
HAL Id: hal-00140148
https://hal.science/hal-00140148

Submitted on 5 Apr 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Limits of Multi-Discounted Markov Decision Processes
Hugo Gimbert, Wieslaw Zielonka

To cite this version:
Hugo Gimbert, Wieslaw Zielonka. Limits of Multi-Discounted Markov Decision Processes. LICS 07,
Jul 2007, Wroclaw, Poland. pp.89-98, �10.1109/LICS.2007.28�. �hal-00140148�

https://hal.science/hal-00140148
https://hal.archives-ouvertes.fr


Limits of Multi–Discounted Markov Decision Processes

Hugo Gimbert
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Abstract

Markov decision processes (MDPs) are controllable dis-
crete event systems with stochastic transitions. The pay-
off received by the controller can be evaluated in differ-
ent ways, depending on the payoff function the MDP is
equipped with. For example a mean–payoff function eval-
uates average performance, whereas a discounted pay-
off function gives more weights to earlier performance by
means of a discount factor. Another well–known example
is the parity payoff function which is used to encode logical
specifications [14].

Surprisingly, parity and mean–payoff MDPs share two
non–trivial properties: they both have pure stationary op-
timal strategies [4, 15] and they both are approximable
by discounted MDPs with multiple discount factors (multi–
discounted MDPs) [5, 15].

In this paper we unify and generalize these results. We
introduce a new class of payoff functions called the priority
weighted payoff functions, which are generalization of both
parity and mean–payoff functions. We prove that priority
weighted MDPs admit optimal strategies that are pure and
stationary, and that the priority weighted value of an MDP
is the limit of the multi–discounted value when discount fac-
tors tend to 0 simultaneously at various speeds.

1. Introduction

Markov decision processes (MDPs) are controllable dis-
crete event systems with stochastic transitions. An MDP
evolves through an infinite sequence of stages. At each
stage, the system is in some state and the controller chooses
an action among several available. Together with the cur-
rent state, this action determines transition probabilities to
the new state of the system. A payoff function associates
with each infinite sequence of states a real number called the
payoff, and the controller seeks to maximize his expected
payoff.

Various payoff functions define various kind of MDPs,

such as mean–payoff, discounted or parity MDPs. In a
mean–payoff MDP a real number called the reward is as-
sociated with each state and the controller seeks to maxi-
mize the average value of the infinite stream of rewards. In
a discounted MDP, this stream of rewards is evaluated ac-
cording to the principle ”the sooner, the better” by means of
a discount factor 0 < µ ≤ 1. Another well–known example
is the parity payoff function which is used to encode logi-
cal specifications [14]. Different attempts to combine both
quantitative aspects of the discounted and mean–payoff
functions and qualitative aspects of the parity payoff func-
tion led to the definition of the discounted µ–calculus [6],
the mean–payoff parity function [3] and the priority mean–
payoff function [12].

Surprisingly, parity and mean–payoff MDPs share two
common properties: they both have pure stationary opti-
mal strategies and they both are approximable by multi–
discounted MDPs.

Existence of pure stationary strategies in parity and
mean–payoff MDPs is a non–trivial property, for two rea-
sons. First in general only the existence of ε–optimal strate-
gies is guaranteed and second in numerous examples the
controller needs memory to play optimally.

A second property shared by the mean–payoff and the
parity MDPs is their approximability by discounted MDPs.
In the case of the mean–payoff MDPs a well–known re-
sults (see [15] for example) establishes that when the dis-
count factor of a discounted MDP tends to 0, the value of
the discounted MDP converges to the mean–payoff value.
For approximating parity MDPs, it is necessary to con-
sider multi–discounted MDPs with multiple discount fac-
tors (multi–discounted MDPs). In that case discount factors
may converge to 0 in various ways. A first type of con-
vergence is convergence of the various discount factors to
0 one after another. In that case, results of [5] imply that
when the rewards are either 0 or 1 then the value of the
multi–discounted MDP converges to the parity value. A
second type of convergence is simultaneous convergence
of the discount factors to 0, at various speeds. A special
case of such simultaneous convergence is geometric conver-



gence where each discount factor converges to 0 at geomet-
ric speed

(
1

nk+1

)
n∈N for some k ∈ N. In the non–stochastic

case, [13] establishes that the multi–discounted value con-
verges to the parity value.

In fact, [13] goes further and unify these results about
parity and mean–payoff MDPs, in the non–stochastic case.
That unification is realized by means of the class of priority
mean–payoff functions, which are generalizations of both
parity and mean–payoff functions. The two following re-
sults hold. First, one–player priority mean–payoff games
on graphs admit pure stationary optimal strategies. Second
the priority mean–payoff value is the limit of the multi–
discounted value, When discount factors converge to 0 one
after another or also simultaneously at various geometric
speeds

(
1

nk+1

)
n∈N for some k ∈ N.

These last results suffer restrictions that leave some ques-
tions open. First restriction is technical: only the non–
stochastic case is considered, hence it is natural to wonder
whether part of results of [13] about (one–player) games
on graphs are extendable to MDPs? Second restriction is
about the convergence of discount factors: only the case of
”one after another” or geometric convergence to 0 is consid-
ered. It is natural to wonder what happens when discount
factors tend to 0 at various speeds, with no restriction on
these speeds: does the multi–discounted value converges?
Towards which value?

In this paper, we give answers to these three questions.
For that purpose we introduce the class of priority weighted
MDPs which generalize priority and mean–payoff func-
tions.

1. We prove that priority weighted MDPs admit pure sta-
tionary optimal strategies (Theorem 2).

2. We prove that the priority weighted value of an MDP is
the limit of the multi–discounted value when discount
factors converge simultaneously to 0, at comparable
speeds (Theorem 6).

3. Moreover, we prove that in some sense, the class of
priority weighted MDPs is the most general class of
MDPs whose values are approximable by the multi–
discounted value when discount factors tend to 0 si-
multaneously (Theorem 6).

These results have several interests. First one is algo-
rithmic: priority weighted mean–payoff MDPs provide a
new example of MDPs whose values are computable (cf.
Section 7). Second is theoretic: we extend several results
about existence of pure stationary optimal strategies [4, 15]
or limits of multi–discounted MDPs [15, 5, 13].

2. Markov Decision Processes

Notations. By R>0 and R≥0 we denote respectively the
sets of strictly positive and non–negative real numbers. If S
is a finite set then by S∗ and Sω we denote respectively the
sets of finite and infinite words on S, and we denote D(S)
the set of probability distributions on S, i.e. D(S) = {δ :
S→ R | ∀s ∈ S, 0 ≤ δ(s) ≤ 1 and

∑
s∈S δ(s) = 1}.

We fix a finite set of states S for the rest of this paper,
and call it the set of states.

Definition 1 (Markov chains and controllable
Markov chains). A controllable Markov chain
A = (S,A, (A(s))s∈S, p) consists of a finite set of
states S and a finite set of actions A. For each state
s ∈ S, A(s) ⊆ A is the set of actions available at s. For
each s, t ∈ S and a ∈ A(s), p(t|s, a) is the conditional
probability to go to state t from state s upon the execution
of action a. In the special case where, for each s ∈ S A(s)
is a singleton, A is called a Markov chain.

Intuitively, a controllable Markov chain evolves in dis-
crete steps. At each step, the chain is in some state s and
the controller chooses an available action a ∈ A(s). Then
the state changes to state t with probability p(t|s, a). For
choosing his actions the controller uses a strategy:

Definition 2 (Finite histories and strategies). A finite his-
tory is a finite sequence h = s0a1s1 · · · sn ∈ S(AS)∗ such
that, for each 0 ≤ i < n ai+1 ∈ A(si). States s0 and sn

are respectively the source and the target of h. The set of
finite histories is denoted H∗A or H∗A,s if we fix the source
s. A strategy is a mapping σ : H∗A → D(A) such that, for
any finite history h ∈ H∗A with target t the distribution σ(h)
puts non–zero probabilities only on actions available in t,
i.e. ∈ S, σ(h) ∈ D(A(t)).

Thus, in general, the actions prescribed by a strategy de-
pend on the entire history and the strategy uses randomiza-
tion. On the other hand, a strategy is said to be pure if ac-
tions are chosen deterministically, i.e. for each finite history
h and each action a either σ(h)(a) = 0 or σ(h)(a) = 1.
A strategy σ is stationary if for any two finite histories
h, h′ ∈ H∗A with same target state t, σ(h) = σ(h′)(= σ(t)).
We can identify pure stationary strategies with mappings
σ : S→ A.

Let us fix a strategy σ. Then, intuitively, the prob-
ability of the finite history s0a1 · · · ansn is σ(s0)(a1) ·
p(s1|s0, a1) · · ·σ(s0 · · · sn−1)(an) · p(sn|sn−1, an).

Definition 3 (Probability measure induced by a strat-
egy). An infinite history is an infinite sequence h =
s0a1s1 · · · ∈ S(AS)ω such that, for each n, an+1 ∈
A(sn). The set of infinite histories with source s is denoted
Hω
A,s. It is equipped with the σ-field generated by the ran-

dom variables Sn, An, n ∈ N, where Sn(s0a1s1 · · · ) = sn
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and An(s0a1s1 · · · ) = an. In the sequel, a measur-
able set of infinite paths will be called an event. Accord-
ing to a theorem of Ionescu Tulcea [1], for each strategy
σ, there exists a unique probability measure Pσ

s on Hω
A,s

such that, for each finite history s0a1s1 · · · snan+1sn+1 ∈
H∗A,s, Pσ

s (s0) = 1, Pσ
s (An+1 = an+1 | S0A1 · · ·Sn =

s0a1 · · · sn) = σ(s0a1 · · · sn)(a) and Pσ
s (Sn+1 =

sn+1 | S0A1 · · ·SnAn+1 = s0a1 · · · snan+1) =
p(sn+1|sn, an+1). The expectation of a real–valued ran-
dom variable X under the probability measure Pσ

s is de-
noted Eσ

s [X].

After an infinite history the controller gets some payoff,
which is computed by a payoff function φ. Once the con-
trollable Markov chainA and the payoff function φ are cho-
sen, we obtain a Markov decision process (A, φ) in which
the controller seeks to use strategies which maximize his
expected payoff:

Definition 4 (Payoff functions, Markov decision pro-
cesses, expected payoff, value of a state and optimal
strategies). A payoff function is a bounded measurable
function φ : Sω → R. A Markov decision process is a
couple M = (A, φ) where A is a controllable Markov
chain and φ is a payoff function. Let s ∈ S be a state
and σ a strategy. The expected payoff under probability
Pσ

s is Eσ
s [φ(S0S1 · · · )] and will often be denoted Eσ

s [φ].
The value of a state s ∈ S in the MDP M is the supre-
mum of expected payoffs over all strategies: val(M)(s) =
supσ Eσ

s [φ]. A strategy σ is said to be optimal if ∀s ∈
S, Eσ

s [φ] = val(M)(s).

In this paper, we are interested in properties of MDPs
(A, φ) that hold for a fixed payoff function φ, independently
of the controllable Markov chainA. In particular, we are in-
terested in the convergence of the values of MDPs. For that
purpose, it will be convenient to use the following notions
of convergence:

Definition 5 (MC–convergence and MDP–convergence).
Let φ∞ be a payoff function and (φn)n∈N be a sequence
of payoff functions. We say that (φn)n∈N MDP–converges
(resp. MC–converges) to φ∞ if for any Markov decision
process (resp. any Markov chain) A and any state s of A,
val(A, φn)(s)−→n val(A, φ∞)(s) .

We will use later the fact that for the special class of
payoff functions that ensure existence of pure positional
optimal strategies, notions of MC–convergence and MDP–
convergence coincide:

Proposition 1 (Equivalence of MC–convergence and
MDP–convergence). Let φ∞ be a payoff function and
(φn)n∈N be a sequence of payoff functions. Suppose that
for each n ∈ N∪{∞} and each controllable Markov chain
A there exists pure stationary optimal strategies in the MDP

(A, φn). Then (φn)n∈N MDP–converges to φ∞ if and only
if (φn)n∈N MC–converges to φ∞.

Proof. Since Markov chains are special cases of MDPs,
MDP–convergence implies MC–convergence. Con-
versely, suppose that (φn)n∈N MC–converges to φ∞.
We prove that (φn)n∈N MDP–converges to φ∞. Let
A = (S,A, (A(s))s∈S, p) be a controllable Markov
chain. Let Σps be the set of pure stationary strategies
for A. If we fix a pure stationary strategy σ : S → A
for A we obtain a Markov chain that we denote A[σ].
Since (φn)n∈N MC–converges to φ∞, Eσ

s [φn] =
val(A[σ], φn)(s)−→n val(A[σ], φ∞)(s) = Eσ

s [φ∞].
Since Σps is finite and by existence of pure sta-
tionary optimal strategies this implies val(A, φn) =
maxσ∈Σps Eσ

s [φn]−→n maxσ∈Σps Eσ
s [φ∞] =

val(A, φ∞).

3. Discounted and mean–payoff MDPs

From this moment onward with each state s is associated
a reward r(s) ∈ R. Thus for an infinite history s0a1s1 · · · ∈
Hω
A we obtain an infinite sequence r(s0), r(s1), . . . of re-

wards. The objective of the controller is to maximize a spe-
cific evaluation of this sequence.

Discounted MDPs. In a discounted MDP, a sequence
r(s0), r(s1), . . . of rewards is evaluated according to the
principle ”the sooner the better”. Formally, we fix a dis-
count factor µ ∈]0, 1] and for s0s1 · · · ∈ Sω the value of the
discounted payoff function is:

discr,µ(s0s1 · · · ) =
∞∑

n=0

µ(1− µ)nr(sn) . (1)

Mean–payoff MDPs. In mean–payoff MDPs we seek to
maximize the average value of the sequence of rewards.
This is done using the mean–payoff function:

meanr(s0s1 · · · ) = lim sup
n∈N

1
n + 1

n∑
i=0

r(si) . (2)

4. Priority weighted MDPs

4.1. Definition

Weighted MDPs. In a weighted MDP, with each state
s ∈ S is associated not only a reward r(s) ∈ R but also
a weight w(s) ∈ R>0. The weighted mean–payoff function
meanw,r evaluates an infinite sequence s0s1 · · · ∈ Sω as
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follows:

meanw,r(s0s1 · · · ) = lim sup
n

1∑n
i=0 w(si)

n∑
i=0

w(si)r(si) .

(3)
Thus, the usual mean–payoff function of (2) is just a special
case of (3) with each weight w(s) equal to 1.

Priority weighted MDPs. In a priority weighted MDP,
with each state s is associated not only a reward r(s) ∈ R
and a weight w(s) ∈ R>0 but also a priority c(s) ∈ N. The
priority weighted payoff meanc,w,r function computes pay-
off in several steps. Let u = s0s1s2 · · · . First we consider
the highest priority occurring infinitely often in u:

c(u) = lim sup
n

c(sn) .

Then we compute the set of indices of states whose priority
is c(u):

N(u) = {n ∈ N | c(sn) = c(u)} ,

and extract the corresponding sub–sequence of states:

π(u) = (sn)n∈N(u) . (4)

Finally we apply the weighted mean–payoff function to this
sub–sequence:

meanc,w,r(u) = meanw,r(π(u)) . (5)

The weighted payoff function (3) is just a special case
of (5) with each priority c(s) equal to 0. Intuitively, weights
and priorities are used to give respectively finitely or in-
finitely more weight to a state than to another. For example,
if s and t have the same priority and w(s) = 1 whereas
w(t) = 2 then occurrences of t will influence twice more
the payoff (3) than occurrences of s. If s and t have different
priorities, for example c(s) = 0 and c(t) = 1 and t occurs
infinitely often then occurrences of s will not influence at
all the payoff (5).

Parity MDPs are also a special case of priority weighted
MDPs. In a parity MDP the payoff has value 0 if the highest
priority seen infinitely often is even, and 1 if it is odd. Thus,
parity MDPs are priority weighted MDPs where weights are
constant equal to 1 and reward r(s) is equal to 1 if c(s) is
odd and equal to 0 if c(s) is even. The parity payoff function
is a central tool in Model–checking used to encode logical
specifications [14].

The priority weighted payoff function is not the only
payoff function that generalizes both parity and mean–
payoff function: recently also the mean–payoff parity [3]
and the priority mean–payoff [12] functions have been con-
sidered. Since framework of [3, 12] is two–player zero–sum

games played on finite graphs, the suitable framework to
compare the present paper to [3, 12] is one–player games
on finite graphs. Both the mean–payoff parity function and
the priority mean–payoff functions are defined by mean of
a reward mapping r ∈ RS and a priority mapping c ∈ NS.
The priority mean–payoff function is just a special case of
the priority weighted payoff function with each weight w(s)
equal to 1. The mean–payoff parity payoff function is rather
different: the controller seeks to satisfy the parity condition
associated with c. If the controller succeeds then his payoff
is the mean–payoff whereas if he fails he is heavily pun-
ished: his payoff is −∞.

Although the mean–payoff parity and the priority
weighted function are both generalizations of parity and
mean–payoff functions they have radically different prop-
erties. The main difference is that using the mean–payoff
parity function does not guarantee the existence of pure sta-
tionary optimal strategies, and the controller may even need
an infinite amount of memory to play optimally [3]. On
the other hand, the use of a priority mean–payoff function
guarantees the existence of optimal strategies that are pure
and stationary (cf. Theorem 2 in this paper or also [12]).
Another difference between the mean–payoff parity and
the priority mean–payoff function arises when we consider
the stochastic framework. The mean–payoff parity func-
tion may have value −∞ and as soon as this occurs with
positive probability the expected payoff is −∞. Hence, if
there is a non–zero probability that the parity condition is
violated, the controller of a mean–payoff parity MDP be-
comes totally indifferent to the mean–payoff evaluation of
rewards. Such a phenomenon does not occur in a priority
mean–payoff MDP. Thus when MDPs are used to model
stochastic systems with both fairness assumption and quan-
titative constraints, using a priority mean–payoff function
guarantees that the expected payoff always depends on both
qualitative (parity) and quantitative (mean–payoff) aspects
of the specification.

4.2. Pure stationary optimal strategies in
priority mean–payoff MDPs

Although priority weighted payoff MDPs are a radical
generalization of both mean–payoff and parity MDPs, we
do not leave the comfortable framework of MDPs with pure
and stationary optimal strategies:

Theorem 2. In any priority weighted MDP there exists an
optimal strategy which is pure and stationary.

This result is well–known in the special cases of parity
MDPs [4] or mean–payoff MDPs [15, 16, 2]. However,
we could not adapt existing proofs to the case of priority
weighted MDPs. Instead, we make use of a criterion for
the existence of pure stationary optimal strategies in MDPs,
established recently by the first author of this paper :
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Theorem 3 ([11] A criterion for the existence of pure
stationary optimal strategies in MDPs). Let φ be a pay-
off function. Suppose that φ is prefix–independent i.e.
for u ∈ S∗ and v ∈ Sω, φ(uv) = φ(v) and that φ
is sub–mixing i.e. for any sequence u1, v1, u2, v2, . . . ∈
S∗ of non–empty finite words, φ(u0v0u1v1 · · · ) ≤
max{φ(u0u1 · · · ), φ(v0v1 · · · )}. Then in any MDP (A, φ)
there exists pure stationary optimal strategies.

We can now prove Theorem 2:

Proof of Theorem 2. According to Theorem 3, it is enough
to prove that meanc,w,r is prefix–independent and sub–
mixing.

Prefix–independency of meanc,w,r is easy to estab-
lish. Let u ∈ S∗ and v ∈ Sω. Then (4) im-
plies that π(uv) and π(v) differ only by a finite pre-
fix. According to (3) meanw,r is prefix–independent
hence meanw,r(π(uv)) = meanw,r(π(v)) and finally
meanc,w,r(uv) = meanc,w,r(v).

Before proving that meanc,w,r is sub–mixing, we first
show that the weighted payoff function meanw,r defined
by (3) is sub–mixing. Let us extend the definition domain
of meanw,r : Sω → R to finite words:

meanw,r(s0s1 · · · sn) =
1∑n

i=0 w(si)

n∑
i=0

w(si)r(si) .

Then for s0s1 · · · ∈ Sω,

meanw,r(s0s1 · · · ) = lim sup
n

(meanw,r(s0s1 · · · sn)).

(6)
Let u0, v0, u1, v1, . . . ∈ Sω be a sequence of finite non–
empty words over S. Let u, v, w ∈ Sω defined by u =
u0u1 · · · , v = v0v1 · · · and w = u0v0u1v1 · · · . Let
(si)i∈N ∈ SN be the sequence of states such that w =
s0s1 · · · . Since word w is a shuffle of words u and v, there
exists a partition (I0, I1) of N such that u = (si)i∈I0 and
v = (si)i∈I1 . Let n ∈ N and let In

0 = I0 ∩ {0, . . . , n} and
In
1 = I1 ∩ {0, . . . , n}. Then:

meanw,r(s0s1 · · · sn)

=

∑
i∈In

0
w(si)∑n

i=0 w(si)
meanw,r((si)i∈In

0
)

+

∑
i∈In

1
w(si)∑n

i=0 w(si)
meanw,r((si)i∈In

1
)

≤ max
{
meanw,r((si)i∈In

0
),meanw,r((si)i∈In

1
)
}

.

The inequality holds since (In
0 , In

1 ) is a partition of
{0, . . . , n}. Taking the superior limit of this inequality, we
obtain meanw,r(w) ≤ max{meanw,r(u),meanw,r(v)},
which proves that meanw,r is sub–mixing.

Now let us prove that meanc,w,r is sub–mixing. Results
of [11] could be directly used since meanc,w,r is the
priority product of d payoff functions of type meanw,r. Al-
ternatively we give a direct proof. Let u, v, w ∈ Sω, (si)i∈N
and (I0, I1) be as above. Let c(w) = lim supi∈N c(si),
c(u) = lim supi∈I0

c(si) and c(v) = lim supi∈I1
c(si).

Then c(w) = max{c(u), c(v)} . If c(w) = c(u) > c(v)
then by (4), we have π(w) = π(u). Then by definition
of meanc,w,r, we deduce meanc,w,r(w) = meanc,w,r(u).
Symmetrically, in the case where c(w) = c(v) > c(u)
we get meanc,w,r(w) = meanc,w,r(v). In the re-
maining case, c(w) = c(u) = c(v) hence π(w)
is a shuffle of π(u) and π(v). Since meanw,r is
sub–mixing, meanc,w,r(w) = meanw,r(π(w)) ≤
max{meanw,r(π(u)),meanw,r(π(v))} =
max{meanc,w,r(u),meanc,w,r(v)} . Hence,
in every three cases meanc,w,r(w) =
max{meanc,w,r(u),meanc,w,r(v)}, which achieves
to prove that meanc,w,r is sub–mixing.

5. Multi–discounted MDPs.

In a multi–discounted MDP, each state s ∈ S is labelled
with a discount factor µ(s) ∈]0, 1]. Let s0s1 · · · ∈ Sω and
for i ∈ N let µi = µ(si) and ri = r(si). Then the value of
the multi–discounted payoff function is:

discr,µ(s0s1 · · · )

=
∑
n∈N

(1− µ0) · · · (1− µn−1)µnrn . (7)

Difference with the discounted payoff defined by (1) is that
the discount factor is not fix but depends on the current state.

The use of multiple discount factors appeared with the
seminal paper of Shapley [17] and was also considered
in [5, 13]. Framework of [17] is different from this paper
since Shapley considered two–player zero–sum stochastic
games with stopping probabilities. However there exists
a natural correspondence between multi–discounted MDPs
and one–player Shapley game and this correspondence pre-
serves expected payoff of strategies. Both the MDP and
the corresponding one–player Shapley game have the same
states, actions and transition probabilities. In the one–
player Shapley game, the stopping probability in state s is
µ(s) and the daily reward is µ(s)r(s). Using this corre-
spondence, one of the results of [17] rephrases as:

Theorem 4 ([17]). In any multi–discounted MDP, there ex-
ists an optimal strategy which is pure and stationary.

6. Limits of multi–discounted MDPs

In this section, we establish that limits of multi–
discounted MDPs are priority weighted MDPs (Theorem 6).
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Figure 1. A simple MDP.

Our starting point is the following well–known theorem:

Theorem 5 ([15]Limits of discounted MDPs are
mean–payoff MDPs). Let r ∈ RS a reward mapping and
(µn)n∈N a sequence of discount factors that converges to 0.
Then for any controllable Markov chain A and any state s:

val(A,discr,µn)(s)−→
n

val(A,meanr)(s) .

We seek to generalize this result to the case where
(discr,µn

)n∈N is a sequence of multi–discounted payoff
functions, and (µn)n∈N is a sequence of discount mappings
that converges to 0S (i.e for each state s, (µn(s))n∈N con-
verges to 0).

The rest of this section is organized as follows. In sub–
section 6.1 we analyze an example and obtain a neces-
sary hypothesis to generalize Theorem 5: the convergence
speeds to 0 of the various discount factors should be com-
parable, in the sense of (9). In sub–section 6.2, we ana-
lyze a second example and show how to compute priority
weighted MDPs that are good candidates for being limits
of multi–discounted MDPs. Finally in sub–section 6.3, we
prove that condition (9) is not only necessary but also suffi-
cient to obtain the generalization of Theorem 5 to the multi–
discounted case.

6.1. Comparing convergence speeds of the
discount factors

Do we need any extra hypothesis to generalize Theo-
rem 5 to the multi–discounted case?

Consider the example A depicted on Fig. 1, and let us
suppose that (µn)n∈N converges to 0S and (discr,µn)n∈N
MDP–converges in the sense of Def. 5. In A the controller
has no choice and transitions are deterministic hence:

val(A,discr,µn)(s) = discr,µ(ststs · · · )

=
1

1 + µn(s)
µn(t) − µn(t)

. (8)

Since we require the MDP–convergence of discr,µn
then in

particular (8) should converge when n tends to ∞. More-
over µn(t)−→n 0, hence (8) converges if and only if:(

µn(s)
µn(t)

)
n∈N

converges in R≥0 ∪ {+∞} . (9)

Figure 2. Another simple MDP.

In the above example, condition (9) is not only necessary
but is also sufficient to obtain the MDP–convergence of
(discr,µn)n∈N. It is not too hard to prove that more gen-
erally, for any controllable Markov chain A such that the
controller has no choice and transitions are deterministic,
(discr,µn

)n∈N MDP–converges if and only if (9) holds for
any states s, t ∈ S. In fact this equivalence remains true
for any controllable Markov chain A as we will prove in
Theorem 6.

6.2. Computing priorities and weights

Suppose now that the necessary hypothesis (9) is sat-
isfied for each s, t ∈ S and that (discr,µn

)n∈N MDP–
converges in the sense of Def. 5.

Then is there a good candidate for the MDP–limit of
(discr,µn

)n∈N and can we compute it?
Let us analyse the example depicted in Fig.2, together

with the sequence (µn)n∈N of discount mappings defined
for each n ∈ N by µn(s) = 2

n , µn(t) = 3
n , µn(u) = 4

n2

and µn(v) = 5
n2 . Let vn = val(A,discr,µn

).
Again the controller has no choice and transitions are

deterministic hence:

vn = discr,µn(stuvst · · · )

=
2
nr(s) + 3

nr(t) + 4
n2 r(u) + 5

n2 r(v) + o( 1
n2 )

2
n + 3

n + 4
n2 + 5

n2 + o( 1
n2 )

(10)

−→
n

2
2 + 3

r(s) +
3

2 + 3
r(t) . (11)

Let us detail what happens in (10) when n tends to∞. Dis-
count factors µn(u) = 4

n2 and µn(v) = 5
n2 converge to

0 much faster than µn(s) = 2
n and µn(t) = 3

n . Thus
the weight of r(u) and r(v) in (10) vanishes when n tends
to +∞. On the other hand, convergence speeds of µn(s)
and µn(t) are comparable hence neither r(s) nor r(t) van-
ishes. The respective weights of r(s) and r(t) in (10) even
converge and limn vn, given by (11), is a convex combina-
tion of r(s) and r(t) whose weights are proportional to the
speeds of convergence of µn(s) and µn(t) to 0.

Value (11) can be computed by means of a priority
weighted payoff function meanc,w,r, using adequate priori-
ties c and weights w. Since u and v are negligible compared

6



to s and t, we give to u and v low priorities c(u) = c(v) = 0
and to s and t high priorities c(s) = c(t) = 1. Then for each
set of states with the same priority, we attribute weights that
are proportional to the speeds of convergence to 0. For pri-
ority 1 for example, we set w(s) = 2

2+3 and w(t) = 3
2+3 .

This way we have defined c and w such that:

val(A,discr,µn
)(s)−→

n
val(A,meanc,w,r)(s) . (12)

Let us prove quickly that (12) holds. The value of state s in
the MDP (A,meanc,w,r) is meanc,w,r(stuvst · · · ). Since
u and v have priority strictly less than s and t, then accord-
ing to (5), meanc,w,r(stuvstu · · · ) = meanw,r(stst · · · ).
Using the definition of meanw,r given by (3), we obtain
meanw,r(stst · · · ) = 2

2+3r(s) + 3
2+3r(t). This last value

is exactly the limit of (vn)n∈N given in (11) hence we ob-
tain (12).

In fact this example and the subsequent analysis can be
easily extended to the case where A is any controllable
Markov chain where the controller has no choice and transi-
tions are deterministic. Priorities and weights should be de-
fined according to two constraints. First for each s, t ∈ S, if
(µn(s))n∈N converges faster than (µn(t))n∈N to 0 then the
priority of t is strictly bigger than the priority of s. Second,
if (µn(s))n∈N and (µn(t))n∈N converge to 0 at comparable
speeds then their weights are proportional to those speeds.
Formally:

if µn(s)
µn(t) −→n 0 then c(s) < c(t),

if µn(t)
µn(s) −→n 0 then c(t) < c(s),

otherwise c(s) = c(t) and w(s)
w(t) = limn

µn(s)
µn(t) .

(13)

The following definition gives a procedure to construct such
priorities c and weights w.

Definition 6. Let (µn)n∈N be a sequence of discount map-
pings that converges to 0S and such that, for each s, t ∈ S,(

µn(s)
µn(t)

)
n∈N

converges in R≥0∪{+∞}. Then we define the

priority and weight mappings c ∈ NS and w ∈ RS
>0 associ-

ated with (µn)n∈N as follows. Let ≺ be the total pre–order
on S defined by:

(s ≺ t) ⇐⇒
(

lim
n

µn(s)
µn(t)

= 0
)

, (14)

and let ≡ be the associated equivalence relation:

(s ≡ t) ⇐⇒
(

lim
n

µn(s)
µn(t)

is neither 0 nor +∞
)

. (15)

Let (S0, . . . ,Sk) be the collection of≡–equivalence classes
and suppose that this collection is ≺–sorted i.e., for each
s ∈ Si and t ∈ Sj , if i < j then s ≺ t. Then for s ∈ S:

c(s) is the unique i ∈ {0, . . . , k} such that s ∈ Si , (16)

w(s) = lim
n

µn(s)∑
t≡s µn(t)

. (17)

This construction of c and w satisfies the con-
straints (13). If µn(s)

µn(t) −→n 0 then s ≺ t hence the equiv-
alence class of s has index strictly smaller than the equiv-
alence class of t and according to (16), c(s) < c(t). The
case where µn(t)

µn(s) −→n 0 is symmetric. In the remaining
case, s and t are in the same equivalence class, hence∑

t≡s µn(t) =
∑

s≡t µn(s) and according to (17) we
get (13).

6.3. Limits of multi–discounted MDPs

We are now ready to state the main result of this section:
the class of priority weighted MDPs is exactly the class of
MDPs whose values are limits of multi–discounted values
when discount factors converge simultaneously to 0.

Theorem 6 (Priority weighted MDPs are the limits of
multi–discounted MDPs). Let r ∈ RS be a reward map-
ping and (µn)n∈N be a sequence of discount mappings that
converges to 0S. Suppose that for each s, t ∈ S,(

µn(s)
µn(t)

)
n∈N

converges in R≥0 ∪ {+∞} . (18)

Let c ∈ NS and w ∈ RS
>0 that satisfy (13). Then for each

controllable Markov chain A and for each s ∈ S:

val(A,discr,µn
)(s)−→

n
val(A,meanc,w,r)(s) . (19)

Conversely, suppose that (19) holds for each controllable
Markov chainA and state s. Then (18) holds for each states
s, t ∈ S.

Theorem 6 unifies and generalizes several results.
First, this theorem extends the classical result stated in

Theorem 5 to the multi–discounted case.
Second, Theorem 6 establishes a new way of obtaining

parity MDPs as limits of multi–discounted MDPs. As a
corollary of results of [5] interpreted in the framework of
MDPs, we know that if a multi–discounted values has re-
wards equal to either 0 or 1 and its discount factors tend to 0
one after another, then the limit value is the value of the par-
ity MDP (where lower priorities are given to states whose
discount factors converge first to 0). Theorem 6 extends this
result to the case where discount factors tend to 0 simulta-
neously, provided that for any s, t ∈ S,

(
µn(s)
µn(t)

)
n∈N

con-

verges either to 0 or to +∞ or to 1. In particular this holds
if we fix some priorities c ∈ RS

>0 and define µn(s) = 1
nc(s) .

Moreover,Theorem 6 proves that the restriction to rewards
0 or 1 can be removed and in that case we obtain priority
mean–payoff MDPs.

Third, some of the results of [13] about the priority
mean–payoff function are extended in two directions. Pri-
ority mean–payoff MDPs are a special case of priority
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weighted MDPs where each weight w(s) is equal to 1.
In [13] a priority mapping c ∈ NS was fixed and a very
specific sequence of discount mapping is considered: for
n ∈ N, µn(s) = 1

nc(s) . One of the results of [13] estab-
lishes that for this particular sequence of discount mappings
the multi–discounted value converges to the priority mean–
payoff value. This result is a simple corollary of Theorem 6,
since hypothesis of Theorem 6 are satisfied: if c(s) = c(t)
then µn(s) = µn(t) and

(
µn(s)
µn(t)

)
n∈N

converges to 1, other-

wise if c(s) < c(t) then
(

µn(s)
µn(t)

)
n∈N

converges to 0. More-

over, Theorem 6 generalizes that result of [13] not only to
any type of simultaneous convergence of discount factors
but also to the stochastic case.

6.4. A proof of Theorem 6

The main step for proving Theorem 6 has already been
done with Theorem 2, which establishes the existence
of pure stationary optimal strategies in priority weighted
mean–payoff MDPs. Since this is also the case for multi–
discounted MDPs (cf. Theorem 4). Thus, according to
Proposition 1, (discr,µn

)n∈N MDP–converges to meanc,w,r

if and only if (discr,µn
)n∈N MC–converges to meanc,w,r.

Hence it is sufficient to prove Theorem 6 in the much sim-
pler framework of Markov chains, which is done in Theo-
rem 7. The reciprocal implication of Theorem 6 has already
been proven in sub–section 6.1.

Theorem 7. Let r ∈ RS, (µn)n∈N, c ∈ NS and w ∈ RS
>0

that satisfy hypothesis of Theorem 6. Then for each Markov
chain A and each state s:

val(A,discr,µn
)(s)−→

n
val(A,meanc,w,r)(s) .

Proof. We only give a sketch of proof of Theorem 7 in the
special case where all the states ofA are recurrent and form
a recurrence class. Full proof can be found in the appendix.

Let s ∈ S be a state and τ0, τ1, . . . be the sequence of
return time in the initial state, i.e. the sequence of random
variables defined by:

τ0 = 0 and τn+1 = min{i > τn | Si = S0} . (20)

For any n ∈ N, let

Hn = (Sτn
, Sτn+1 , . . . , Sτn+1−1) . (21)

Then by properties of Markov chains with finitely many
states (see [7] for example):

H0,H1, . . . are independent and identically distributed.
(22)

First, we establish an equality about expected value of a
multi–discounted MDP. We extend the definition domain of
discr,µ : Sω → R to finite sequences of states:

discr,µ(s0s1 · · · sn)

=
n∑

i=0

(1− µ(s0)) · · · (1− µ(si−1))µ(si)r(si) .

Then using basic properties of stopping time in Markov
chains, we prove that:

Es [discr,µ(S0S1 · · · )]

=
Es [discr,µ(S0 · · ·Sτ1−1)]

1− Es [(1− µ(S0)) · · · (1− µ(Sτ1−1))]
.

(23)

Using equation (23), we prove that (Es [discr,µn
])n∈N

converges and we compute its limit. Let I be the random
variable defined by I = {i ∈ N | 0 ≤ i < τ1 and c(Si) =
maxs∈S c(s)}. Then:

Es [discr,µn ]

−→
n→∞

1
Es

[∑
i∈I w(Si)

]Es

[∑
i∈I

w(Si)r(Si)

]
.

(24)

Let t ∈ S such that c(t) = d = maxs∈S c(s). By hypothe-
sis, w and c satisfy (13) and since priority of t is maximal it
implies that the two following limits hold Pσ

s –a.s.:

1
µn(t)

(1− (1− µn(S0)) · · · (1− µn(Sτ1−1)))

−→
n→∞

∑
i∈I

w(Si)
w(t)

, (25)

and

1
µn(t)

discr,µn
(S0 · · ·Sτ1−1)

=
τ1−1∑
i=0

(1− µn(S0) · · · (1− µn(Si−1))
µn(Si)
µn(t)

r(Si)

−→
n→∞

∑
i∈I

w(Si)
w(t)

r(Si) . (26)

Putting (25) and (26) in (23), we get equality (24).
Last step of the proof consists in showing that:

Es [meanc,w,r]

=
1

Es

[∑
i∈I w(Si)

]Es

[∑
i∈I

w(Si)r(Si)

]
, (27)
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which is based on the law of large numbers.
Equations (24) and (27) together prove

that (val(A,discr,µn
)(s))n∈N converges to

val(A,meanc,w,r)(s). Since this holds for any Markov
chain A and any state s, this achieves the proof of
Theorem 7.

We achieve this subsection with a comparison of the
proof of Theorem 6 together with proofs of results similar
to Theorem 5 that can be found for example in [15, 16, 2, 8].

Generally the central tool for proving convergence of
values of discounted MDPs is the existence of pure station-
ary optimal strategies. In fact, although values of a dis-
counted MDP may converge when the discount factor con-
verges to 0, there exists in general strategies whose associ-
ated sequence of expected payoffs does not converge. For
that reason extra knowledge about the structure of optimal
strategies is needed.

Three different approaches are possible, all based on the
fact that discounted MDPs admit pure stationary optimal
strategies. In a classical approach (see for example [15]),
existence of pure stationary optimal strategies in discounted
MDPs is used to show that the function which maps the dis-
count factor to the value of the discounted MDP is a ra-
tional function. This implies existence of pure stationary
strategies that are optimal for every small values of discount
factors, a phenomenon called Blackwell optimality. Once
Blackwell optimality is proven, the convergence of values is
straightforward, as well as the existence of a pure stationary
strategy which is optimal in the limit MDP. This technique
has been adapted to the non–stochastic multi–discounted
case in [13] to prove that the priority mean–payoff value
can be approximated by means of multi–discounted values.

Another approach, in two steps, consists in first con-
sidering a weak form of mean–payoff MDPs. In weak
mean–payoff MDPs payoffs are computed taking the av-
erage value of expectations of rewards rather than the ex-
pectation of the average value of rewards (see [16] for ex-
ample). Simple matrix calculation shows that weak mean–
payoff MDPs are limits of discounted MDPs. Then one can
conclude using a result of [2] that the same hold for (strong)
mean–payoff MDPs. We did not succeed in adapting this
last approach to the case of priority weighted MDPs.

Third approach consists in proving the existence of pure
stationary optimal strategies not only in the discounted
MDPs but also directly in the MDP which is candidate for
the limit. Once this is done, it is enough to prove conver-
gence of values for the easy case of MDPs with no choice,
i.e. Markov chains. This second approach was used in [8]
in the non–stochastic case to prove the convergence of the
discounted value to the mean–payoff value. It was also used
in [13], still in the non–stochastic case, to prove the conver-
gence of the multi–discounted value to the priority mean–
payoff value in the case where discount factors converge to

0 one after another (see [10] for details). In this paper, we
use this third approach in the stochastic case. This is made
possible by a recent result [11] that gives a criterion for the
existence of pure stationary optimal strategies in MDPs.

7. Computing values of a priority weighted
MDP

The central algorithmic problem about MDPs (and more
generally about two–player zero–sum games) is the compu-
tation of values and optimal strategies.

Although there exists no general algorithm to achieve
this computation, the class of MDPs with pure stationary
optimal strategies has good algorithmic properties: under
weak hypothesis, the values of these MDPs are computable.
Let us fix a payoff function φ and take reasonable assump-
tion about the computability of φ: we suppose that for any
Markov chain A, and any state s of A, the expected value
val(φ,A)(s) is computable. Now let (A, φ) be an MDP
with pure stationary optimal strategies. Then each posi-
tional strategy σ induces naturally a Markov chainA[σ] ob-
tained from A by restriction to actions allowed by σ, and
moreover Eσ

s [φ] = val(A[σ], φ)(s). There exists a natural
enumerative algorithm to compute values and some optimal
strategies of (A, φ): it consists in enumerating the finite col-
lection of pure stationary strategies σ : S → A and select-
ing one who maximizes val(A[σ], φ)(s) for every s ∈ S.

This naı̈ve enumerative algorithm establishes com-
putability of values and optimal strategies, but it is not opti-
mal in general. For example, values of mean–payoff, dis-
counted and parity MDPs are computable in polynomial
time, via reductions to linear programming [16, 4], whereas
the complexity of the enumerative algorithm is at least EX-
PTIME.

For computing values of priority weighted MDPs, the
enumerative algorithm gives an EXPTIME upper bound.
Indeed, values of Markov chains equipped with meanc,w,r

are computable in polynomial time: first compute recur-
rence classes, then for each recurrence class compute the
stationary distribution, then apply (27) to obtain values of
recurrent states.

Is there a polynomial time algorithm to compute values
of priority weighted MDPs? This is an open problem.

8. Conclusion

We studied discounted Markov decision processes with
multiple discount factors (multi–discounted MDPs) and pri-
ority weighted MDPs. Priority weighted MDPs are a gen-
eralization of both mean–payoff and parity MDPs. For any
ε > 0, the existence of ε–optimal strategies is guaranteed in
these MDPs. We proved the existence of optimal (not only
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ε–optimal) strategies for these various MDPs. Moreover
we showed that there exists optimal strategies that are pure
and stationary (Theorem 2). As a corollary, we proved that
when the discount factors of a multi–discounted MDP con-
verge simultaneously to 0 at various but comparable speeds,
the value of the multi–discounted MDP converge to the pri-
ority weighted value (Theorem 6). Moreover, we proved
that the only limits of multi–discounted MDPs are priority
weighted MDPs (Theorem 6).

These results lead to several algorithmic and theoretic
questions. Algorithmic aspects are discussed in Section 7.
The most challenging theoretic question is the following: to
what extent can we adapt results of this paper to the frame-
work of two–player zero–sum stochastic games? The spe-
cial case of perfect information games (turn–based games)
is easy, this is ongoing work which will be published soon.
In the general case of concurrent games the existence of
pure stationary optimal strategies established by Theorem 2
is no longer guaranteed since it is not even guaranteed in
matrix games. However, it seems plausible that the conver-
gence of values established by Theorem 6 still holds. In the
case of discounted games with a single discount factor this
result is well–known but the complexity of existing proofs
(see [9] by example) indicates that extension of Theorem 6
to concurrent games may be hard.
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Appendix
Theorem 8. Let (discr,µn)n∈N, prior and w satisfy hypoth-
esis of Theorem 6. Let A be a Markov chain and s ∈ S a
state of A. Then

val(A,discr,µn)(s)−→
n

val(A,meanc,w,r)(s) . (28)

Proof. We first prove (28) in the special case where all
states of A are recurrent and A has a unique recurrence
class. Let s ∈ S be a state and τ0, τ1, . . . be the sequence of
return time in the initial state, i.e. the sequence of random
variables defined by:

τ0 = 0 ,

τn+1 = min{i > τn | Si = S0} ,

and for any n ∈ N, let

Hn = (Sτn
, Sτn+1 , . . . , Sτn+1−1) . (29)

Then by properties of Markov chains with finitely many
states (see [7] for example):

H0,H1, . . . are independent and identically distributed.
(30)

For shortening notations, we define for any n ∈ N:

νn = µ(Sn) . (31)

First step consists in establishing the following equality
about expected value of a discounted MDP.

Es [discr,µ(S0S1 · · · )]

=
Es [discr,µ(S0 · · ·Sτ1−1)]

1− Es [(1− ν0) · · · (1− ντ1−1)]
, (32)

In fact, by definition of discr,µ,

Es [discr,µ(S0S1 · · · )] = Es [discr,µ(S0 · · ·Sτ1−1)]+
Es [(1− ν0) · · · (1− ντ1−1) · discr,µ(Sτ1Sτ1+1 · · · )] .

According to (30), we deduce:

Es [(1− ν0) · · · (1− ντ1−1) · discr,µ(Sτ1Sτ1+1 · · · )]
= Es [(1− ν0) · · · (1− ντ1−1)]·Es [discr,µ(S0S1 · · · )] .

This two last equations give (32).

Now, using equation (32), we are going to compute the
limit of Es [discr,µn ] when n tends to ∞. Let I be the
random variable defined by I = {i ∈ N | 0 ≤ i <
τ1 and c(Si) = d}. We are going to show that:

Es [discr,µn
] −→
n→∞

1
Es

[∑
i∈I w(Si)

]Es

[∑
i∈I

w(Si)r(Si)

]
.

(33)

Let t ∈ S such that c(t) = d = maxs∈S c(s). Since by
hypothesis, w and c satisfy (13), then for any state q ∈ S,
µn(q)−→n 0 and:{

µn(q)
µn(t) −→n 0 if c(q) < d ,
µn(q)
µn(t) −→n

w(q)
w(t) if c(q) = d .

Since priority of t is maximal, it implies that the two fol-
lowing limits hold Pσ

s –a.s.:

1
µn(t)

(1− (1− µn(S0)) · · · (1− µn(Sτ1−1)))

−→
n→∞

∑
i∈I

w(Si)
w(t)

, (34)

and

1
µn(t)

discr,µn(S0 · · ·Sτ1−1)

=
τ1−1∑
i=0

(1− µn(S0) · · · (1− µn(Si−1))
µn(Si)
µn(t)

r(Si)

−→
n→∞

∑
i∈I

w(Si)
w(t)

r(Si) . (35)

Putting (34) and (35) in (32), we finally get equality (33).

Last step of the proof consists in showing that:

Es [meanc,w,r] =
1

Es

[∑
i∈I w(Si)

] ·Es

[∑
i∈I

w(Si)r(Si)

]
.

(36)
Since all states of A are recurrent and form a recurrence
class, Pσ

s (lim supn c(Sn) = d) = 1. Hence, by definition
of meanc,w,r:

Es [meanc,w,r]
= Es [meanw,r(π(S0S1 · · · ))] (37)

= Es

lim sup
n

1∑
0≤i<n
c(Si)=d

w(Si)

∑
0≤i<n
c(Si)=d

w(Si)r(Si)

 .

(38)

Let us define w′ ∈ [0,+∞[S in the following way. For
t ∈ S, if c(t) = d then w′(t) = w(t) and if c(t) < d we
define w′(t) = 0. Then equation (38) can be rewritten as:

Es [meanc,w,r]

= Es

lim sup
n

1∑
0≤i<n w′(Si)

∑
0≤i<n

w′(Si)r(Si)

 .

(39)
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For any l ∈ N, we define the random variable

ind(l) =| {0 < n ≤ l | Sn = S0} |= max{n ∈ N | τn ≤ l} ,

i.e. ind(l) is the number of return to initial state before
instant l. Then since all states of A are recurrent and form
a recurrence class,

ind(l) −→
l→∞

∞ . (40)

Equation (39) can be rewritten:

Es [meanc,w,r] =

Es

lim sup
n

ind(n)∑n−1
i=0 w′(Si)

· 1
ind(n)

∑
0≤i<n

w′(Si)r(Si)


(41)

We are going to prove that each factor of right part of equa-
tion (41) converges Pσ

s –a.s. everywhere. Let n ∈ N. Then
by definition of return times τi in initial state, 0 = τ0 <
τ1 < . . . < τind(n) ≤ n, hence:

1
ind(n)

∑
0≤i<n

w′(Si)

=
1

ind(n)

ind(n)−1∑
l=0

(
τl+1−1∑
k=τl

w′(Sk)

)

+
1

ind(n)

n∑
k=τind(n)

w′(Sk) . (42)

For any i ∈ N, let

Xi =
τi+1−1∑
k=τi

w′(Sk) .

According to (30), the random variables X0, X1, . . . are in-
dependent and identically distributed. According to (40),
we can apply the strong law of large numbers to left sum-
mand of (42) and we get that:

1
ind(n)

ind(n)−1∑
l=0

(
τl+1−1∑
k=τl

w′(Sk)

)

−→
n→∞

Es [X0] = Es

[∑
i∈I

w(Si)

]
. (43)

Let Yn = 1
ind(n)

∑n
k=τind(n)

w′(Sk) be the right summand
in (42). Then 0 ≤ Yn ≤ 1

ind(n)Xn. Since Xnis i.i.d with
X0 and X0 has finite value Pσ

s –a.s., Yn converges Pσ
s –a.s.

to 0. Together with (42) and (43), we get that:

1
ind(n)

∑
0≤i<n

w′(Si) −→
n→∞

Es

[∑
i∈I

w(Si)

]
Pσ

s –a.s. .

(44)

Similarly, we get that Pσ
s –a.s.:

1
ind(n)

∑
0≤i<n

w′(Si)r(Si) −→
n→∞

Es

[∑
i∈I

w(Si)r(Si)

]
.

(45)
Putting (44) and (45) together in (41), we finally obtain (36).

Equations (36) and (33) together give (28), which
achieves the proof of Theorem 6, in the special case where
all states of A are recurrent and form a unique recurrence
class.

Case of multiple recurrence classes In the general case,
the set of states S is partitioned in S = (T,R0, . . . , Rk),
where T is the set of transient states and R0, . . . , Rk are
the recurrence classes. Let R = R0 ∪ . . . ∪ Rk be the set
of recurrent states and let TR = min{n ∈ N | Sn ∈ R}
be the first time of visit to R. By definition of recurrence
classes, TR takes finite value Pσ

s -a.s.. Since meanc,w,r is
prefix–independent, we have for each s ∈ S:

val(A,meanc,w,r)(s) =∑
r∈R

Ps(STR
= r) · val(A,meanc,w,r)(r) . (46)

Moreover,

val(A,discr,µn)(s) =∑
r∈R

Ps(STR
= r) · Es [discr,µn

| STR
= r] . (47)

Let νn = µ(Sn). Using an independency property similar
to (40):

Es [discr,µ | STR
= r]

= Es [(1− ν0) · · · (1− νTR−1)] · Er [discr,µ] . (48)

Then since r in the equation above is a recurrent state, we
can apply (28) and since ∀s ∈ S, µn(s)−→n 0, (47) gives:

val(A,discr,µn)(s)

−→
n

∑
r∈R

Ps(STR
= r) · val(A,meanc,w,r)(s) . (49)

Together with (46), we obtain (28), which achieves the
proof of Theorem 6.
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