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SUMMARY

This paper proposes a general formulation of an elastoplastic model adapted to unsaturated soils. This formulation
enters within the framework of two independent state variables descriptions. The choice of a particular effective
stress combined with suction is made. The definition of this effective stress is based on the formulation of an
equivalent pore pressure which is an essential point of thistype of models. It will be discussed in this paper.

This general formulation can be seen as a methodology allowing to adapt in a straightforward way most of
elastoplastic behaviour models classically used in saturated soils mechanics to unsaturated states. It is shown that
this synthesis can include most of recent models developed within the same framework.

The last part of this paper is devoted to the adaptation of an existing complex elastoplastic model (CJS model)
to unsaturated states using the methodology previously exposed. The model thus obtained is validated on various
loading paths including œdometric, isotropic or triaxial compressions and also wetting tests simulating collapse
phenomenon.

This model extension shows the easiness introduced by the proposed methodology to adapt a given elastoplastic
model to unsaturated states. Its validation illustrates bythe way the abilities of the extended model to reproduce
complex volumetric responses of an unsaturated soil. Copyright c© 2005 John Wiley & Sons, Ltd.

KEY WORDS: unsaturated soils; effective stress; equivalent pore pressure; constitutive model; elastoplasticity;
validation

NOTATIONS AND CONVENTIONS

Tensorial quantities are denoted in bold and scalar quantities are represented using lightfaced
characters. Accordingly to soil mechanics convention, compressive stresses and contractive strains
are counted positively.
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1128 J.-M. PEREIRAET AL.

1. INTRODUCTION

In soil mechanics, constitutive models are generally formulated for materials saturated with water.
However, an increasing number of problems encountered by engineers involve unsaturated soils. This
tendency is not only due to the appearance of new study areas involving unsaturated materials like for
instance in nuclear waste storage but also to the fact that a large part of the soils on the planet surface
are partially saturated (with respect to water). In order toimprove behaviour prediction of these soils,
this aspect of their state has to be taken into account.

Unsaturated soils present a negative pore water pressure (in reference to pore gas pressure) and show
a specific behaviour compared to saturated soils. This difference between gas and liquid pressures
(respectivelypg andpl) results in a positive suctions = pg − pl. If osmotic effects are not taken
into account, this quantity is mainly responsible for the specific behaviour of unsaturated soils.
Models describing unsaturated materials then need to account for these specific behaviour aspects
and particularly suction effects which concern different levels in the global behaviour of the material.
A natural procedure consists in adapting existing models tounsaturated states in order to obtain a more
realistic description of unsaturated soils behaviour.

Several attempts have been developed to adapt saturated models to unsaturated soils. These attempts
are based on different approaches differing upon the choiceof the set of suitable variables describing
the material behaviour. This choice is a key point in unsaturated soils modelling and this question
remains open. Three distinct approaches can be isolated.

In order to include suction effects, unsaturated soils modelling has started with some attempts to
redefine the well-known Terzaghi’s effective stressσ′ [27]:

σ′ = σ − pl1 (1)

whereσ and1 are respectively the total stress and identity tensors. Theadvantages of this approach
is that behaviour models can be adapted to unsaturated states in a straight-forward manner: Terzaghi’s
effective stress is simply replaced by the new effective stress in model’s original formulation. The most
famous proposal is due to Bishop [3] who defined an effective stress as:

σ′ = σ − (1 − χ) pg1− χ pl1 (2a)

= σ − pg1 + χ s1 (2b)

whereχ is a function allowing to weight liquid and gas pressures effects on the effective stress. Bishop
and Blight provided experimental evidence suggesting the validity of their effective stress definition
with χ = Sl (under the assumption of grains incompressibility).

Predictions of those models using an effective stress as unique independent state variable are correct
concerning some aspects like shear strength but are inefficient in describing other particular aspects
of unsaturated soils behaviour like the collapse phenomenon which occurs during wetting of soils
subjected to high mean stresses.

In order to remedy such deficiencies, later attempts have used more than one independent state
variable. Several significant contributions (as for example in [13]) allowed to conclude that any pair
among the following three candidates could be selected as relevant independent state variables:σ−pl 1,
σ − pg 1 ands. The last two are generally chosen for the following advantages: firstly, this choice
allows to separate the effects of total stress from those of suction. Secondly, the assumption of a
continuous gaseous phase with a uniform pressure (equal to the atmospheric pressure datum) is usually
accepted in engineering applications [13], thus leading toa further simplification. In [18], the authors
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ADAPTATION OF BEHAVIOUR MODELS TO UNSATURATED STATES 1129

explained on the contrary the interest to use the “saturatedeffective stress” (σ − pl1) rather than the
net stress (σ − pg 1) in order to, among others, simplify the transition from partial to total saturation.
Some significant works among these attempts can be cited likefor example Alonsoet al.model [2] or
Wheeleret al.contributions [28] [29].

More recently, within the framework of two state variables descriptions, the choice of an “effective
stress” accounting for positive suction appeared in the literature. This “effective stress” is referred to as
“constitutive stress” by some authors (see [25] for instance). Such approaches combine advantages of
an effective stress (continuity of behaviour description at transition between saturated and unsaturated
domains) and possibilities offered by models using two independent state variables. The main difficulty
inherent in this type of description lies in the formulationof an equivalent pore pressure necessary to
define the unsaturated effective stress.

Several recent approaches proposed new definitions for the effective stress. They differ mainly by
the definition of the equivalent pore pressure used in the effective stress definition.

This paper proposes a general formulation of an unsaturatedelastoplastic model whose purpose is
to facilitate the adaptation of existing saturated elastoplastic models to partially saturated states. This
formulation will then be confronted to the various quoted models.

Since recent unsaturated formulations are based on simple elastoplastic models, the proposed
formulation will finally be the basis of the adaptation to unsaturated states of a more advanced
behaviour model in order to demonstrate the abilities and generality of the proposed methodology.
The CJS model, originally developed by the research team ofÉcole Centrale de Lyon (France), will
be used and eventually validated on various loading paths including œdometric, isotropic or triaxial
compressions and also wetting tests simulating collapse phenomenon.

2. DEFINING AN UNSATURATED BEHAVIOUR MODEL

2.1. Features to be included in an unsaturated model

Before the general formulation proposal, it seems convenient to describe the main characteristics of
unsaturated soils behaviour that a model should be able to predict.

Concerning the hydric behaviour of unsaturated soils (submitted to suction loadings under constant
total stress), the main observations are: (i) during a drying step, the liquid saturation degreeSl

remains constant equal to unity for suctions below the so-called air entry suctionse ; (ii) for normally
consolidated soils, irreversible deformations appear forsuctions belowse while behaviour becomes
reversible above ; (iii) hysteresis phenomenon is observedduring a drying-wetting cycle ; (iv) a
collapse (large void ratio decrease) may be encountered on wetting paths under high mean stresses
while swelling is observed at low mean stresses.

Concerning the mechanical behaviour, a suction increase induces a strengthening of the material.
This phenomenon can be traduced by a higher elastic limit anda certain inhibition of the plastic strains
that the soil could undergo. It has also been observed that a suction increase tends to increase the
“internal confinement”via an increase in intergranular contact forces (see [16] and [17] for example).
During shear tests at constant suction, the volumetric behaviour is firstly contractant and becomes
dilatant afterwards, the dilatancy being more pronounced at higher suctions.

It should be noted that, in the domain of suctions comprised between zero andse, the Terzaghi’s
effective stress is generally assumed to remain valid. The only difference with “classical” saturated
soils is that the liquid pore pressure is negative. In this domain, it could moreover be necessary to
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1130 J.-M. PEREIRAET AL.

modify the liquid compressibility in order to account for the possible presence of occluded gaz bubbles.

2.2. Choice of independent state variables

An essential feature that should also be present in a model isits ability to cross the transition
between saturated and unsaturated conditions. This transition should be simple to incorporate when,
for example, a numerical implementation of the model is envisaged.

For this reason, using an effective stress in a model presents undeniable advantages. Only the
last approach mentioned before will be considered next: effective stress and suction will be used as
independent state variables. It is worthy to highlight thatthe denomination “effective stress” may be
ambiguous. It does not correspond to the definition proposedby Terzaghi (unique independent state
variable linking stresses to strains). Indeed the effective stress used here is not sufficient to describe
the overall behaviour. As it will be seen later, suction alsointervenes explicitly in the yield surface
definition which is not the case for saturated models in whichliquid pressure intervenes only indirectly
via the effective stress. However this denomination is conserved because of its similarities with the
standard saturated effective stress (physical intuition,mathematical formulation, etc.)

2.3. Definition of the equivalent pore pressure

The formulation of an equivalent pore pressure is of first importance in the elaboration of an unsaturated
behaviour model. A discussion concerning its definition is now proposed.

From a theoretical point of view, the equivalent pore pressure used in this paper is defined as the
pressure of a fluid saturating the material and inducing the same behaviour as that of the material in
partially saturated conditions: it is the pore pressure of afictitious fluid.

The formulation of this pore pressure is the point where mostof recent models differ from one to
another. Once the form of this equivalent pore pressure is formulated, its effects on the mechanical
behaviour of the material are treated in similar ways in eachmodel.

It should be noted that the “effective stress approach” leads to a unique elastic constitutive relation
linking both net stress and suction variations to volume changesvia the effective stress. This is in sharp
contrast to other approaches using two independent stress variables, which use two separate relations
for the same purpose (one relation per stress variable). An “effective stress approach” thus induces
some conditions on its own definition which do not appear withother approaches: a unique stress-
strain relation has to describe loadings that may concern (independently or not) two stress variables
(net stress and suction for instance). Interested reader isreported to [24] for a developed discussion on
that subject.

3. UNSATURATED MODEL GENERAL FORMULATION

For the sake of simplicity, only isotropic behaviour is considered ; extension to behaviour under
deviatoric loadings will be discussed in section 3.4.

3.1. Assumptions and definitions

General assumptions and definitions concerning the proposed formulation are now presented.
Following Coussy & Dangla [7]: (i) an equivalent pore pressure π is introduced. It is defined such

that, under saturated conditions, it would induce an equivalent behaviour as that of the unsaturated soil
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Figure 1. General aspect of a sorption curve: experimental (left) and simplified (right).

at the present state ; (ii) the tensor

σ′ = σ + π 1 (3)

plays the role of an effective stress tensor. Terzaghi’s effective stress is supposed to remain valid as far
as suction remains below the air entry suction. Note thatπ(s) is positive for positive suctions.

Hereafter it is assumed that the equivalent pore pressureπ only depends on suction (it could however
have been supposed that it depends also on skeleton deformations).

The sorption curve (drying-wetting curve) will be idealized and supposed to be a bijection between
suction and saturation degree of the liquid phase. Hysteresis during a drying-wetting cycle is thus
neglected (see Figure 1).

A suction increase intervenes in two different ways. Firstly, it intervenes as a loading. This is dealt
with by an effective stress increment as a consequence of Eq.(3). Secondly, it increases the binding
between the solid grains, hence increasing the stiffness and strength. This second aspect is taken into
account by the state-dependent stiffness and by the introduction of a suction hardening (ie yield surface
expansion due to suction increase). In other words, yield surface definition is:

f = f(σ′, s, X) (4)

whereX is a hardening variable which may be either a tensor or a scalar variable depending on the
hardening type considered (kinematic or isotropic).

The resulting hardening laws derive from classical elastoplastic modelling formalism and will be
discussed hereafter.

3.2. Generalized isotropic model

3.2.1. Pore pressure and effective stressThe equivalent pressureπ must be defined such that a suction
increase would induce an increase of the effective stress. It must also account for the fact that Terzaghi’s
effective stress is valid for suctions below air-entry value. The continuity ofπ at the saturation limit
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1132 J.-M. PEREIRAET AL.

(s = se) is supposed. Hence, we will impose in the sequel:

∀s ≤ se, π(s) = −pg + s = −pl (5a)

∀s > se,
∂π

∂s
> 0 (5b)

π(s) continuous ats = se, (5c)

Several formulations ofπ(s) are given in what follows when comparing this general formulation to
various recent models.

According to Eq. (3), the isotropic effective stressp′ is defined by:

p′ = p + π (6)

wherep is the isotropic total stress.

3.2.2. Elastic behaviour An isotropic elastic law can be formulated in an incrementalway in the
following general form :

dεe
v =

1

K
dp′ (7)

whereK may depend on the stress/strain state,dεe
v is the volumetric elastic strain increment.

3.2.3. Yield surface For a given suction, the elastic domain in terms of effectivestress is limited by
a preconsolidation pressure denotedp′π. For a given deformation state, this limit is supposed to be a
function of the suction only. Its evolution with respect to suction is subject to some conditions imposed
by experimental observations: elastic behaviour for suction increases above the air-entry suction and
collapse during wetting at constant high mean stresses.

As discussed previously, the description of these phenomena can only be achieved by incorporating
a second independent state variable into the yield functiondefinition. The choice of suction is made
here.

As both effective stress and preconsolidation pressure depend on suction, the two cited phenomena
can be simulated only if the preconsolidation pressure varymore rapidly thanpg + π during a suction
change. In other words, the yield surface expansion must be faster than the effective stress increase,
hence:

∀s ≥ se,
∂p′π
∂s

>
∂(pg + π)

∂s
(8)

As far as isotropic behaviour is concerned, the following expressions for the yield surface and
preconsolidation pressure are proposed:

f(σ′, s, p′0) ≡ p′ − p′π = 0 (9a)

p′π = p′0 l1(s) + l2(s) (9b)

wherep′0 andp′π are the mean effective preconsolidation stresses respectively at saturation and at a
given suction. The formulation ofp′π given here is inspired from the work of Loret & Khalili [20]. It
enables to include most of the quoted models.

Functionsl1 andl2 allow to account for suction hardening. Choice of these functions is particularly
important since it determines the shape of the yield surfacein the(p′, s) plane and therefore controls
the collapse behaviour. As it will be seen later, functionl1 induces moreover a coupling between suction
and mechanical hardening (Eq. 14) thus affecting the expansion rate of the yield surface.

Copyright c© 2005 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech.2005;29:1127–1155
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In order to satisfy conditions (5) and (8), we will impose that:

∀s ≤ se, l1(s) = 1 (10a)

∀s > se,
dl1
ds

> 0 (10b)

∀s ≤ se, l2(s) = 0 (10c)

∀s > se,
dl2
ds

> 0 (10d)

∀s > se, p′0
dl1
ds

+
dl2
ds

>
∂(pg + π)

∂s
(10e)

In consequence, the isotropic elastic boundary remains constant for0 ≤ s ≤ se, that is:

∀s ∈ [0, se], p′π = p′0 (11)

3.2.4. Flow rule The flow rule gives the plastic strain increment induced by a load increment. Since
an effective stress is considered for the model formulationand by analogy with saturated models, the
flow rule must necessary be written as, for the isotropic part:

dεp
v = dλ

∂g

∂p′
(12)

wheredεp
v is the volumetric plastic strain increment,dλ is the plastic multiplier andg is the plastic

potential.dλ can be calculated from the consistency condition:f = 0 andḟ = 0 by assuming plastic
loading. The plastic potentialg is identified to the yield function in a standard materials framework.

3.2.5. Hardening law The hardening law gives the evolution of the hardening variable during a
plastic loading. It can formally be written in the followingway:

dp′0 = dλH(p′0, s) (13)

The definition of the functionH(p′0, s) depends on the model from which the adaptation is carried out.
The hardening process is held by the preconsolidation pressure at zero suctionp′0 in order to allow a

simple transition between saturated and unsaturated conditions.
The hardening law having been defined, the hardening modulusH can now be calculated. It is

defined by the relation:
∂f

∂p′0
dp′0 = −dλH (14)

Use of yield surface (Eqs. 9) as well as hardening law (13) leads finally to identify the hardening
modulus:

H = l1(s)H(p′0, s) (15)

This relation shows the particular role played by thel1 function which in addition to influencing the
shape of the yield surface in the(p′, s) plane (as doesl2) also allows a coupling between suction effects
and mechanical hardening thus affecting the expansion rateof the yield surface. Indeed, it can easily be
shown that the plastic multiplierdλ depends on the hardening modulus so that, according to (Eq. 13),
p′0 variations depend onH and thus onl1(s).

Copyright c© 2005 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech.2005;29:1127–1155
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1134 J.-M. PEREIRAET AL.

3.3. Comparison with various recent approaches

The general formulation is now confronted to a few models recently proposed, which use effective
stress and suction as independent state variables. These models have been chosen because they follow
different approaches and because they represent significant contributions in their respective approach.

3.3.1. Kohgo et al. modelIn [16] and [17], the authors proposed an equivalent pore pressure whose
definition is based on an empirical study of shear strengthvssuction. They also provided a theoretical
framework based on a micromechanical approach, giving a physical meaning to both equivalent pore
pressure and effective stress, thereby relating intergranular contact forces to suction. This connection
gives an intuitive appreciation of what effective stress is.

Their equivalent pore pressure is such that it starts atπ(se) = se − pg and tends asymptotically at
high suctions to a value that they call the “critical suction” sc.

The equivalent pore pressure is defined by:

π(s) =











−pg + s for s ≤ se

−pg +

(

se +
sc − se

s∗ + ae
s∗

)

for s > se

(16)

wheres∗ = s− se is an effective suction.sc andae are parameters andsc defines the asymptotic limit
of π.

The Modified Cam Clay model is used as the plastic driver. Concerning the yield surface and the
hardening law, the authors directly gavep′π as a function of suction and the total volumetric plastic
strain. This formulation cannot be easily incorporated in the generalization proposed here. It can
however be compared to the formulation given in the Barcelona model (see [2]). This last point will be
discussed again in section 3.3.4.

3.3.2. Abou-Bekr modelIn [1], the author started from a simplified micromechanicalmodel on an
idealized soil (uniform-sized spherical grains stacking)in order to define analytically an equivalent
pore pressure function, similarly to the approach followedby Kohgoet al. Inspired by the form of
this analytical function, he then went on to postulate an empirical equivalent pore pressure function,
applicable to real soils.

Like in Kohgoet al., a maximum pore pressureπmax is assumed to be reached for high suctions.
According to Abou-Bekr, this maximum equivalent pore pressure is a function of surface tension at
the liquid-gas interface, of porosity and grain size distribution of the soil. The definition ofπmax is
however based on assumptions linked to the considered microstructure. In practice, it is more adequate
to considerπmax as a material parameter which will have to be identified with experiments.

Abou-Bekr proposes an equivalent pore pressure formulation which is continuously differentiable in
the whole positive suction domain, contrary to the other models:

∀s ≥ 0, π(s) = −pg + πmax tanh

(

s

πmax

)

(17)

The author adapted Hujeux’s model which is quite similar to the Modified Cam Clay model as far
as only isotropic stress paths are considered.

Abou-Bekr’s preconsolidation pressurep′π corresponds to taking the following expressions forl1

Copyright c© 2005 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech.2005;29:1127–1155
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ADAPTATION OF BEHAVIOUR MODELS TO UNSATURATED STATES 1135

andl2:

l1(s) = 1 (18a)

l2(s) = k π (18b)

It can be seen thatl2(se) 6= 0. However, the author implicitly assumes thatl1(s) = 1 andl2(s) = 0 for
all s < se because of the experimentally observed validity of Terzaghi’s effective stress in this domain.
Hence the yield function will be discontinuous at the transition between saturated and unsaturated
conditions.

The following hardening law is used by Abou-Bekr:

H(p′0) = Kp
0

(

p′0
pref

)n

(19)

3.3.3. Loret & Khalili model In [20] and [21], the authors based their work on the formulation of
Bishop’s effective stress (Eq. 2). According to them,χ can be considered as a scale factor allowing to
integrate suction effects at the microscopic scale (at the level of pores) to the macroscopic behaviour (at
the scale of the representative elementary volume). They also indicate that it is not correct to identify
the functionχ(s) with the degree of liquid saturationSl(s). They propose an empirical formulation for
χ based on a study of shear strength of partially saturated soils and described in [15].

Loret & Khalili mentioned two reasons to distinguishχ(s) from Sl(s). On one hand, identifyingχ
with Sl would be incompatible with the use of liquid volume as an independent state variable, since a
change ofSl would then affect simultaneously the effective stress and the liquid volume, whereas they
are already interdependentvia the constitutive relation. On the other hand, at high suctions where the
degree of liquid saturation is roughly constant, the assumption χ = Sl would lead to proportionality
between shear strength and suction which is not observed in experiments.

Their model is based on the mixtures theory applied to triphasic porous media. The complementary
use of the sorption curve of the soil (obtained during a drying-wetting cycle test under constant total
stress) allows the formulation of evolution laws for liquidand gas volume fractions with respect to
stress state variables. These volumetric variables are generally omitted in discussions about constitutive
behaviour of unsaturated soils but are in fact necessary when dealing with general loading paths such
as undrained tests or in boundary-value problems where variations ofs andSl are coupled with mass
and momentum conservation.

Loret & Khalili illustrated their work by adapting the Modified Cam Clay model. The equivalent
pore pressure used is given by:

∀s ≥ 0, π(s) = −pg + s χ (20)

χ(s) =

{

1 for s ≤ se
(se

s

)γ

for s > se
(21)

with γ = 0.55 being a material constant.
In their model, functionsl1 andl2 take the following form:

l1(s) = 1 +
k1

se
(s χ − se) (22a)

l2(s) = k2(s χ − se) (22b)

The hardening law used is:
H(p′0) = ξ p′0 (23)

whereξ is a material parameter.
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Figure 2. Capillary pressure curve and energy of interfaces.

3.3.4. Dangla & Coussy modelIn [7], a thermodynamic approach was developed based on the theory
of porous continua (see [6]). The use of this formalism allows to obtainin fine a formulation of the
equivalent pore pressure, hence an effective stress definition within the formal framework of the two
state variables approach. The developments took into account the energy of the interfaces between the
three phases present in the medium.

The authors underlined that such a result consolidates the idea that an effective stress can be used
to model unsaturated porous media insofar as the underlyingassumptions for its construction are the
same as those which justified the pertinence of the effectivestress for saturated soils.

In [11], the author used these results to adapt Modified Cam Clay model to unsaturated states. The
identification of the equivalent pore pressure requires theknowledge of the capillary pressure curve.
The author began with a simple case where hysteresis is absent and the dependence ofSl on s is
bijective. Moreover, the skeleton strain does not intervene in this relation.

Unlike Loret & Khalili, no additional information is required other than the functions ↔ Sl

to describe the reversible evolution of liquid volume fraction. From this viewpoint, Dangla’s model
appears to be more fundamental than that of Loret & Khalili.

In [11], the author adapted the Modified Cam Clay model. Afteran energetic approach in which
energy of phase interfaces was accounted for and introducedby means of an energy denotedU , an
equivalent pore pressure (counted positively in this paper) is introduced and given in the unsaturated
domain by:

π(s) = −pg + s Sl +
2

3
U (24)

This energyU represents interfaces energy variations in reference to the saturated state and is supposed
to be a function of deformations of the skeleton and of the liquid saturation degree :U = U(φ, Sl)
whereφ is the lagrangian porosity. Interfaces energy variation isillustrated in Figure 2. Once the
capillary pressure curve is determined,U can be calculated as:

U(φ, Sl) =

∫ 1

Sl

s(φ, S)dS (25)
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ADAPTATION OF BEHAVIOUR MODELS TO UNSATURATED STATES 1137

and the equivalent pore pressure is then given by:

π(s) =











−pg + s for s ≤ se

−pg + s Sl +
2

3

∫ 1

Sl

s(S)dS for s > se

(26)

The term 2/3 multiplying the energyU derives from the assumption concerning the dependence of
U upon skeleton deformations. It intervenes inπ(s) even if the skeleton deformations effects are not
accounted for in the interpretation of the capillary pressure curve (see [10] for more details).

The adapted model corresponds to the following particular choice ofl1 andl2:

l1(s) = l(s) (27a)

l2(s) = 0 (27b)

The author proposes to use a relation of the form (27a) but recognizes that this needs an experimental
identification of the functionl(s). Because of the lack of such data, the yield surface is calculated using
the LC (Loading Collapse) curve of the Barcelona model as a reference. Thusp′π is evaluated according
to the following identification:

p′π + π = pg + p0 (28)

where

p0

pc
=

(

p0
∗

pc

)

λ(0)−κ

λ(s)−κ

(29)

In (29),p0 andp0
∗ are net preconsolidation stresses for, respectively, a given suctions and at saturation

and
λ(s) = λ(0)

[

(1 − r) exp(−β s) + r
]

(30)

β, r, λ(0) andκ are material constants andpc is introduced as a critical pressure.
Interested reader should find more details on the Barcelona model in [2]: this model has not been

described in detail in this work because, as a classical reference in unsaturated soils modelling, it is
assumed to be well-known to all.

The hardening law used by Dangla is such that:

H(p′0) =
1 + e0

λ(0) − κ
p′0 (31)

wheree0 is the initial void ratio andλ(0), κ are the material constants previously mentioned.

3.3.5. General remarksFigure 3 compares formulations of the equivalent pore pressureπ proposed
by the various models. Both approaches by Dangla and Loret & Khalili differ from the two others in
the fact that their equivalent pore pressure do not admit an asymptotic limit.

In the transition to the saturated domain, the various relations verify the limit relationπ = −pl.
However, in the case of Abou-Bekr’s definition ofπ, this verification is only approximate insofar as
the pore pressure is not piecewisely-defined, contrary to the others. The relationπ + pg = se when
s = se can therefore only be verified in an approximate way by adjusting theπmax parameter.

The hardening functions proposed by Loret & Khalili and by Dangla are equivalent to that used in
the Barcelona model (Eq. 32), the first one being initially given in an integral form. It suffises to impose
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Figure 3. Evolution of the equivalent pore pressureπ with respect to suction: comparison of various models.

the conditionξ = 1+e0

λ(0)−κ to effectively ensure this equivalence. The hardening function used in the
Barcelona model is recalled here for convenience:

dp0
∗

p0
∗

=
1 + e

λ(0) − κ
dεp

v (32)

Figure 4 compares the evolutions of the various preconsolidation pressuresp′π with respect to suction
(underpg = 0 assumption). A particularity is attached to Abou-Bekr’s model for which the elastic
domain is not continuous at the transition between saturated to unsaturated conditions as mentioned in
section 3.3.2.

The effective stress measure (2) proposed by Bishop is the one chosen by Loret & Khalili who
proposed a particular form ofχ function. This measure is often used in recent works withχ = Sl

(see for instance [4], [19], [25], [26] or [30]). This last choice for χ appears to be consistent with
thermodynamical considerations [14]. It should however benoted that interfaces energy does not
appear in such formulations contrary to the formulation proposed by Coussy and Dangla.

3.4. Extension to a 3D-model

Extension of this isotropic model to a three dimensional model is quite straightforward but depends on
the basis model which has to be adapted to unsaturated states.

In this section, an example with Modified Cam Clay model is presented to illustrate the proposed
methodology when applied to models formulated in triaxial stresses space. Extension to real
3D-conditions is identical except that triaxial variablesmust be replaced by their 3D invariants
counterparts.

Extension to unsaturated states of Modified Cam Clay model issubmitted to three assumptions
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Figure 4. Evolution of the isotropic elastic boundaryp′

π with respect to suction: comparison of various models.

(see formulations based on Modified Cam Clay like for instance [11] or [21]) : (i) the shape of the
yield surface in(p′, q) (i.e. constant suction) planes is elliptical ; (ii) the critical state lineq = M p′

whose slopeM does not depend on suction, intersects the yield surface at its symmetry point ; (iii) the
extension limit in terms of effective stress is null for all suctions.

The yield surface is then defined by:

f(σ′, s, p′0) ≡ q2 − M p′ (p′π − p′) = 0 (33)

whereq = σ′

1−σ′

3 is the triaxial deviatoric stress,M a material constant andp′π is defined by Eq. (9b).
The flow rule must also be extended to three dimensional stress states (it is expressed here with

complete tensors but can easily be converted in terms of triaxial variables):

dεp = dλ
∂g

∂σ′
= dλ

[

∂g

∂p

1

3
+

∂g

∂q

3s

2q

]

(34)

whereεp is the plastic strain tensor ands = σ′ − tr(σ′)/3 1 is the stress deviator tensor. The plastic
potentialg can be kept equal tof for the sake of simplicity.

The hardening variable is conserved in this extension so that the hardening law (13) remains
unchanged with

H(p′0) =
1 + e0

λ(0) − κ
p′0 (35)

A general form of the elastic law can be defined as:

dεe = C dσ′ (36)

wheredεe is the elastic strain tensor andC is the elastic stiffness tensor at constant suction (possibly
depending on stress/strain state).
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It should be noted that this extension is made easier for the reason that the shape (elliptical) of the
yield surface in constant suction planes is assumed. Once the isotropic model is completely defined
(particularly thep′π(s) function), the yield surface formulation is directly obtained. This is all the more
true as assumptions on dependency (or not) ofM on suction or on limitations of the elastic domain
for extension loadings are made. It will be seen in next section that this is not the case with models
containing different yield surfaces for isotropic and deviatoric loading paths.

4. ADAPTATION OF CJS MODEL TO UNSATURATED SOILS

Most of recent studies on unsaturated soils behaviour modelling use simple models (for instance
Modified Cam Clay) as a basis. In the previous section, a synthesis of various recent models has lead
to a general formulation allowing to include suction effects into a model developed for dry or saturated
soils. In this section, this formulation is used to adapt an advanced model. An interest (among others) to
adapt such a model is to benefit from its abilities to describemore accurately the volumetric behaviour
of soils under complex loading paths.

4.1. Original CJS model

Before adapting it to unsaturated soils, the CJS model as used in this paper is briefly described. The
purpose of this paper is not to expose in a extensive way this model; interested reader should find more
information in [5], [12] and [22].

The CJS (Cambou-Jaffari-Sidoroff) model was originally developed for saturated granular materials
(sands and silts). Its formulation includes three strain mechanisms: one non linear elastic and two
plastic mechanisms. These two plastic mechanisms concern respectively isotropic and deviatoric
loadings and are submitted to strain-hardening (isotropicin the case of the isotropic mechanism and
both isotropic and kinematic in the case of the deviatoric mechanism). For simplicity, the model version
considered here is a simplified one in the sense that isotropic hardening associated to the deviatoric
plastic mechanism is disabled. However, this version is sufficient to illustrate the proposed adaptation
methodology.

4.1.1. Elastic mechanismThe elastic mechanism is nonlinear. Elastic strains are incrementally
defined by the hypoelastic-type relation:

dεe =
dI ′1
9 Ke

1 +
1

2 Ge
ds (37)

whereI ′1 is the first invariant of stress tensor ands is the stress deviator tensor,Ke = Ke
0 [I ′1/(3 pa)]

n

andGe = 3Ke(1 − 2ν)/[2(1 + ν)] is deduced from Poisson coefficientν.
Parameters associated to the elastic mechanism are:Ke

0 , ν andn. pa is the atmospheric pressure and
is taken as a reference datum.

4.1.2. Isotropic plastic mechanismThe isotropic yield surface is defined by the relation:

fI(σ
′, Q) ≡

I ′1
3

− Q = 0 (38)

whereQ is the maximum mean effective stress to which the material has been submitted during its
history.Q plays the role of the hardening parameter (see Eq. (41)). This yield surface represents a
plane orthogonal to(O I ′1) axis in the effective stress space (see Figure 5).
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An associated model is considered so that the isotropic plastic potential associated to the isotropic
mechanism is identical to the yield surface:

gI = fI (39)

so that the strain increment associated to the isotropic plastic mechanism is classically defined by:

dε
p
I = dλI

∂fI

∂σ′
(40)

wheredλI is the plastic multiplier associated to the isotropic plastic mechanism.
The hardening law associated with the isotropic mechanism is isotropic and defined by the relation:

dQ = −Kp
0

(

Q

pa

)n

dλI
∂fI

∂Q
(41)

Parameters associated to isotropic mechanism are:Kp
0 andn.

4.1.3. Deviatoric plastic mechanismThe deviatoric yield surface is defined by the relation:

fD(σ′, X) ≡ qII h(θq) − Re I ′1 = 0 (42)

where
q = s − I1 X (43)

θq is Lode’s angle ofq tensor,qII is the second invariant ofq tensor and

h(θq) = (1 − γ cos(3θq))
1
m (44)

with m = 6.
Re represents the mean solid angle of the cone formed by the deviatoric yield surface in the stress

space andX represents the deviation of the cone axis from(O I ′1) axis (see Figure 5) and plays the
role of the kinematic hardening parameter (see Eq. (51)).

In this version of CJS model,Re remains constant whereas in the complete elastoplastic model, it is a
hardening variable thus introducing isotropic hardening associated to the deviatoric plastic mechanism.

A plastic potential is introduced in order to obtain a betterdescription of the volumetric strains by
means of the characteristic state concept (allowing dilatant or contractant behaviour upon the stress
state).

This deviatoric plastic potential is not explicitly definedbut implicitly via a kinematic condition
introducing a coupling between isotropic (dεp

Dv) and deviatoric (ep
D) parts of the plastic strain tensor

associated to the deviatoric plastic mechanism:

dεp
Dv = β

(

sII h(θs)

Rc I ′1
− 1

)

∣

∣s : deDp
∣

∣

sII
(45)

This results in a plastic potential defined by its gradient:

∂gD

∂σ′
=

∂fD

∂σ′
−

[

fD

∂σ′
: n

]

n (46)

with

n =
β′

s

sII
− 1

√

β′2 + 3
(47)
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β′ = β

[

sII

sIIc
− 1

]

sign(s : de
p
D) (48)

sIIc = Rc
I ′1

h(θs)
(49)

wheree
p
D is the plastic strain deviator associated to the deviatoricplastic mechanism andθs is Lode’s

angle of stress deviators.
The strain increment associated to the deviatoric plastic mechanism is then classically defined by:

dε
p
D = dλD

∂gD

∂σ′
(50)

wheredλD is the plastic multiplier associated to the deviatoric plastic mechanism.
Only the kinematic hardening is conserved in this version ofthe CJS model. It is defined by the

following relation giving the variations ofX:

dX = dλD a I ′1

[

Q − φ0 QII h(θq) X
]

(

I ′1
3pa

)

−3/2

(51)

whereQ is defined as the deviatoric part (dev(.)) of ∂fD

∂q
so that:

Q =
1

hm−1(θq)

[(

1 + γ
3 − m

m
cos(3θq)

)

q

qII
−

γ

m
qIIcos(3θq)dev(q−1)

]

(52)

Parameters associated to the deviatoric plastic mechanismare:γ, β, Rc, Re, a andφ0.
This version of CJS model thus counts 10 parameters.
Figure 5 represents the deviatoric yield surface in 3-dimensional effective stresses space. The surface

denotedfR corresponds to the rupture surface: it delimits the admissible stress states and allows to
account for rupture states that may occur under certain stress paths. Actually, this surface is implicitly
implemented in CJS modelvia the laws controlling evolution of the hardening variables (X only in
the version used here) which tends asymptotically to a limitvalue.

4.2. Adaptation to unsaturated soils

4.2.1. State variablesAs previously mentioned, the two state variables are respectively a particular
effective stress and suction. The equivalent pore pressureneeded for the effective stress definition is
based on the work of Dangla & Coussy [11]:

π(s) =











−pg + s for s ≤ se

−pg + s Sl +
2

3

∫ 1

Sl

s(S)dS for s > se

(53)

As a first approximation, the relation between suction and degree of saturation is supposed to be
bijective. The empirical formula proposed by Brooks and Corey (used by Dangla in [11]) will be
needed:

Sl =
(se

s

)
1
α

(54)

whereα ≥ 1 is a material parameter.
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Figure 5. CJS model yield surfaces: 3-dimensional representation in effective stresses space.

Once the equivalent pore pressure is defined, the effective stress is given by the relation:

σ′ = σ + π 1 (55)

As shown in the methodology presentation, the modification of the model only concerns yield
surfaces definition. The other equations remain unchanged except that the modified effective stress
(as defined by Eqs. (3) and (53)) is used instead of the “classical” one. However, as it well be seen
later, an additional modification will be made to improve dilatancy description.

4.2.2. Isotropic plastic mechanismConcerning the isotropic mechanism, the yield surface becomes
(exactly the same modification proposed in the general formulation):

fI =
I ′1
3

−
(

Q0 l1(s) + l2(s)
)

(56)

whereQ0 corresponds to the saturatedQ parameter used in the basis model.
l1(s) andl2(s) definitions are inspired from Loret and Khalili’s work (see Equations (22a) and (22b))

so that transition to saturated behaviour (Eqs. 10) is satisfied:

l1(s) = 1 +
k1

se

(

s Sl − se

)

(57a)

l2(s) = k2

(

s Sl − se

)

(57b)

4.2.3. Deviatoric plastic mechanismBy considering experimental observations (suction does not
influence internal friction angle), the cone angle of the yield surface must remain constant while
suctions varies. In order to introduce the possibility to extend (under suction increases) the elastic
domain delimited by the deviatoric yield surface, a modification of the yield surface is proposed in the
following way:

fD = qII h(θq) − Re I ′1 − l3(s) (58)

with l3(s) being defined in the same way as functionl2(s) that is:

l3(s) = k3(s Sl − se) (59)
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Figure 6. Extended CJS model: influence ofl3(s) function on the deviatoric yield surface (representation in
(I ′

1/3, qII/h(θq )) space at givenθq ands).

qII

h(θq)

I ′1/3

se

s

Q0

fI

fD

Q(s)

Figure 7. Extended CJS model yield surfaces: representation in (I ′

1/3, qII/h(θq), s) space at givenθq .

It should be noted that this proposition leads to a translation of the yield surface in the direction
of tensile stresses (see Fig. 6). Figure 7 represents both yield surfaces of the adapted model in
(I ′1/3, qII/h(θq), s) space.

Concerning the deviatoric mechanism and more particularlythe definition of the characteristic
surface, some experimental evidence tends to show that the dilatancy is influenced by suction
(dilatancy increases when higher suctions are applied) whereas the characteristic surface itself remains
independent of suction. A supplementary modification is then performed to the original model. A
suction dependency of the dilatancy is introduced in the following way:

β(s) = β0 l4(s) (60)

with l4(s) being defined in the same way as functionl1(s) that is:

l4(s) = 1 +
k4

se
(s Sl − se) (61)

β0 corresponds to theβ parameter of the initial CJS model and represents dilatancyat saturation.β(s)
now represents dilatancy at any given suctions.

In order to ensure the continuity of behaviour at the transition saturated-unsaturated states,li
functions are submitted to the following conditions in the saturated domain:

∀s ≤ se, l1(s) = l4(s) = 1 (62a)

∀s ≤ se, l2(s) = l3(s) = 0 (62b)

(62c)
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The extended model thus counts 10 “saturated” constants, 4 constants introduced by model’s
extension to unsaturated states (ki coefficients) and 2 constants linked to the capillary pressure curve
modeling (se andα). Hence a total of 16 material constants have to be identifiedfrom experimental
data.

5. VALIDATION OF THE ADAPTED MODEL

The aim of this section is to validate the adapted CJS model onvarious loading paths. These paths
correspond to homogeneous tests for which stresses, strains and suction fields are constant within the
sample. The model presented in this paper has been implemented in computations codes developed
with Matlabr software.

5.1. Triaxial compression paths

To begin with, consider triaxial compression paths : radialtotal stressσ3 and suction are imposed
constant and the axial stressσ1 is increased.

The previous model is used to fit experimental data on triaxial tests performed on unsaturated
compacted silt from Jossigny, France. The experimental data used in this study comes from tests
performed at constantσ3(=100kPa) and at 5 different imposed suctions: 0, 200, 400, 800 and 1500kPa
(see [8] for more details concerning experimental procedures).

The “mechanical” parameters have been determined using only the zero-suction curves, whereas
the remaining parameters (directly related to the account for unsaturation) are obtained from the
comparison of the non zero suction curves. This comparison involves both strength(ε1, q) and
volumetric(ε1, εv) curves.

Results are presented in Figure 8 and show a good agreement between experimental and numerical
data. Actually, only the 0kPa and the 1500kPa suction curveshave been used in this identification but
it can be seen that the model predictions for the other suctions are pretty good. Material constants fitted
from this study are given in Table I. It can be remarked that the Re parameter has been chosen close
to zero thus implementing a nearly closed deviatoric yield surface (assuming no previous deviatoric
hardening of the soil). It can also be seen thatl3 function has been disabled sincek3 = 0. In other
words, the deviatoric yield surface is not affected by suction hardening in this particular case.

The model is able to reproduce increases of the overall stiffness, of the shear strength and of the
dilatant behaviour appearing when higher suctions are imposed to the sample. It should be noted that
the CJS model as used in this paper is not able to reproduce softening behaviour often observed after a
peak in the stress-strain curves.

The CJS model results obtained during triaxial test simulations (see Figure 8) are compared to results
using the Barcelona Basic Model(BBM). This comparison is plotted in Figure 9. Material parameters
are summarize in Table II. This comparison shows the good abilities of both models to simulate the
strength increase when the material is under partial saturation. The proposed model however shows
its advantages when dealing with complex volumetric behavior. Indeed, it is able to describe dilatancy
occurrence after a contractant behavior and may render for suction dependent dilatancy which is not
the case with BBM.
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Figure 8. Triaxial compression tests atσ3=100kPa: experimental (E) data from [8] and numerical (N) simulations
with adapted CJS model. Stress deviator vs axial strain (above) and volumetric strain vs axial strain (below).
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and volumetric strain vs axial strain (below).
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Figure 10. Stress path followed during the collapse test under œdometric conditions (in vertical stress/suction
plane).

5.2. Œdometric compression paths

A collapse test is now performed under œdometric conditions(radial displacements are prevented) and
confronted to experimental data on Jossigny silt obtained by Abou-Bekr in [1]. The followed stress
path is presented in Figure 10. Results are presented in Figure 11 and demonstrate the ability of the
proposed model to simulate collapse phenomenon.

Materials constants have mainly been determined in order tofit the two constant vertical stress parts
(from A to C and from D to E (collapse) on Figures 10 and 11) thusexplaining the discrepancies
between experimental and simulated data during the vertical stress increase (from C to D). These
constants are summarized in Table I.

A qualitative response of the model to œdometric compressions is then given: samples are submitted
to increasing vertical stress whereas radial displacements are prevented and suction is imposed
constant. The initial state correspond to an initial void ratio equal to 0.7 at zero suction and is taken as
a reference for all samples. These latter are dried to each imposed suction under isotropic conditions
(constant isotropic total stress) before being applied an œdometric compression (which explains the
dispersed initial void ratios) in Figure 12.

A higher compressibility can be observed for the zero suction test. It can also be pointed out that
preconsolidation pressure increases when higher suctionsare imposed. These results correspond to
usual observations of unsaturated soils behaviour.

5.3. Isotropic compression paths

Because the previous collapse amplitude was small and in order to illustrate qualitatively the real
capacity of the proposed model, we simulate an other wettingtest in the triaxial apparatus used in
isotropic conditions. Material constants fitted from triaxial compressions in the previous section are
used in this study.

The stress path followed during this test is presented in Figure 13 (isotropic compressions under
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Figure 11. Collapse test under œdometric conditions (experimental data from [1]):void ratio vs vertical stress.
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Figure 13. Stress path in(p′, s) plane followed by the sample during the wetting test in triaxial apparatus.

constant imposed suctions are carried out on the sample before and after the wetting test: between
points A and B under a 800 kPa suction and between points E and Funder a null suction). Concerning
the wetting test itself (between points B and E), a mean totalstress ofp = 620 kPa is imposed and
suction is dropped down from 800 to 0 kPa.

Results are presented in Figures 14 and 15. Between points A and B, isotropic compression is carried
out in the elastic domain whereas between points E and F, plastic strains are observed when a certain
stress is reached (point Fo in Figure 15).

Between points B and C, an elastic behaviour is observed (swelling under wetting) until the stress
state representative point reaches the isotropic yield surface. At point C, plastic contractancy (higher
than elastic dilatancy) occurs so that an apparent contractant behaviour appears. At point D, suction
becomes lower than air entry suction and the behaviour turnselastic again thus showing a swelling
part.

The model is now confronted to isotropic compression paths at constant suctions. Material constants
fitted from triaxial compressions are used again. Experimental data come from tests on Jossigny silt
presented by Cui & Delage in [9].

The simulation results (Fig. 16) are qualitatively good andshow again the model abilities to
reproduce usual aspects of unsaturated soils behaviour under various loading paths. From a quantitative
point of view, results are suitable in general and even good for certains suctions likes = 200kPa and
s = 400kPa during the loading phase. The discrepancies appearing for s = 800kPa ands = 1500kPa
cana priori be explained by an unsatisfactory simulation of the soil water characteristic curve (ieSl(s)
function).
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Figure 14. Wetting test under 620 kPa isotropic stress: volumetric strains vs suction.
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Figure 15. Wetting test under 620 kPa isotropic stress: voidratio vs total stress.
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Figure 16. Isotropic compressions at imposed suction: experimental (E) data from [9] and numerical (N)
simulations with adapted CJS model. Void ratio vs total meanstress.

Table I. Material constants fitted from experimental data.

Values fitted from
Material constant (Unit) Triaxial paths Œdometric paths

Ke
0 (MPa) 8.0 3.5

ν (–) 0.125 0.3
γ (–) 0.8 0.8
Re (–) 0.01 0.01
a (kPa−1) 0.6 0.6
φ0 (–) 3.9 3.9
Rc (–) 0.26 0.26
β0 (–) -0.2 -0.2
Kp

0
(MPa) 6.7 3.0

n (–) 0.9 0.62
k1 (–) 0.11 0.05
k2 (–) 1.9 1.0
k3 (–) 0.0 0.0
k4 (–) 0.9 0.9
se (kPa) 15.0 30.0
α (–) 2.1 6.5
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Table II. Material constants of the Barcelona model used forcomparison.

Material constant (Unit) Value

κ (–) 0.015
µ (MPa) 20
M (–) 1.3
λ (–) 0.028
β (kPa−1) 0.003
r (–) 0.87
k (–) 0.17
pc (kPa) 0.7

6. CONCLUSIONS

A general formulation of an isotropic behaviour model for unsaturated soils has been proposed after a
review of various models recently proposed in the literature. This model is based on a two independent
state variables approach, one of which being a particular effective stress. This effective stress is based
on the definition of an equivalent pore pressure. It is shown that the proposed formulation actually
encompasses a number of models recently published, which represent important contributions obtained
via different approaches.

This model formulation can be seen as a proposition facilitating the adaptation of classical models
developed within the framework of saturated soils, in orderto cover unsaturated soils behaviour.
This formulation has been applied to construct an original model. The basis model from which the
adaptation is carried out is an advanced one : the CJS model. Its adaptation shows the abilities of the
general formulation here described.

A validation of the modified CJS model has been proposed on thebasis of experimental data
obtained from homogeneous tests. Results are particularlyinteresting: thanks to the richness of the
CJS model, the unsaturated version is able to describe complex volumetric responses of soils under
various homogeneous loading paths.

This observation leads us to think that the suggested methodis effective and allows to adapt easily
existing models to unsaturated states taking advantage of the basis models strengths.

Validations of the presented model on more complex loading paths are under progress. They concern
pressuremeter tests (a classic geotechnicalin situ investigation method) and thus include structure
effects. Results will be presented in a forthcoming paper.
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1. Abou-Bekr N.Modélisation du comportement mécanique et hydraulique des sols partiellement saturés. PhD thesis,́Ecole
Centrale de Paris, 1995.

2. Alonso E E, Gens A, Josa A. A constitutive model for partially saturated soils.Géotechnique1990;40(3):405–430.
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