhlyn) [Onud] on dw,
[00u!] = div, (h% [0V ()] + him [0V (ua)b] + hy,.(Dn h2T)[aVTud]) 8)
— diV.,- ((hl,r.v-,—th + V‘,—hlﬁn.hg.,.) [O’V.r’u,d])
+ div, (hgﬁnhlyn(QDn —HI) [JVTud]) on Jw,
uj = 0 on 0.
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Here, (ug4)}; denotes the first order derivative of u in the direction of h; as given in (f]), Dn stands for
the second fundamental form of the manifold dw and H stands for the mean curvature of dw. The
twin result concerning u,, is an easy adaption of Theorem E Once the differentiability of the state
function has been established, one can consider the objectives. In [ﬂ], we have shown the first order
result.

Theorem 3 Let ) be an open smooth subset of R? (d = 2 or 3) and let w be an element of Qq,
with a C* boundary. Let hy and hy be two deformation fields in H. The Kohn-Vogelius objective is
differentiable with respect to the shape and its derivative in the direction of a deformation field h is
given by:

DJgv(w)h = [U]/

g
i [U—;(wnudﬂ? — 10at2) + [V rual® = [Vt | B (9)

We now give the second-order derivative of the Kohn and Vogelius criterion.

Theorem 4 Let Q) be an open smooth subset of RY (d =2 or 3) and w be an element of Q4, with a
C* boundary. Let hy and hy be two deformation fields in H. The Kohn-Vogelius objective is twice
differentiable with respect to the shape and its second derivative in the directions hy and hs is given

by:

D% ey ()b, he) = [

{O—Wzﬂ (h1,.V(han) + ha,.Vr(h1s) — ha,.(Dnhy,))
Ow

7/ On ([omﬂ) Mnhzn +2[0V0. (b0 V) + han V05|
Ow

(10)

[ |7 (Ontun)ieh + Ol — O (v~ Ol
ow

+ 2/&) v [Uan(un)/f,z} — 01007 {(Ud)/fg}

where we have set v = ug — U,

To investigate the properties of stability of this cost function, we are led to consider an admissible
inclusion w* to solve both ([])-(f) and ([[)-(f]) in order to obtain the corresponding measurements f*
and g*. It is obvious that the domain w* realizes the absolute minimum of the criterion Jxv since,
by construction, we can write ug = u, in Q and hence Jgy (w*) = 0. We will check that the Euler
equation

DJKv(w*)(h) = 0,
holds. We will also prove that

D?Jxy(w*)(h,h) = / a|Vo'|2. (11)
Q

Moreover, if h, # 0, then D?Jgy (w*)(h,h) > 0 holds. Nevertheless, ([L1]) does not mean that the

minimization problem is well-posed. In fact, it is the following theorem that explains the instability

of standard minimization algorithms.

Theorem 5 Assume that w* is a critical shape of Jiv for which the additional condition u, = ug
holds. Then the Riesz operator corresponding to D> Jgy (w*) defined from HY?(dw*) with values in
H_1/2(8w*) is compact. Moreover, the minimization problem is severely ill-posed in the following
sense: if the target domain is C* and if A, denotes the n'" eigenvalue of D*Jxy (w*), then A, =
o(n=*) for all s > 0.



Theorem ﬂ has two main consequences. First, the shape Hessian at the global minimizer is
not coercive. This means that this minimizer may not be a local strict minimum of the criterion.
Moreover, the criterion provides no control of the distance between the parameter w and the target
w*. The second consequence concerns any numerical scheme used to obtain this optimal domain w*.
One has to face this difficulty and this explains why frozen Newton or Levenberg-Marquard schemes
have been used to solve numerically this problem [ﬂ, .

The paper is organized as follows. In a first section, we state some preliminary results. Some are
well known facts in shape optimization and will be recalled without proof for the sake of readability.
Some of them (e.g the derivatives of a Laplace-Beltrami operator and the tangential regularity of the
solution to (El)-() along the discontinuity of the conductivity distribution) are less known and will
be proved thanks to potential layer methods. Hence we will tackle the computations in Section H
that we consider as the core of this work : it is essentially devoted to prove Theorem E After a first
part where we prove the existence of a second order derivative for the state, we propose two distinct
methods to find the boundary value problem solved by this second order derivative. The first method
(subsection @) follows the lines of classical proofs of shape differentiability by differentiating the
weak formulation of problem )—() and interpreting the result in terms of differential operator and
boundary conditions. The alternative method (subsection @) consists in a direct differentiation of
the boundary conditions. Finally, Section @ is devoted to the analysis of the criterion, we establish
TheoremH and Theorem E We will present their consequences on the stability of critical shapes.

2 Preliminary results.

2.1 Elements of shape calculus

Before entering the proof of Theorem E, we recall without proof some basic facts from shape opti-
mization (see [{]] for references). Let h be a deformation field in C2(Q, R?) with ||hfc2 < 1. We set
T:(h,.) = Id 4 th and denote by € the transported domain Q; = T;(2). To avoid heavy notations,
we will misuse the notation T} instead of Ty (h,.).

Material and shape derivatives. Classically, in mechanics of continuous media, the material
derivative is defined as being a positive limit. In our context, for any vector field h € H, we define
the material derivative of the domain functional y = y(€2) at Q in an admissible direction h as the

limit
Q T — y(QQ
(9 h) }i y( ¢) o Ty y( )

—0 t ’

(12)

Similarly, one can define the material derivative (92, h) for any domain functional y = y(99) which
depends on 9. Another kind of derivative occurs : it is called the shape derivative of y(£2,h). It is
viewed as a first local variation. Its definition is given by the following

Definition 1 The shape derivative y' = y'(Q;h) of a functional y(Q) at Q in the direction of a
vector field h is given by
y' =5 — h.Vy. (13)

For more details on these derivations, the reader can consult [0, ff.

Elements of tangential derivatives. We will need in the sequel to manipulate the tangential
differential operators on a manifold. For the reader’s convenience, we recall from [@, ﬂ] some definitions
and also some useful rules of calculus.

Definition 2 The tangential divergence of a vector field V.€ C1(R? R?) is given by

div, (V) = div (V) — DV.n.n, (14)



where the notation DV denotes the Jacobian matriz of V. When the vector V. € C*(9,RY) is
defined on OS2, then the following notation is used to define the tangential divergence

div, (V) = div (V) — (DV.n)m, (15)

where V stands for an arbitrary C' extension of V on an open neighborhood of 9.

We introduce now, the notion of tangential gradient V. of any smooth scalar function f in
CH(0%, RY).

Definition 3 Let an element f € CH(0Q,RY) be given and let f be an extension of f in the sense
that f € C*(U) and flog = f and where U is an open neighborhood of Q. Then the following
notation is used to defined the tangential gradient

V.f =Vflaa—Vfnn on o (16)

The details for the existence of such an extension can be found in [E] Let us remark that these
definitions do not depend on the choice of the extension. Furthermore, one can show the important
relation
/ VfF =— f div, (F), (17)
iy} iy}
for all elements f € C*(952) and all vector fields I € C'(9Q, R?) satisfying F,, = (F,n) = 0.
Integration by parts on 0f). In general, the condition above F;, = 0 is not always satisfied.
We are then led to find another formula to extend the formula in the general case. The extension of
this integration by parts formula to fields with a normal vector component involves curvature.
First, we point out that the curvature is connected to the normal vector via the tangential
divergence operator. Recall that the mean curvature of 92 is defined as H = div,(n). Making use
of the form of div,(n) on the boundary, one shows straightforwardly the following statement.

Proposition 1 Let Q be an open subset of R with a C? boundary. For any unitary extension N of
n on a neighborhood of 0S), one has

div(N) = H on 0.

Assume that the manifold OQ has no borders. If F € H2(0Q)? and f € H?(0R), then we have

ViF+ fdiv, (F) = / (Vfn+ Hf)F.n. (18)

[219] o0

We assume now that the domain €2 has a C? boundary. The simplest second-order derivative is the
Laplace Beltrami operator; it is defined as follows (see [@, @, E]) thanks to the following usual chain
rule.

Definition 4 Let f € H2(99)). The Laplace-Beltrami A, of f is defined as follows

AL f =div, (V. f). (19)
There is a relation connecting the Laplace operator and the Laplace-Beltrami operator. Let us denote
by 82, f = (D?f.n).n where D?f stands for the Hessian of f.

Proposition 2 Let Q be a domain with a boundary 0 of class C3. For all functions f € H3(Q), it
holds
Af=A.f+Honf +02,f, ondQ. (20)



We need to compute shape and material derivative of special vector fields: the outer unit normal
vector n, the tangential gradient and the Laplace-Beltrami operator applied to a function. While the
derivative of the normal vector is obtained by a straightforward calculus, we have to transport from
0 to 0N the Laplace-Beltrami operator and the tangential gradient in order to compute the other
derivatives.

Derivatives of the normal vector. We describe the material and shape derivatives of the normal
vector. We will denote by n the gradient of the signed distance to 0€2. This is an unitary extension
of the unitary normal vector n at 92 which is smooth in the vicinity of 9€2. This extension furnishes
a symmetric Jacobian Dn that satisfies Dnn = 0 on 0€2. The direction h will be supposed to be in
C%(R?, R?) or in C2(09, RY).

Proposition 3 The material derivative n of the normal vector n at Q in the direction of a vector
field h € C*(R4,RY) is given by
n=-V,;(hn)+ Dnh,,

where h, =h —h.n n.

Concerning its shape derivative defined as n’ = (9;n¢)|:—¢ where n; is any smooth unitary extension
of n to 0, we obtain.

Proposition 4 The shape boundary n' in the direction of h is given by
n' = -V, (h.n).
Derivative of the tangential gradient. For f € H3(0)), we compute the material derivative of

V., f. We first compute the difference V, f — Vf.
Proposition 5 For all functions f € C*(R3) and directions h € C?(9§2,R3), one has
V.f=Vf+(D*fh), —Vfnn—Vfian
Proof of Proposition E We differentiate V f and V f.n n and obtain
Vf=Vf +D*fh
while

Vf..nn:Vf.r'l n+Vfnn+Vfnn+ (D?fh).nn.

The two former equations give the desired result. |

Deriwative of the Laplace-Beltrami operator. Now, we want to compute the material derivative
A, f. We begin to study how to transport the Laplace-Beltrami operator when one works on 0.
Let A, ; denote the Laplace-Beltrami operator on the manifold 0€;. To compute the derivative of a
Laplace-Beltrami operator, we need the following proposition that we quote from [@]

Proposition 6 Let f € H/2(R%), then

[ l@unerivole ==

C(t) (V(foTt) — (B(t) n).V(foTt)) Vo, Vo € D(R?).

(21)



In the former proposition, we set

’}/(t) = detDTt,
() = AOIDT ) bl
By = DUCXDRT 2
(DT, )" 5.
Ct) = = ODITH)DT)HT.
A straightforward computation gives
7'(0) divr (h),
v (0) = div, (h) = d1 - (h )Jthn, (23)
B'(0) 2(Dhn).n (Dh+(Dh) ),
C’'(0) div, (h) I (Dh+(Dh) ).

Theorem 6 Let f € D(R?). The material derivative of A, f in the direction h is given by

A F = A f4V, £, [div, (hy)] + YV, (Hh,).V, f — div, (((Dh + (Dh)T) v, f) ) (24)

Proof of Theorem f| : Formula (P4) is shown in a weak sense. For each test function ¢ € C*°(99),
there exists an extension gb € D(R?) such that 8n¢ = 0; this can be done by extending ¢ as a constant
along the orbits of the gradient of the signed distance functlon to 02 and the use of a cut-off function.

For f € D(R?), we set
B (Arif)oTy — AL f
At) = /6(2 ; Y- (t) @.

After an integration by parts on 0f), we obtain:

1— . (t .
A(t) = /a Q&(Amﬁonm / %((Af,tﬁoﬂw%w.ws),

t o0

-/ L0 oo
[o19)

* / % ([V+f = COV (foT)] Vo + [(BOmV(f o T)] () n.¥3)
o

Since dn¢ = 0 and C(0) = I, we get

A(t)/mli%(t)(Aﬂtf)oTt(bJr/ M'VT&+/QQ MV(fOTt)-VTJ)-

t 89 t
When t — 0, it then comes

o570

= [ 08 f0+ 9550+ (C0F) Vro,
o0

/8 ) (Arf = div, (0) Arf) ¢+ (Dh+ (Dh)T — div, (h) 1) V£.V-9,

“Js

Expanding the double divergence term, we obtain:

0.

A, f —div, (h) A, f + div, (div, (h) V. f) — div, <((Dh + (Dh)T) v f) )

A=A f+ V. f.V,div, (h) - div, (((Dh + (Dh)T) Vf) ) :

8



In order to explicit these derivatives, we let appear the curvatures of 02 by means of
V. f.V.div, (h) = V. £V, [div; (h.) + Hh,]
and this ends the proof of the theorem (R4). [ |

3 Existence of the second order derivative of the state. Proof
of Theorem [2.

The section is devoted to prove Theorem E We follow the usual strategy to derive existence in shape
optimization. In section @, we will write the weak formulation of the problem, then transport it on
the reference domain, pass to the limit and obtain existence of the material derivative. In a second
time, we will seek a boundary value problem solved by the material derivative. This will provide
a characterization of the second order shape derivative. Two strategies, that we will detail, are
possible: the first one explored in section consists in working on the variational formulation while
the second one uses the tangential differential calculus by differentiating the boundary conditions.
This last approach will be presented in section @ The computations that will be made in subsections

and @ require some regularity of the traces of the state ug on the interface of discontinuity dw.
For the sake of readability, we postponed in subsection @ all the needed justifications.

3.1 Preliminary results.

In the sequel, we will use some technical formulae. To preserve the readability of the proof of the
main result, we state them in this paragraph. The tools needed for proving these results can be found
in [E] Given a smooth vector field h, we denote

Ap = Dh + Dh” —div (h) I
We begin with the following formula.
Lemma 1 It holds:
Vu.AyVv = V(h.Vu).Vv + V(h.Vv)Vu — div ((Vu.Vo)h) . (25)
Given two smooth vector fields h; and hs, we set
A = DhyAp, + Ap, Dhy” — Ay, div (hs) — (Ap, ) (hs), (26)

and
b= (hy.Vu)An, Vo + (he.Vv)Ap, Vu — ((An, Vu).Vo)hs.

Here, the notation (Ap, ) (hs) stands for the matrix defined by its elements

((An,) (h2))ky = V(((Any) k1) -ho

Lemma 2 One has:
Vu2AVv = div (b) — (he.Vu)div ((An, Vv)) — (h2.Vo)div ((An, Vu)) . (27)
We need the following crucial result

Lemma 3 If u is harmonic then

div (An, Vu) = A(hy.Vu). (28)



Proof of Lemma B For any harmonic function « in Q and for every test function ¢ € D(Q), we

can write
/ ViV = / ApnVuVe
Q Q
then
/ Au ¢ = [ div(AnVu) ¢
Q Q
Since © = v’ + h.Vu and since v’ is harmonic in €2, we obtain the result. |

3.2 Proof of existence of the second order derivative.

We follow Hettlich and Rundell [§] and Simon [[IJ] to define the second order derivative of an op-
erator with respect to a domain. We compute the second derivative by considering two admissible
deformations hy, hy € H that will describe the small variations of dw. Simon shows that the second
derivative F”(Ow;hy,hy) of F(dw) is defined as a bounded bilinear operator satisfying

!
F"(8w;hy, hy) = (F’(aw; hl)) hy — F'(dw; Dhy hy) (29)

For more details, the reader can consult the appendix in page 613 of E]

Let us begin the proof. Let hi,hy € H be two vector fields. The direction h; being fixed, we
consider ; n, the variation of u; with respect to the direction hy. We recall from [ that the material
derivative vy of u in the direction h; satisfies

Yo € H} (), /

Jvul.Vv:/JVu.AhIVv.
Q Q

Let ¢ : Q — Q be the diffeomorphism defined by ¢o(x) = 2 +hy(x) and we set 1o = ¢5 . Setting
Why = {x +ho(z), z € w}, Qp, = {x +ho(x), z € Q} = Q and oy, = 7 0 ¢, we get

/ O’h2V’l:LLh2.V’U :/ O’h2vuh2.Ah1V’U (30)
Qny Qn,

where up, is the solution of the original problem with wy, instead of w. Making the change of
variables © = ¢2(X), we get the integral identity on the fixed domain (2 :

/Q oV by (D¢2(D¢2)Tdet(p¢2)) Vo = /

Vi, (Dwzixz(szg)T det(qug)) Vo o (31)
Q

with the notations & = u o ¢9 and ;1;/1 = Ap, o ¢o. Since the material derivative 7 of u with respect

to the direction h; satisfies
/ oVi,1.Vo = / oVu.Ap, Vo,
Q Q

the difference of (B() and (B1) gives
/Qav(al,m - al).vu - /Qavﬁl,hr (I — Do (Difo)T det(D¢2)) Vo
+/ oVip,. (D’lpg;{;:(D’t/]g)T det(Dgo) — Ahl) Vv + / (Vip, — Vu).Ap, Vo.
Q Q

We quote from [[1J] and [{] the following asymptotic formulae

I = div (hi) [l = O(|IhsZ2),
IDYi(Dyi)" det(Dei) — I + An, [l = O(|IhsZ2),

| Dt Ap, (Dt2)T det(Dea) — An, + DhaAp, + Ap, (Dho)T — div (ha) An, — (An,) (h2)]lec = O(|[h2|%:).

10



Making the adequate substitutions, we easily check that the material derivative of u; with respect
to hy exists. This derivative, denoted by i1, satisfies

/ oVii.Vu dx = / o [Vﬁl.Ah2Vv + Vig.An, Vo — Vu.%le} . (32)
Q Q

where 2 is defined in (£4).

3.3 Derivation of (§) from the weak formulation.

We want to make explicit the problem solved by (u’)’. To achieve this, we should write the right
hand side

F= / 0 [Vii1.An, Vo + Viig. Ap, Vo — Vu2AV]
Q

as the sum of an integral with Vv in factor and an integral of a divergence to identify the jump
conditions on Ow. To that end, we will use algebraic identities that involve second order derivatives
of u,u; and of the test function v € D(Q). Using Lemma EI, we obtain:

/ oViy.An, Vv = / o [V(hg.vul).Vv + V(hy.Vv)Viy — div ((Vig.Vo)hs) ] ,
Q Q

/ O'V’l:LQ.Ahl Vv = / g |:V(h1V’U,2)V’U + V(h1Vv)Vu2 —div ((VUQVU)hl) :| .
Q Q

Concerning the remaining terms, we use Lemma P to get

/QaVu.QlVU = /Qa div ((hQ.Vu)Ah1Vv + (he.Vv)Ap, Vu — (Ah1Vu.Vv)h2)
-0 [(hg.Vu)div (An, Vv) + (hy.Vo)div (Ap, Vu) } .
We apply Lemmaﬂ and gather the expressions obtained for F'.
F= /Qa [v (1. Vit + ho. Vi) .V + V(he.Vo).Viig + V(hl.Vv).Vﬁg}
+ /Q o div ((An, Vu.Vv — Vi Vo)hy — (Vig.Vo)hy) (33)

+ / o {(hg.Vv)A(hl.Vu) —div ((h2.Vv)Ap, Vu) — V(hg.Vu).AhIVv] .
Q

Using (@), we remove the dependency on Ay, Vo:
V(h2.Vu).Ap, Vv = V(h1.V(h2.Vu)).Vo + V(h;.Vv)V(hy.Vu) — div ((V(hz.Vu).Vo)hy) .

Therefore, we write F' = F; + F> where
F1 = / g |:v (h1VU2 + hQVul) - V(h1V(h2Vu)) .V’U, (34)
Q
FQ = / g |:V(h1V’U>V(’U,2 — hQVU) + V(hQVv)Vul + (h2VU)A(h1VU)
Q

+/ o div ((Ah1 Vu.Vv — Vig.Vo)hs 4+ (V(he.Vu).Vv — Vie. Vo) hy — (hy.Vv)Ap, Vu) )
Q

11



The connection between second order material and shape derivatives is given by:
Uy = (u'l)'Q +h;.Vig +hy. Vi, — hl.V(hg.Vu),

incorporating this expression in (B4), we rewrite (BJ) as:

Vv € H} (), / oV (u})s. Vv = Fy. (35)
Q

Testing it against v € D(Q \ dw), we get A(uf);, = 0in O\ @ and in w. We now deduce the jump
conditions for (u})5. To obtain the jump of the potential, we simply write that i; € H{(£2), hence
[ii1] = 0 on Ow and then

[(ul) ] h1 VUQ hQ.Vﬂl.

To express the jump of the flux, we then apply the Gauss formula in (@) to get
- / (00 ()]0 = . (36)
ow
The second term Fy contains all the jumps of the flux on the interface dw.
A simplified expression of F;. To get a simplified formula for F» under a boundary integral,

some lengthy but straightforward calculations are needed. We summarize the result by means of the
following lemma

Lemma 4 One has:

= / div, (2h2 nh1nDn oV u] — he yn.Vhy , [0V u] + ha phi.Dnn [O’VTU]) v

—|—/ div; (h1,.V;(hon) [0V u] = hinho o H [0V u]) v (37)
o

w

/6 ) <d1vT (h2 w |0V ulD + div, (hl,n [w%})) v,

Proof of lemma  First, write :

/ oV (h1.Vv).V(iy — he.Vu) = 01 / V(hy.Vv).Vub + 02/ V(h;.Vv).Vul
Q Q\w w

_ /a o0t (1. 9)

Note that the normal vector is oriented from w to Q \ @. In the same spirit, we write
V(h2.Vv).Viy + (hy.Vu)A(h.Vu) = V(h2.Vv).V(iy — hy.Vu) + div ((h2.Vv).V(h;.Vu)) .
By a argument of symmetry, we then can write:
/QUV(hg.Vv).V(ul —hy.Vu) = —/6‘ [0Onu}](ha.Vv).
To drop the dependency in Ay, , we use (@) and get after expansion:

div ((AhIVu.Vv) h2) = div ((V(hl.Vv).Vu + V(hy.Vu)V) h2) — div (div ((Vu.Vo)hy) h2) :

12



div ((h2.Vv)Ap, Vu) = V(h2.Vv).Ap, Vu + (hy.Vu)div (Ap, Vu)

~ div ((V(b2.Vv).Vu) by )
= V (h1.V(hy.Vv)) .Vu + div ((hg.VU)V(hl.Vu) — (V(hy.Vv).Vu) hl) :
After integrating by parts, we conclude thanks to the state equation and obtain
/Qav (h1.V(hy.Vv)) .Vu = ’/Q (h1.V(h3.Vv)) div (cVu) =0
We substitute the shape derivative u’ to the material one u:

F=- /aw [00nu]](hy.Vv) + [00nu](hy.Vv) — / o div (div ((Vu.Vo)hy) hg)

w

+/ o div (((V(hl.Vv).Vu)hg + (V(hy.Vv).Vu) h1) - ((Vué.Vv)hl + (Vu/l.Vv)hg)) .

First, we use the continuity of the flux on Ow, then we integrate by parts on dw and finally we
incorporate the expressions of the jumps of the shape derivatives u’ to obtain

/Qadiv (hl. (V(hg.Vv).Vu)) - —/&u [0Vu.V (hy.Vv)] by = —/aw [0V 1] b1V (hy. V)

- / div, ([O‘V-,—u] th) hy,. Vo = / [U@nu'l} h,.Vo.
ow 0

w

This leads to a simplified expression for Fb:
F, = —/ o div (div ((Vu.Vv)hl) hy + ((Vu'l.Vv)hg + (Vug.Vv)hl)) )

Let us study each term of this sum. Using Gauss formula and integrating by parts on the manifold

Ow, we obtain
han [UVU&.Vu] = —/
1a]

/ o div (Vu’l.Vv)hg) = —/
w ow
=— /&.u han [U@nuﬂ Onv + /aw div, (hg,n [O'V-,—ull}) v.

By symmetry, we also get:

/O’ div (Vué.Vv)hl) = /6 hin {J@nué} Onv Jr/a div, (hl,n {O’VT’U/Q}) v

We now turn to the term with a double divergence. We first write it as a boundary integral thanks
to Gauss formula as

/wa div (div ((Vu.Vov)hy) h2) = /Bw ha ndiv (h1 [U(VU.VU)]) ,

han [Jﬁnu’l} Onv /6 han |:O'VT’U,/1:| Vv

w w

then, we use ) to introduce the tangential operators

/wa div (div ((Vu.Vov)hy) h2) = /&_u ha ndiv, (hl [U(VU.VU)]) + /Bw hanD(hy [o(Vu.Vv)])nn.

13



We study each of these terms. We start with the one involving tangential derivatives: we expand the
tangential divergence to incorporate the jump relation for the state wu.

div, (h1 [U(VU.VU)]) = div, (hy) [0(Vu.Vv)] + 1.V, [0Vu. Vo]
= div; (h1) [eV,u] Vv +h; .V, [oV, 0.V, 0].

Then, the first term becomes:

/ ha ndiv, (h1 [U(VU.VU)D = / handivy (hy) [oV,u] .V v +/ honh1.V; [0V, uV, 0],
Ow ow Ow

We use the integration by parts formula ([1§) to get:

/ ha ndiv, (h1 [J(VU.VU)D
ow
= / hinhopnH [0V u] Voo —div, (divT (hy) hap [JVTu]) v —div;, (h1h21n) [oV,u] . Vv
ow
_ / div, ((divT (hyhsp) — divy (hy) hon — hl,nhgmH) [avTu]) .
ow
Expanding

div, (divT (h1h27n) [JVTu]) v = div;, (divT (h1) o [0Vru] + 0y Vo (he ) [JVTu]) v
= div, (divT (h1) hop [O’VTU]) v + div, (thVThg,n [O‘V-,—’u]) v,

we obtain the new expression:

/ ha ndiv, (h1 [a(vu.vu)}) - / div, ((thvThQ,n — hynhonH) [ovTu]) v. (38)
ow Ow

Now, we consider the term involving normal components. We have

n.D(h; [oV(Vu.Vv)|)n = n.V(hi, [0Vu.Vo]) — [oVu.Vo]hy,.Dnn
=n.V(hi,) [0V u] Vo + by o0 V([oVu.Vol).

Then, we get
/a hanD(hy [0(Vu.Vv)])nn = /a honn.V(h1y) [0V u] Vv + ha ph nn.V([oVu. Vo))
= /a —divy (henn.V(h1 ) [0Vu]) v+ ho by w0V ([oVu. Vo).
A straightforward calculus leads to
n.V([oVu.Ve]) = n. ({O’DQUVU} + D% [JVu])

=n. <8nv |:O'D2’U,} n -+ {UDQu} Vv + D% [O’VT’LL])

+n. [0D2u} Vv +n.D* [0V .

B 0%y
G
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where D?u is the Hessian matrix of u. From (@) and from the jump conditions for the state u, we

deduce that
0%y
U% = — [O’AT’U,] .

When one differentiates the relation expressing the continuity of the flux for the state along the
tangential direction V,v, one gets ([f], p 235):

0 = V[00qu].V,v = [cD*u]V,v.0n + [cVu].(Dn V,v).
In the same spirit, it comes that
Vonv.[0V,u] = D*v[oVu]l.n + Vo.(Dnl[oV, ul). (40)
Since Dn is a symmetric matrix and Dnn = 0, one checks Vv.(Dn[oV,u|) = [cVu].(DnV v).

Then
n.V([cVu.Vv))) = — [0A;u] Oqv — 2Dn [0V u] Vv + [0V, u] V0nv

We integrate this expression on dw and obtain after some integration by parts:
/hQﬁnthn.V([Jvu.V’U])
ow
= f/ honhin [0A7u] Onv + / honhin [0Vru] Ve 0qv — 2/ honh1nDn oV u] .V v,
ow ow

ow

= —/ [hg,nhlm [cAru) + div, (hg,nhl,n [O’VT’U])} Onv + 2/ div, (hg,nhl,nDl’l [O‘V-,—’u]) v.
ow ow

Hence

/ B D(1 [o(Ve.V0) )nn = / [s,nrn [0 ] + vy (o s [0V )| B
Ow ow

+ / div, (2h27nh11nDn [oVru] — he nn.Vhy [JVTu]) .
Ow

/ odiv (div ((Vu.Vv)hl) h2) = / [hgynhlyn [cAru] + div, (hgﬁnhlyn [O’VT’U,])} Onv
w Ow
— / div, (2h27nh17nDn [oVru] — h2 nn.Vhy [O’VTU]) v
Ow

— / div, (h]_.,..v-,—(hgyn) [oV,u] — hy phonH [O’VT’U,]) V.
ow

Gathering all the terms, we write F5 as:

B = / div, (2h27nh1,nDn 0V ru] + (1, Vo (hop) — ho . Vhp — hy pho o H) [avTu]) v
ow

,/ (divT (hgyn [UVTU/J) + div, (hlyn [UVTUIQ})>

ow

_ / <h27nh17n [cAru] + divy (honhin [O’VT’U,])) Onv
ow

_ / (hndivr (ho,n [0V 7)) + ho,ndivy (b1 o [09-u]) ) v,
ow

We end the proof after expanding the tangential divergence of the last term of F5. |

15



Let us return to the weak formulation (B) of the derivative. By identification, we get

(08 (u})4] = div, (hg,n [avTu'lD + div, (hl,n [avTugD — div, (hanh1a(2Dn — HI) [0V 1))
—div; (hy,.V;(hap) [0Vru] — ho w0 Vhy p, [0V u] 4+ ho yhy,.Dnn [0V u]).

It remains to compute the jump of the flux for the second order derivative. Since

UI1/,2 = (U1) - uDhl ho (41)

where u,y, 4, is the first shape derivative of u in the direction of the vector field Dhj hy. Thanks
to (f), we can write the jump under the form

[00nul 5] = [00n(u))5] — [0Ontpy, n,] = [00a(u))b] — div, (Dhihy.n[oV ul). (42)

Let us split the field hy in two parts: Dh; hy.n = hy ,n.Dhyn + Dh; hy, .n. In the spirit of (@),
we obtain

Dhlhz,r.n = v‘,—hlﬁn.hz.,_ - th.Dn hz,r. (43)
Thanks to (BY), the jump [0dqu)y, 1, ] then can be written under the form

[a@nubhl hy) = divy ((hg,nn.Vth + V:hiph2; —hy,.Dn hgT)[O’VTU]) .

Gathering all the terms, simplifications occur and we get:

(0Bt} 5] =div, (h% [avTu’l} + hin [avrugD — div, ((h1,.Vrhop + Veh poha,) [0V1))
— div, (hgnhin(2Dn — HI) [0V ,u]) + div, (hy,.Dnhy,)[oV.u]) .
To get the jumps of the potential, we use (i1]) and obtain
[ 5] = [h)a] = [twom,ny| = —Bo [Vub] = o [Veid] = [,
= —hap [6111/1} ~hin [anug} “hy,. VTU'J .. [vrug}
— haum. [V(hy.Vu)] = hyn. [V(hy. V)] — [u’Dhl hz}
Thanks to the jump of the potential for the first order shape derivative given in (), it comes that
ha,. [VTU'J = —hy,. [V(h;.Vu)] and hy,. [vTug} = —hy,. [V(hy.Vu)]
and then:
[u'{g} = —hon {8,11/1} — him [8,11/2} — ho . [V(hy.Vu)] + hy,. [V(h.Vu)] — [u’Dhl hZ} (44)
Computing the other jumps that appeared in the former expression, we get
)] = (Dho)” [Vu] + [ D?u] hs.
)] = n.Dhshy, [Ont] + hs nh,. {DQu} n+hy,. {D%} ha..
ha,n. [v (h1. V)] = hop [Ont] 0.DRD + o bt o, | D?u] 0+ o [ D2u] by .
=

= —Dh1 h2.1’1 [8nu] = — (hg,nn.Dhln + n.Dh1h2T) [8nu]
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With the help of formula (i), we obtain:
—hyun. [V(hy.Vu)] + hy,. [V(hy.Vau)] — [u’Dhl hz} = (Vshinha, + Viho,hy,) [Onu]
— 9hy..Dnha, [au] + hy.. [DQU] ha, — haphy pn. [D%] n.
n. [DQu} n=—[A;u] — H [Oqu] = —H [Onu],
hy.. [DQU} hy, = hy,.D([Vu))ha, = hy,.D([0au) n)ha, = [0uu] hy,.Dnhs, .

Finally, we gather the results of these computations to write

[u';g} S (hg,n [anu;} + i [anu;D + (Vehiphay + Veh phy,) [Ont]

+ (hg,nhl,nH — th.Dl’l hg,r) [anu])

(45)

3.4 How to recover (§) by formal differentiation of the boundary condi-
tions.

The aim of this section is to retrieve the expression of the flux jump [00,u”] by computing the normal

derivatives of each of the expressions [oVﬁ’].n and div, (hy,,[0V,u]). Since
[oVu]n = div, (h,n[0Vru]) = hinloAru] + Vehy . [0Vl

then, we get

[oVu'].n = hy (0] + th[aA.Tu] + VThl,n.[UVTu] + V. hi . [oVrul. (46)

In order to avoid lengthy computations, we shall concentrate on each normal derivative appearing in
the above formula. Some of the results are straightforward and their proof will be left to the reader.
Combining propositions () and (f]), we conclude that

Vihin = =V, (01.Vohop) + (D?h1h2), — VA — Vi ,n i,

In the same manner, we also get

[0V u] = [0V, uh] + ([0D*u).hy), — [0V, u].n n — [0V, uln n.
Hence, we can write .
h1.1’1 = hQ.Vh,n - vq—hg,n.th.
It remains to simplify the terms A = (D?*u.hy),.V hy , and B = [0V, u].(D?h; ,.hs),. We obtain:

A = —[oV ul.(DnV hy p)hen + [0Aru]V i hi phao,
B = (D?*ha.h2.).[0Vu] + Vi (Onhin).[0Vrulhen — [0Vru].(Dn Vo hy ) ho .

We tackle the computation of (On,u’)’. For the sake of clearness, we subdivide the work in several
steps.

First step. We compute div, (hl,n[UVTu]). We expand:

div, (hlﬁn[avfu]) hlyn[&ATu] + thlﬁn..[ov.ru],

h1.7n[0ATu] + hinloAru] + VThl,n.[UVTu] + V:hin. [0Vl
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Hence, after substitution, one gets

div, (hlyn[ov.ru]) = div, (hlﬁn[avfué] + (h2,nOnhin — thgﬁn.hl,r)[ov,ru])
+ 2[0’A7-U]V7-hl’n.h2.r - 8nh17[JVTu].(Dn hz.,.) + [O’VTU].(DQth.hzT)

— 2o [0Vt (DN VR p) + B <0ATU - [UATU'Q]> . (47)

Second step. We compute [00pu}]. From the expression of n, we get after some straightforward
computations:

[00uid]] = [00a(w))4] + (0D} he).n + [0Vt |.(Dnha, — Vihap). (48)
Third step. We compute o0y (u})5. From the jump condition on the flux of the derivative (f) and

({7) and ([ig), we obtain:
[Ua(ull)IQ] = diV‘r (th[O’VTU/Q] + (hQ,nanhl,n - VThQ,n.th) [UVTU]) + 2v‘l’h17n-h27-[0'A7—u]

—([eD*uf] ho)m + [0V ul]. (Vrhon — Dnhg,) — Onhy n[0V,u).(Dy ha,)
+(D?*h1 pnhay).[oVru] — hon(Dn oV, u))£.V by .

Taking account of the following calculation,
—([eD*u}] hg)n + [0V, 4.V hayn = — (hgﬁn[aDQUH n + [oD%u}] hzr) n+ [0V u)].Voha,n,
= houn (108 704] + HloOul]) + [o0)].V o hz — ([0 D*u'1] s, ).,
= div, (hgm[aVTu’l]) + Hha p[o0nu}] — (Jo D*uy] ha,).n;
it comes
(000 (u4)3] = dive (Ao Vous] + henloVotd] + (hanBuhin = Vehonha,) [0Vu))
+2[0 A ulV hy o hor + Hhg p[00gu}] — ([0D*u)] ha,).n
- ([O‘V-,—ull] + anhl,n[UVTu]) (Dnhgz,) + (D*h1 ., ha,).[0V,u]
—2h2 n,Vrhip.(DnoV u]) + by ([UATU] — [UATU'Q]) . (49)
This formula remains hard to handle. To get a more convenient one, we decide to derive tangentially
to the direction hy the boundary identity
[00nu}] = b1 n[oAru] + Vb . [0V u].
This leads to:
([eD?*u}] h,)n+(Dnhz,).[oV )] = V,hi pho [oAru] + by Vi [0Aru]ha,
+ (D?hy n ha,). [0V u] — Onhi n[oV,ul.(Dnhg,) + [0A;ulhe, .V, Ry .
From (R4) and subtracting (50)) from (f9), we can write

(50)

(000 (t4)3] = divr (hnloVous] + honlo Vo] + (hanBuhin = Vehonha,) [0Vu))
+divy (h1,pho,n(HI —2Dn).[oV u]) — by (V- [0Arulhe, + A [0V ulhy,)

+hi, | Vidive (he,) . [0V u] — div, <<<Dh2 + (DhQ)T) [O’VTU]) >
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From (R4), we obtain

[cAru] = [oAru] + Vi div, (he,) . [0V u] + V- (Hhs,,). [0V, u]

— div, <((Dh2 n (Dhg)T) [avTu])T> :

and using the relation between the material and shape derivative, we get

(51)

[cAu] = [oA 0]+ V ([cAru]) hy and [0A4] = [0Au] + A; ([oVulhy).

Injecting these relations in (@) and applying them for hs,., we get
A ([oVrulha,) + V. div, (ha,) . [0V, u] = V. [ocA ul.ha, + div, <<<Dh2 + (DhQ)T) [O’VTU]) ) .

This last fact allows us to conclude.

3.5 Justification of the formal computations.

We have to justify rigorously that the right-hand sides of (E),@),(E) make sense. They involve
tangential derivatives of u,, and u4 along the interface dw up to the order three. The existence of
these derivatives is not clear a priori since the gradient of the solution has a discontinuity along this
interface. Our first aim is to precise the tangential regularity along the interface dw of the solution
u of ([]) with either Dirichlet or Neumann boundary conditions.

We should access to the trace of u on the interface dw. Any numerical discretization needs also
to compute the state, its derivatives with respect to the shape and the normal derivatives along the
interface dw. To that end, we introduce for any a € H'/?(dw) and 8 € H~/?(dw) the following
boundary value problems

Av = 0in 2\ @ and in w, Av = 0in 2\ @ and in w,
[v] = «on dw, [v] = «on dw,
(D) [cOnv] = [ on dw, and (N) [cOnv] = [ on dw, (52)
v = f; on Of. Opv = g1 on 012,

where (f1,91) € HY?(9Q) x H'/2(9%). Note that for a = 0, 8 =0 and (f1,91) = (f,g) then (ug)
and w,, solve respectively (D) and (N); furthermore the choice of

o
a= uhnanzﬁ and 8 = [o]div; (h,V,u) (53)
(o]
leads to (f) and ([}) when we take (f1,g) = (0,0).
Existence of solutions to (D) and (N). To study these problems, we use the integral rep-
resentation in terms of layer potentials. In a first step, we recall some definitions. The Newtonian
potential I" is defined as:

1

2—ln(|$ —y|) if n =2,
I'(z,y) = 7r1 1 o3

47r|gc—y|1 e
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The integral equations applying to direct problem will be obtained from a study of the classical
single- and double-layer potentials. We begin to introduce the following operators

Sooow 1 u —  Saooawu(x )1:/ Iz, y)u(y) do(y);

Sowan i u —  Sawaou(x :f [z, y)u(y) do(y);

8
Kogow: u — Kaoawu(x f Onl’ (y) do(y) ;
Kovaa: u — Kaueou(x j Ol (2, y)u(y) do(y)

Note that all these operators have a smooth kernel since the boundaries dw and 9f) are assumed to
have no common point. We also denote

Sao: u +— Squ(z) ::/a [(z,y)u(y) do(y);
Ko: u +— Kou(x) :/(;%F(z,y)U(y) do(y);

Se: u — Syu(z) ::/ Iz, y)u(y) do(y);

7]

f Onl'(z, y)uly) do(y).
o0

We now obtain some systems of integral equations to compute the state function and their shape
derivatives. Since v is harmonic in Q \ @ and for all z € 9Q U dw, it has the classical boundary
representation:

K,: u — Kuu(x):

1
2@ = [ oal@p)oty) - [ oaLleu)el) - [ Twuow)+ [ Tapoww). 61
o0 Ow o0 Ow
Similarly since v harmonic in w, for all z € dw we can write
1
3@ = [ @yt~ [ T, (55)

Let us denote by vy the solution of the boundary values problem (D) in (53). Let us show how
to compute their restrictions and also their normal vector derivatives on the boundaries. Incorpo-
rating the jump conditions, a straightforward computation leads to the following boundary integral
equations

1 01 [ (UJF)\aw

T4 pK, —Ssaow d

ol T h o0 1 012090

K 7
#6000 o9 + 01 @ _(anvd)laQ
r (56)
1 a Koo f1
1 g2 5[ - Kw Sw N o1
oito 3 o1+ 02 —%‘i‘KQ 1
—02Kauo0 Sowon

where 1 = [0]/(01 4+ 02). Thanks to (53), the quantity (9v4)* is then given by

1
Sw(anvd)l-gw = Z—j <—§I+K ) ( ( )|3w - a) + U—lswﬁ
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Concerning vy, the solution of the Neumann problem (N) in @), the same kind of computations
gives

1 o1 _(v+)

=T+ uK, - Kooow n /10w

o2+ 0
K 2 I+ K
122 4N IRT519) o3 + 01 9 Q (vn)|69
_ (57)
1 a
1 02 51 - Kw Sw o1 SaQawfh
B O'1+O'2 O'1+O'2 Sle

—02Kou00

Finally, the computation of (anvn)?éw is given by

Sowoa| |P

1 1
+ _%2(_Z + _ =
Sw(anvn)law = ( 2]—|— Kw> (’Un (7)|50 a) + UlSwﬁ.

Concerning the well-posedness of (5d), we can state the following result.

Theorem 7 The linear system of integral equation (E) has an unique solution in HY?(dw) x

H~1/2(09).

Proof of Theorem |  Let A be the matricial operator defined on H'/2(dw) x H=1/2(99) as

1
=1+ uK, So00w
A_ |2 72+ 01 (58)
1
1Kauaa Sa
o1+ 09

The main argument of the proof is based on the Fredholm alternative. In a first step, we have to show
that the adjoint operator A* is injective. Since the boundaries are bounded, the adjoint operator A*
defined on H=/2(dw) x HY/2(89) can be written under the form

1
5+ pK P 5000
A= 2 (59)
01 S g1 S
g b oy 0w0R 50

Let (u,v) € H™1/2(0w) x H/2(9Q) be in the kernel of A*. Consider the potential W defined for each

x € R? by
o ( |t + [ T y>v<y>> .

In a first step, we show that W = 0. The function W satisfies AW = 0 in R? \ (Gw U 09Q) by
construction. We check that Wlsq = 0 from the equation corresponding to the second line of A*.
By the properties of the single layer potential, [W] = 0 on dw. Furthermore, it holds [¢0, W] = 0 on

Ow. Indeed, we can have ([L1])
o1+ o9 \\2 w | U 900w? | 5
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W(zx) =

(60)

Wt =




and

— 01 1 * *
anW = o1+ 0o <<§+KW>U+KBQBM'U> ,

hence,

1
010aW T — 020, W™ =0y ((51 + K5 )u + HK§(26WU> .

This corresponds to the first line of A*(u,v). Then, W solves the Laplace equation (ﬂ) with ho-
mogeneous Dirichlet boundary conditions. By the uniqueness of the solution, we get W = 0 in
Q.

In a second step, we deduce that w = v = 0. Since W = 0 in ), we see that [0,W] = 0 on Jw.
Since [OnW] = o1u/(01 + 02) on dw , we deduce v = 0. From the second line of A*(u,v) = 0, we
see that Squ = 0 on dQ. Since the single layer potential operator Sq : H=1/2(9Q) +— HY/2(99) is an
isomorphism, v = 0 holds. The injectivity of A* is proved. Since 2A = I + C' where C is a compact
operator, we conclude that A has a continuous inverse thanks to the Fredholm alternative. |

In a similar way, the problem (@) is well-posed under some additional assumptions. We define
the adequate space

HY?(09) = {¢ € H'/2(09Q) : / ¢ = o} .
o0
We can state the following result.

Theorem 8 If we impose the normalizing condition

/ Un = fl
o o0

then there exists one unique couple ((vn)|ow, (Vn)joq) € H'/2(0w) x Hé/Q(aQ) solution of (B7) .

Proof of Theorem E Set

1 01
5] + uK, - Koqow
B= 72+ 61)
|k o LK (
ML 5000 o1+ 03 5 Q

the operator defined on HY/?(dw) x Héﬂ(aﬂ). The adjoint B* can be written under the form

1
§I+NK$ 1K 5000

B = g1 Kx g1 1]+K* (62)
o140y % oy +oy\ 2 el

In a first step, we begin to show that B* is injective. Let (u,v) € HY/2(dw) x H/2(9Q) be in the
kernel of B*. We introduce the potential

= — o1 X u X v x d.
2(0) = -2 (/&Ur( )+ [ T <y>>, 3
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We can see that Z is a harmonic function in R%\ (0w U 09), satisfying 0,Z = 0 on 9. By the
properties of the single layer potential, [Z] = 0 Furthermore, a straightforward calculation shows
that [00nZ] = 0 on dw. Hence, Z solves the boundary value problem

—div(6VZ) = 0in Q,
OnZ = 0 on O9.
The function is therefore constant in 2. Writing [0nZ] = 0 on dw, we get easily u = 0 and then
(=% + K§)v = 0. Since the operator Al — K¢ is one to one on Héﬂ(aﬂ), we deduce that v = 0. We
conclude the proof thanks to the Fredholm alternative. |

Tangential regularity results. Let us consider now the particular case where both a and
are the zero function and (f1,¢91) = (f, g) where f and g are respectively the Dirichlet and Neumann
boundary data. To recover the tangential regularity of the solution u along dw, we look at the first
line of (Bf) to deduce that

1 o1 o1
I+ uK,| (ug)gw = — S9080w0nU + Ksoow f; 63
5l T H (ua)s p—— dloa p—— f (63)
and
g9 1
Sw(an’l,td)"gw = 0'_1 <—§I+ Kw> U;(,T)law (64)

It is easy to deduce that (u4)s, € C>%(0w). Indeed, from (f3) that we consider as an equation in
(ua)|p with data f and (Onua)jaq = g, we see that (£, (9nva)ja) belongs to H/2(09) x H~1/2(09),
thanks to Theorem ﬂ

In order to give a sense to the jump conditions arising in (E),(ﬂ),(ﬂ), we need to work in space of
functions of higher regularity. We choose the framework of Holder spaces. We quote [@] to precise
the behavior of the layer potentials on these spaces.

Theorem 9 (Kirsch [13])

1. If Qw is of class C*®, 0 < a < 1 then the operators S,, and K,, map CP(0w) continuously into
CYP for all 0 < B < .

2. Let k € N with k # 0. If Ow is of class CFT1® with 0 < a < 1, then the operators S,, and K,
map C*P(0w) continuously into C*+1-8(9w) for all 0 < B < a.

3. Let k be an integer. If Ow is of class C*T%< then K* maps C*P continuously into C*+18(dw)
for all 0 < B < a.

We go back to the proof. Since the two boundaries have no intersection point and since Jw is of
class C*@_ it follows that the right hand side of the former equation is of class C3(dw). We then
conclude the solution of ) will be of class C3® since the operator 1/21 + uK,, is an isomorphism
from C“(dw) into itself. With the same arguments, we show straightforwardly that (anun)l‘gw € c?e.
About the regularity of the jumps of the second derivative. The equations giving the jump
conditions [u}] and [Ou}}] show obviously that [u/] and [0,u/}] belong respectively to C*“(dw) and
Ch(dw). Hence, it comes straightforwardly that [u/j] € C1'®. With the same arguments, we show
that [9,u)] € C%*(see [R(] for more details) and then that all the formal computations to get the
equations describing the second derivative have a sense.

Remark 1 In a view of a numerical discretization of the state equation, one has to emphasize that
the choice of a finite elements method seems inappropriate: one should extract tangential derivative
of high order on the interface Ow. The obtained numerical accuracy is not sufficient to incorporate
the results in an optimization scheme. On the converse, the systems of boundary integral equations
Ed) and (F7) are well-suited for this kind of computation. Nevertheless, a discussion of adapted
schemes should be precise and is out of the scope of this manuscript.
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3.6 Case of Neumann boundary conditions.

Since the admissible deformation fields have a support with no intersection points with the outer
boundary, it is a straightforward application of the preceding computations to show that u,, solution
to @)-(E) is twice differentiable with respect to the shape. Furthermore, its second order derivative
u” belongs to HY(Q \ @) UH!(w) and solves

Aul) = 0Oinw\wand in w,
[u;ﬂ = (hlﬁnthH — th.Dn h27’) [8nun] — (hlyn[an(un)é] + hgyn[an(un)/l])
+ (th.th,n + h2T.Vh1,n) [Ontn] on Ow,
[J@nu;ﬂ = div, (hg_’n [JVT(un)’l] + hin [UVT(un)’Q] + th.Dn.hzT)[UVTun])
—div; ((h1,.V+hon + Vihi pha, + honhi (2Dn — HI)) [0V ru,]) on dw,
Opur = 0 on 0

(65)
where we use the notations of Theorem E
4 Second order derivatives for the criterion.

4.1 Proof of Theorem H.

The differentiability of the objective is a direct application of Theorem E The computation we make
here is based on the relation

D2JKv(w)(h1, hg) =D (DJKV (’LU)hl) h2 — DJKv(w)Dh1h2 (66)
To obtain (E), we compute in a first step the shape gradient in the direction h;. Then, in a second

step, we differentiate the obtained expression in the direction of hy. In the sequel, we adopt the
notation v = uq — u, to obtain concise expressions.

DJkv(w)h; = 01/ div (|Vv|2h1) +2Vo. Vo + 02/ div (|VU|2h1) + 2Vv.Vv)
Q\w w
= 01(A1 +2B1) + 02(A2 + 2Bo),

where
A :/ div (|w|2h1) B :/ V.V,
o0\w 3\

Ay = /div <|Vv|2h1) BQ:/W.VU;.

Now, we use the classical formulae to differentiate a domain integral to get

DA (w)hy = / div <div <|Vv|2h1) h2> + 2div (Vv.Vv’Q h1) ,
0w

—/ div (|Vv+|2h1) ham + 2V0T V(W) F hyn;
ow

DAy(w)hs / div (|vu*|2h1) hom + 2V~ V()" hin.
ow
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The terms DB;, i = 1,2 require more precisions. First, we write

DBj(w)hy = / div (Vv.Vv’l)hg) + Vi Vb + Vu.V(v])5,
0w

; (On ()" (v5)* + Da(op)* (1))

= [ VT a0 (@) + 5
ow

v L / / / /
— o anv((un)l)Q + B (an(ud)l(un)2 + an(ud)2(un)1)

Note that we used the Green formula twice to keep the symmetry in h; and hs. We also use the fact
that the derivatives (ugq); are harmonic in Q \ @ to transform the boundary integral on the exterior
boundary into an integral on the moving boundary. We obtain

DB, (w)hy = */6 Vo V() Then + O™ (((1a)1)2) " — v0a(((un)1))

- /a 5 (0n o (a)5) + Bu(u)* (@)))* — Oalun )0 () — Dl )5 (0})*)

By the same methods, we get

DBy = [ V0" V() + G (0])5) + 5 (9a0)) () + Baleg)~(01)7)
ow

We regroup the different terms and after some straightforward computations, we obtain:
D (DJKV(w)hl) (w)hy = f/ div <|:O’|V’U|2h1}) + 2 [O’V’U. (hlﬁané + h21nV’U/1):|
ow
~ [ o (Cutomes + st out — dntun)io! — Ontun)ioh)|
ow

+2 [ o [o0(()0)5] - 000 ()t )3)]

In order to compute D?Jky (w)(hy, hy), the first order derivative of the Kohn-Vogelius objective is
needed. It can be written as follows:

DJgy(w)h = — /&U [0|V1}|2} hy, + 2/3 v {U@n(un)’} — 010,07 [(ud)’} .

w

Gathering (64), (1)) and (1), we write the second derivative of the Kohn-Vogelius criterion as:

D2JKv(w)(h1,h2) = 7/

| div ({U|Vv|2h1}> - [o|vv|2} (Dhihy).n

~ o (s0n0t + (0005 — B~ anun)ios)|
ow

+2 /6 ) [aw. (Pl + hg,nvu;)] 0 [0 (un)]] — o180t [(wa)s]

Let us give a more simplified version for the first term. We decompose the field hy into normal vector
and tangential parts and we use (@) After some elementary computations, we obtain

—/&udiv ([a|vv|2h1D - {amﬂ (Dhihs).n

:/ [awvﬂ (hy,.V+ho, +ha, V. ki, —hy,.Dnhy,) f/ On <[g|w|2}> hinhon.
ow ow
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Finally, the second order derivative of the Kohn-Vogelius objective becomes:

DZJKv(w)(hl, hg) = /6

N /EM On ({owvﬂ) hovnhom + 2 {avv. (h1n Vs + hz,nvv’l)]

= [ |o (cuadsomst + uaiones ~ onuni ~ onunios)|
Ow

[a|vv|2} (h1,.Vrhop + ha,.Vrhy, — ha, Doy, )
(67)

+ 2 /aw v [Jan(un)lllz} — 0100 {(ud)'llﬁg} .

4.2 Analysis of stability. Proof of Theorem

Now, we specify the domain w that is assumed to be a critical shape for Jxy. Moreover, we assume
that the additional condition ug = wu, holds. To emphasize that we deal with such a special domain,
we will denote it w*. The assumptions mean that the measurements are compatible and that w* is
a global minimum of the criterion. From the necessary condition of order two at a minimum, the
shape Hessian is positive at such a point.

Let us notice that only the normal component of h appears. Let us also emphasize that there
is no hope to get h = 0 from the structure theorem for second order shape derivative ([f]). The
deformation field h appears in D?Jgy (w*)(h,h) only thought its normal component h,, since w* is
a critical point for Jgy. This remark explains why we consider in the statement of Theorem E the
scalar Sobolev space corresponding to the normal components of the deformation field.

We now prove Theorem E From (@), we deduce

DJfy(w*)[h,h] = —2/ [0 (UQ&W’ - an“;z'l)/):|
ow*

=2 [U] /6 * (u,dJr - 'U/{,j_)div.,_ (h"vTud) - Z_; nu;rhnan(uld - u%)"') (68)

= 2]o] <<u;l+ —ult, div, (hnViug) > — 2<<9nudhn, On (UZI - U;L)Jr >> .
02

where (,) denotes the duality between H'/?(dw*) x H~/?(dw*) . Let us introduce the operators

T : H/?(0w*) — H™Y2(0w*)  M;: HY/?(0w*) — HY?(0w*)
h — div; (h,V,ug) h — uff —ult
Ty : H/?(0w*) — HY?(0w*) My : HY?(0w*) — HY?(0w*)
h —  h,Ohu} h — 0, (u;r — uﬁ‘)

The Hessian can then be written under the form :

* g1
D?Jry (w*)(h,h) = 2 o] <<Ml(h),T1(h)> - U—<T2(h),M2(h)>> :
2
From the classical results of Maz’ya and Shaposhnikova on multipliers ([@], [@]), we get easily that
T7 and T, are continuous operators. In fact, the compactness of the Hessian is a consequence of the
fact that both operators M; and Ms are compact. We use a regularity argument : we remark that
M3 is the composition of the operators:

Ry : HY2(0w*) HY?09) and Ry : HY?(09) HY2(0w)

— —
h — —u, ¢ =
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where 1 is the trace on dw* of ¥ solution of

—A¥ = 0in Q\w* and in w*,,
[¢¥] = 0on dw*,
[cOn¥] = 0 on dw*,
U = ¢ on 0.

While R; is a continuous operator, we prove that Ry is compact. Let us express u g, = 1. We use
the integral formula of u to obtain:

1 o1 (U)\am K@QBUJ*¢
5 + W os + 01 000 _ o1 1
01 o1 + o2
K w* S ——+ KQ
#5280 o9 + 01 @ (anu)laQ ( 2 ) ¢

The matricial operator arising in this equation appeared also in (@) It has a continuous inverse
thanks to Theorem ﬂ Let us express ulg,+ = ¥:

01

1
—T + uK ) — uSsasw+Sot Koy —
(2 + pKu+) — pSagow-Sq Ko asz]ﬂl P

1
Koopw+ — Safzaw*S§1(§I - Ksz)] ¢.  (69)

Since the operators Kpas,~ and Syogw+ are compact, the operator Ro is compact, hence M is
compact. The proof of compactness of Ms is similar. Let us mention that a similar strategy of proof
can be found in [g].

The natural question is then to quantify how is this optimization problem ill-posed. This question
is directly in related to the rate at which the singular values of the Hessian operator are decreasing.
Equation (@) shows that this rate is the one of the operators Koo+~ and Soqow+. Now, since for
every u € H'/2(9Q), the functions Kpna.~u and Spaa.-u are harmonic outside of 9Q and therefore in
), their restrictions on dw™ are as smooth as dw*. We conclude that if dw™ is C* then the restriction
belongs to each H*(Ow*) for s > 1/2 then that if \,, denotes the n! eigenvalue of D?Jxy (w*), then
An = o(n~*%) for all s > 0.
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