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State Variable Modeling of the Power Pin Diode 
Using an Explicit Approximation of Semiconductor 

Device Equations: A Novel Approach 
H. Morel, S. H. Gamal, and J. P. Chante 

Abstract-The concepts of state variable modeling have been 
applied to obtain a general circuit like model for the power PIN 
diode. The main aim of this paper is to demonstrate the feasibility 
of the state variable modeling approach for the PIN diode. From 
simplified semiconductor device differential equations, the model 
is built with the corresponding variational equation using an in- 
ternal approximation. With a special choice of the decomposition 
functional basis of such internal approximation, it was possible to 
get efficient and reliable models for the reverse recovery. A simple 
model of three state variables that has only six parameters, most 
of which are technological, represented a major improvement in 
describing circuit/device waveforms during reverse recovery. 

I. INTRODUCTION 

ODELING of an electronic device to be used in a M circuit simulator is usually based on an equivalent 
circuit approach. Equivalent circuits are convenient represen- 
tations as they allow the description of complex systems by 
assembling elementary components. As an example, to model 
a device by the commonly used circuit simulator SPICE [l], 
the following steps are taken. First, the steady state equivalent 
circuit for forward bias conditions is found. Next, the model 
under reverse bias conditions is sought by adding some new 
components and finally the transient model is obtained by 
new component addition. Actually, the main problem of this 
method is that adding a new component can disturb the 
previously established model and obviously such a completely 
empirical technique might be difficult for many interesting 
cases, as for example in the case of a PIN power diode. 
A micro-model approach 12) might give satisfactory forward 
recovery circuit models for a junction diode, but the more 
difficult case of the reverse recovery in a complex external 
circuit is still laking. We believe that it is not possible, to 
build an efficient connected equivalent circuit model for the 
PIN diode, because of different natures of energy storage in 
the device as space charge regions store electrostatic energy, 
whereas carrier diffusion regions store the internal energy 
of electron and hole gases. Another basic approach is to 
solve directly the basic semiconductor equations [3] which 
are the Poisson’s equation and the continuity equations for 
holes and electrons together with the extemal circuit equations 
using numerical techniques. Unfortunately, for the transient 
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problems, this approach costs large CPU time and it is not 
very practical even for the simplest circuit configurations. 

Recently a state variable modeling [4] for the PIN diode 
has been proposed [ 5 ] ,  117) as a more general altemative to 
the commonly used connected circuit modeling. In the present 
paper, we demonstrate the feasibility of such an approach. 
The procedure required to build the state variable model from 
the simplified semiconductor device equations for the more 
difficult case of reverse recovery is presented in detail. This 
procedure is based on an explicit approximation obtained from 
an Internal Approximation. We adapt a particular Internal 
Approximation modeling method, the Eigenvalue Internal Ap- 
proximation Modeling (EVIAM), that results in a state variable 
model with only few state variables while keeping the model 
within an acceptable accuracy. A regional approximation is 
used where the diode is partitioned into two main regions 
which control the reverse recovery behavior. The two regions 
are the space charge region of the P+N junction and the 
carrier diffusion region which is the neutral base region. For 
each region a state variable model is developed where the 
external variables are the total current that passes through the 
region and the voltage drop across it. The global model is 
the assembly of those different local models. In the following 
section, the general form of the state variable model for the 
carrier diffusion region is derived. Then in Section 111, the 
model of the carrier diffusion region is completely defined 
using the EVIAM method. The behavior of the space charge 
region both in the forward and reverse bias is modeled in 
Section IV. 

11. INTERNAL APPROXIMATION MODELING OF THE NEUTRAL 
CARRIER DIFFUSION REGION OF A PIN DIODE 

In this section, the general form of the state variable model 
for the carrier diffusion region will be developed. Consider 
a PIN diode for power electronic applications. Assuming 
high level injection during all the transient phases, position 
independent carrier lifetime and mobilities and neglected re- 
combination in the end regions, the hole concentration is given 
by the classical one dimensional diffusion equation [6]: 

with the boundary conditions 
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a P  -(w,t) = r;i(t) 
d z  

where p ( z ,  t )  is the hole concentration, T is the carrier lifetime, 
2 p n p  UT is the ambipolar diffusion coefficient, p n  

and p p  are the electron and hole mobilities, respectively, UT 
is the thermal voltage, i ( t )  is the total current that flows 
through this region, = 6, K = ~ A is the 
diode effective area, q is the elementary charge and w is 
the width of the neutral region where the origin of the x 
axis is taken at the edge of the neutral region. We do not 
consider very fast transient phenomena like those encoutered 
in ESD protection or microwave applications and therefore 
the neutrality assumption is justifed leading to no current 
variation in position i.e. the current i ( t )  has the same value 
at the boundaries of the neutral region as given by (Ib) 
and (IC). Equations (la)-( IC) with the above assumptions 
have been widely used to determine analytically the diode 
initial reverse recovery when the external circuit interaction 
may be neglected [7]-[8], i.e. when the diode voltage drop 
is negligible. A solution p ( z , O )  of the steady state problem 
must be added to the above set of equations as an initial 
condition. The boundary conditions ( I  b) and (IC) are direct 
result of the assumption of neglected recombination in the 
end regions [6]-[8]. In later recovery phases, the space charge 
region extends and the assumption of high level injection in 
the neutral diffusion region may no longer be valid according 
to the initial free carrier concentration and carrier lifetime. 
However, the behavior of fast diodes during these phases is 
mainly governed by the space charge behavior [6]. 

First we obtain the variational equation [9], [ lo] of ( I )  by 
multiplying (la) by a time independent arbitrary trial function 
s(x) and integrating all the terms from 0 to w 

= pn+; 

2qpn UT A ' 

Integrating by parts and applying the boundary conditions (1 b) 
and (IC) yields 

+ D(vs(0)  + ns(w))i  (3) 

Equation (3) has the general form [lo] 

where 
r w  

( 5 )  

and 

l ( s , i )  = D(vs(0)  + K s (w) ) i  (7) 

where V is a functional space that contains the solution 

the boundary value problem defined by ( I )  and which al- 
lows Functional Analysis developments. In general, it is not 
possible to obtain an exact solution for (4). Therefore, we 
seek an approximate solution p,(x,t) E Vn, for the carrier 
concentration p(z,t) E V, where Vn is a functional space 
of finite dimension and which is included in the space V. 
This method is called Intemal Approximation. In fact, Intemal 
Approximation allows to transform a boundary value problem, 
constituted of partial differential equations in space and time, 
into a finite set of differential equations in time only by the use 
of an explicit approximation. The method is based on choosing 
a suitable decomposition functional basis such that 

n 

pn(x: t )  = E k ( t ) W k ( I L . )  (8) 
1 

where wk; k = 1; n is a basis of the space Vn and & ( t )  are 
the coordinates in this basis. The internal approximation of p 
is the function p ,  which is the element of the space Vsri which 
satisfies the following variational equation: 

where Tn c V is the trial functional space of the same 
dimension as V n  and which can be described by the basis 
s j ,  j = 1,n. Writing (9) for the basis functions sj and then 
combining with (8) taking into account the bilinear property 
of m and g and the time independence of W k  and s j  we get 
the following matrix equation: 

(10) d5 M- + G[ = L ( i ( t ) )  
d t  

where 

and ET = [[I,. . . , ETL]  is a vector of order n, L is a vector 
which is a function of the external total current. Once the 
basis functions 'Wk and the trial functions s, are specified, the 
coefficients of the matrices M, G and L can be obtained using 
( 5 ) ,  (6) and (7), respectively. For the case of the finite element 
method [3][9], the basis functions are defined such that they 
vanish everywhere except over a small interval element and 
the trial functions are the same as the basis functions, i.e. Tn 
is the same space Vn. In the next section, however, we apply 
another method, the EVIAM method, which is more suitable to 
our purpose, that is to build a state variable model with a few 
state variables while keeping the model within an acceptable 
accuracy. The interest in a state variable model arises from 
the fact that in practice it is interesting to integrate a device 
model into a circuit simulator, that considers the concepts of 
state variable modeling, to obtain the behavior of a complete 
system. Finally (10) can be written as 

where 

p .  The variational equation (4) is the weak form [lo] of D = GM-l (13) 
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and the state vector x is given by 

x = M E  

A necessary condition that the intemal approximation (8) 
satisfies exactly the boundary conditions (1 b) and (IC) is that 
the decomposition functions 'wk satisfy the following condition ( 14) 

In deriving (12), moving boundary effects, that arise when the 

theoretically possible to take into account those effects in the 
variational equation (4). For reasons of simplifying the model, 
such effects are rather taken into account using the empirical 
expression (26) as dissussed in Section IV. 

TO complete this local state model, a relation for the second 
external variable which is the voltage drop across the diffusion 

(21) 
1 dwk 1 dw 
ri dx IC. dx 

space charge region extends, have not been considered. It is (. = 0) = ->(. = w) 

Also it should be noted (as demonstrated in Appendix B) that 
a sufficient condition for the intemal approximation (8) to be 
the exact solution of equation set (la)-( lc) in steady state is 
that w1 is chosen such that 

region ud is required. This is directly given by [ 111 
Diff w1 = 0 

1: d z  (. = 0) = 1 K k ( x  dr.  

;=(x = w) > 0 
= w) (22) 

(15) {--- ?Ld = Rdi 

where 

dx 

d P n  + PLP)P(.) 
(16) i.e. w1 is an eigenfunction of Diff corresponding to the zero 

eigenvalue. Our criterion is to apply the EVIAM (Eigenvalue 

W 

The Dember voltage component [ 1 11 that arises from the 
difference between the carrier concentrations p ( 0 )  and p ( w )  is 
neglected in (15), as it is practically small. The resistance Rd 
can be calculated from (14) and (1 6) using the approximation 
p,, defined by (8) and therefore, it can be considered as a 
function of the state vector x. Then equation (15) can be 
rewritten as 

Clearly (12) and (17) have the general state variable form 
[41 [51 

d X  

d t  
- = f (x ,y)  

0 = b(x.y) (18) 

Intemal Approximation Modeling) method for which the de- 
composition functions and the trial functions sj are some 
eigenfunctions of the operator Diff that satisfy (21) and (22). 
In Appendix A these eigenfunctions have been studied in 
detail. In general we take the hyperbolic eigenfunctions T ~ C  ( x )  
as decomposition basis functions wk (x) and the trigonometric 
eigenfunctions q j - 1  ( x )  as trial functions s j  (x). Notice that 
q ( x )  satisfies condition (22) (as derived in Appendix A) and 
consequently our intemal approximation is an exact solution 
for the steady state problem. The choice of the trigonometric 
eigenfunctions q3 - 1 as trial functions simplifies the calculation 
of the matrices M, G and L. Moreover, with the particular 
eigenfunction sequences defined by (A7) and (AS), the matrix 
D given by (1 3 )  becomes diagonal with the diagonal elements 
given by 

where y = ( : d )  is the external variable vector, f is the 
vectorial internal function and b is the vectorial bond function. 

Dkk = k = 1, 2, . . . (23) 

The vector L can be calculated using (11) and (7). The 
elements of this vector Lj are given by 111. ELABORATION OF THE STATE VARIABLE 

MODEL FOR THE DIFFUSION REGION 

In the previous section, we developed the state variable 
model of the carrier-diffusion region from the variational 
equation using the concepts of Intemal Approximation. To 
calculate the involved matrices M, G and L, the decomposi- 
tion functions Wk and the trial functions sj  must be specified. 
Although theoretically the choice of wk and sj is arbitrary, 
some choices are more efficient regarding the accuracy of the 
internal approximation for a given number of functions. Our 
criterion of choice is given in what follows. First we write 
(la) in the following operator form 

a P  Diff p =  - 
at 

where the operator Diff is defined by 

where Io is a reference current. The simplest model is built 
using only two eigenfunctions for each basis resulting in a two 
state variable model. In Section V, we will show that such 
model, built only with the hyperbolic eigenfunctions T I ,  ~2 

and the trigonometric eigenfunctions 40, 41, has a very small 
calculation time with a good accuracy. In this case, with some 
manipulation, (12) is explicitly given by 
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IV. THE STATE VARIABLE MODEL 
OF THE SPACE CHARGE REGION 

In this section, the state variable model for forward and 
reverse bias of the p-71, space charge region will be introduced. 
As a simple charge control model is sufficient for the depleted 
junction case we do not need to apply the EVIAM method. 
The electron current i,, at the n-side edge of the space charge 
region is no longer equal to zero because it arises in fact from 
the electrons extracted while the space charge region extends 
to support the reverse bias, i.e. 

where UI, is the extension of the space charge region in the 
ri-side and N D  is the uniform base doping concentration. The 
positive sense of the current i, in (26) is from the p-side 
towards the Ti-side when w, increases. Therefore, the total 
current i is given by: 

i = a, + a, (27) 

Combining (26) and (27) we get 

Equation (28) defines the state variable model of the reverse 
biased space charge region where w, is the only state variable 
in this local model and the total current i is the first extemal 
variable. The second extemal variable is the reverse voltage 
drop U ,  on this region which is related to w, in a one-sided 
junction model [ 121 by 

where (3 is the junction built-in voltage and L N D  = e is 
the Debye length in the n-side. An empirical expression for 
i, is suggested such that 

where TD and cy are two adjustable parameters. TD corresponds 
to a proportional factor between 2, ans 1c1 which accounts for 
the effects of the stored charge in the diffusion region. The 
parameter cy corresponds to the effects of moving diffusion 
region boundaries that arise when the space charge region 
width w, changes with time. Thus when the space charge 
region is reverse biased, the role of the carrier diffusion region 
in the recovery behavior is taken into account by considering 
the state variable .c1 in (30). 

When the space charge region is forward biased w, is 
always very small and there is no more inertial effect as in 
the case of reverse bias. This means that we do not need any 
state equation. However, the continuity of the state variable w, 
has to be preserved [4]. For this purpose, a relation between 
U, and the carrier density p l  at the edge of the space charge 
region in the n-side can be used, 

I 

w, = J" 
gPl  

"It 

Fig. 1.  Ramp recovery circuit of PIN diode. 

The complete derivation of (31) is given in Appendix C. The 
hole density p l  is calculated from (8) at z = 0. This means 
that w, depends on the values of the state variables in the 
neutral diffusion region. Finally, the voltage drop U, on the 
space charge region can be calculated using (29). A more 
accurate relation which takes into account the effect of high 
level injection in the n-side on the width of the space charge 
region is derived in Appendix C. This relation reads 

- U, = UT In ( 2 (*)') LND + UTIn (2) (32) 

V. RESULTS AND DISCUSSIONS 

The global state model that we have established in the 
previous sections and which is described by (25) and (28) 
and the corresponding bond equations is based on the three 
state variables z1, 22 and the width of the space charge 
region w,. The parameters of this model are the base width 
w, the base doping concentration N D ,  the carrier lifetime 
7, the effective area A and two adjustable parameters Q 

and 70. As an illustrating exemple, the model is used to 
predict the behavior of ramp recovery [ 131 where the diode 
was initially in forward conduction and then reverse biased 
by a voltage source V, in series with an inductance L 
(Fig. 1). The rate of the current ramp di/dt in this case is 
approximately equal to VR/L. This is in fact the simplest 
circuit configuration commonly encountered in practice. The 
current and the voltage have been observed using a Tektronix 
digital storage oscilloscope model 2432 and 6137 voltage 
and 6022 current Tektronix probes. The circuit simulator 
PACTE [14] that we developed to fit well with the state 
variable concepts is used. In this simulator the model equations 
and the external circuit equations are solved simultaneously 
by the Gear method [15] to obtain the recovery behavior. 
The model parameters can be determined by minimizing the 
differences between simulation and experimental switching 
parameters for a given switching condition. A first estimate for 
some parameters can be also made using the manufacturer's 
specifications. For example, the area A can be estimated 
from the nominal current, and the base width w and doping 
concentration N o  can be estimated from the breakdown 
voltage. 
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Fig. 2 shows the current and voltage waveforms obtained 
for a BYT 12 PI 600 diode (The breakdown voltage V,, is of 
600 V) for a forward current of 0.63 A and a reverse applied 
voltage of 80 V. The resulting current rate was 41 A/,LLs, which 
corresponds to an inductance of 1.9 pH. The corresponding 
evolution of the carrier distribution in the diffusion region is 
shown in Fig. 3. For the diode tested, the following parameters 
were obtained: carrier lifetime 7 = 130 ns, effective area A = 
0.12 cm2, base width 20 = 40 pm, base doping concentration 
N o  = 2 x 1014 ~ m - ~ .  The parameters LY and TD are 0.045 and 
0.8 ns, repectively. They are found to vary around those values 
from one diode to diode and they affect only the softness of 
the recovery as they intervene only when the space charge 
region is reverse biased, i.e. when the reverse voltage starts 
to increase across the diode. As shown in Fig. 2, a good 
agreement is obtained between simulation and experimental 
waveforms for both the current and voltage during the most 
of the recovery time. Moreover, the calculation time was only 
57 s on a 80286 PC. For these results the voltage drop across 
the diffusion region 'ud which is given by (15) and (16) was 
neglected to simplify the calculation. A damping effect was 
thus neglected which resulted in the slowly damping behavior 
at the end of the recovery as shown in Fig. 2. 

From the point of view of power circuit designer, some 
switching parameters are very important such as the maximum 
reverse current I R M ,  the recovery time between the first two 
successive zero current crossing t,, and the maximum voltage 
overshoot VRM. The first two parameters affect the turn-off 
power losses and the third indicates the reliability of the diode 
under certain switching conditions. Measured and calculated 
switching parameters for the same tested diode are given in 
Table I for three different switching cases defined in Table 11. 
A satisfactory agreement is generally obtained as demonstrated 
by Table I. It should be also noted that those results are 
obtained using the simplest model which is based on only 
two state variables x1 and x2 for the carrier diffusion region. 
There are also some simplifications in the physical model 
such as position independent carrier lifetime and mobilities 
in the diffusion region and neglected recombination in the end 
regions. However, those approximations are only of secondary 
importance [ 131. 

The same model has been also successfully used to predict 
the diode reverse recovery in many other more sophisticated 
but interesting cases like chopper and invertor circuits [ 141 or 
high frequency resonant converters [ 161. 

The fact that the calculation time is short is mainly due 
to the intemal approximation method used to build the state 
variable model. With the EVIAM method it was possible 
to obtain a model that has only few state variables while 
keeping the model within an acceptable accuracy. As it has 
been mentioned in Section 111, the model based on (25) is 
obtained using the hyperbolic eigenfunctions T I  (z) and T ~ ( z )  

which are defined by (A3) and (A4). Those functions, which 
serve as decomposition basis functions, are illustrated in Fig. 
4. For a given instant of time the carrier concentration is 
a linear composition of those two functions. For instance, 
at t = t o  in Fig. 3, which corresponds to the steady state 
solution, the carrier distribution is composed only of q. If we 
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Fig. 2. Simulated (solid lines) and experimental (dashed lines) transient 
waveforms in ramp recovery for a BYT 12 PI 600 diode. (a) Current 
waveforms. (b) Voltage waveforms. The forward current IF= 0.63 A and the 
reverse applied voltage \'R = 80 V. The inductance L accounts to 1.9 pH. 

apply the finite element method [3][9] instead of the EVIAM 
method to define the basis functions and the trial functions 
we must use a large number of basis functions to obtain a 
good approximation. This can be easily illustrated using Fig. 
5, where, as an illustrating example, the carrier distribution 
given in Fig. 3 at t = tz ,  is reproduced. A finite element 
solution that uses 11 linear basis functions (10 elements are 
required in this case) might produce the carrier distribution 
shown in Fig. 5. with the same order of accuracy as shown 
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Fig. 3. 
ns, t l  = 12.0 ns, t 2  = 36.84 ns, t g  = 51.10 ns and t 4  = 76.0 ns. 

Evolution of carrier distribution in the diffusion region during the reverse recovery of current and voltage waveforms shown in Fig. 2. t o  = 0 

by the piecewise linear approximation. It is clear that less 
functions would produce a worse approximation. 

It should be noted that the methods described above are 

They can be also applied to any region where there exist 
distributed storage effects as in bipolar transistor, thyristor 
and other power devices. 

where the operator Diff is defined by (20). Its characteristic 
equation 

not only confined to the diffusion region of the power diode. r 2 -  (&+&) = o  

have three cases: 
(i) if X > -1/r there are two independent hyperbolic 

VI. CONCLUSION 
A new approach for predicting semiconductor device be- 

havior in reverse recovery is applied for the power PIN diode. 
This approach leads to efficient state variable models that 
can account for the devicekircuit interaction during reverse 
recovery. The state variable model is derived using the intemal 
approximation of the variational problem. We used the EVIAM 
method which specifies the basis functions and the trial 
functions from the eigenfunctions of the diffusion operator 
Diff to build the model. An efficient model of only three 

solutions, 

solutions and 

tions. 

(ii) if X < -1/r there are two independent trigonometric 

(iii) if X = -1/r there are two independent critical solu- 

We consider the first two cases briefly. For the hyperbolic 
solution where X is greater than -117 , we can define X such 
that 

-1 D 
A h = - + -  

r h2 
state variables and six parameters has been obtained. The 
model parameters are easy to determine and most of them are 
technological. Moreover the calculation time is very small. So 

where h is a real number. In this case, the general solution 
of (Al) is 

we can see that the model exhibits considerable improvements 
over conventional equivalent circuit models of power diodes. r ( x )  = Acosh (q) 

APPENDIX A so the following functions are solution of (Al)  and satisfy (21) 
THE EINGENFUNCTIONS OF THE OPERATOR DIFF 

Studying the differential equation defined by 

Diff p(x) = Xp(x) (All 
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Fig. 4. 
BYT 12 PI 600 tested diode. 

The decomposition basis functions r l ( x )  and vl(.r) as defined by (A3) and (A4). They are calculated using the model parameters of the 

where Io is a reference current and d h  is given by With this sequence T I ( % )  satisfies (22) while the rest of the 
T ~ C  functions well approximate the solution of (1) as given 
for example in [7] for the initial phase of the diode recovery. 
Now we also define a particular eigenfunction sequence to be 
used for generating the trial basis functions and which yields a 

discrete values of the parameter h: 

(A4) ) pn sinh (:) ( p p  + P ,  cosh ( X )  d h  = h tanh-’ 

For the trigonometric solution, is less than - 1 / T g  then we diagonal matrix D. This sequence is defined by the following 
can define 

-1 D 
‘W 

h, = - j = 1 , 2 , 3  . . .  (AB) 
Xh=T-7;2 (A5) 

.IT In this case, the general solution of (Al) is 
It is interesting to note that with the sequence (A8) qo(x) = 1. 

q(x)  ACOS - As a result (3) reduces to (:“a”) 
So the following functions are solution of (A3) and satisfy (21) 

where 6 h  is given by 

Since functions T h  and qh satisfy (Al), they are eigenfunctions 
of the operator Diff with the corresponding eigenvalue A h .  

We choose a particular eigenfunctions sequence, which might 
serve as a decomposition basis function sequence and which 
is defined by the following discrete values of the parameter h 

with 90 and p ,  subsituted for s and p ,  respectively. Equation 
(A9) implies that the intemal approximation p ,  conserves the 
total electron (hole) charge. 

APPENDIX B 
THE INTERNAL APPROXIMATION IN STEADY STATE 

In steady state we have from (10) 

GI = L(1) (B1) 

where 1 is the steady state current. We will show that (22) 
is a sufficient condition for the internal approximation (8) to 
be the exact solution of equation set (la)-(lc) in steady state: 
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Fig. 5.  Carrier distribution at t = t 2  in Fig. 2,  calculated using the 

TABLE I1 
THREE DIFFERENT SWITCHING CONDITIONS (a), (b) AND (c )  

(a) (b) (C) 

I F  (A) 1.39 1.02 0.63 

or 

(B8) Ga = L(1) 

Then a is the solution of (Bl )  and therefore from (8) p = p , ,  
i.e. 

Diff p n  = 0 039) 

EVIAM method (solid lines) with only two d&omposition functions and 
a corresponding possible linear finite element approximation (dashed lines) 
using eleven decomposition functions. 

addition we can easily show that defined by (B2) and 
(B3) satisfies (lb) and (IC) then pn is the steady state solution 
of (la)-( lc). 

TABLE I 
SIML'L.4TED AND EXPERIMENTAL SWITCHING PARAMATERS APPENDIX C 

THE SPACE CHARGE REGION UNDER 
Experiment Simulation HIGH LEVEL INJECTION CONDITIONS 

FOR THREE DIFFERENT SWITCHING CASES (a), (b) AND (c) 

(a) (b) ( c )  (a) (b) (c) With the assumption of quasi-equilibrium in the space 
$(.4/p.5) 32 18.5 41 30.2 18 41 charge region, which implies constant quasi-Fermi levels for 

holes and electrons, the space charge region can be character- 
ized by solving only Poisson's equation, mlfi.\, (A) 1.48 .OX6 1.4 1.36 0.83 1.3 

l R . \ /  (V) 221 127 275 220 128 298 

(C1) 
dE 4 
dz E 

f,.? (ns) 75 80 52 63 68 49 - = - ( p - n f N )  

Consider the vector cr and the function p ( z )  defined by 

and 

From (22), (Bl)  and (B2) we have 
n 

Diff p = XakDiff W ~ ( Z )  = 0 (B4) 
1 

where E is the electric field and N is the net doping con- 
centration. For one-sided abrupt p+n junction of width wc, 
the net doping concentration is the donor concentration N o .  
In equilibrium and reverse bias, the common Shockley's 
depletion approximation is used to obtain an analytical solution 
where the free carrier densities n and p are neglected in 
(Bl ) .  When the neutral n-side is in high level injection the 
electron and hole densities are much greater than the donor 
concentration NO and the free carrier densities can no longer 
be neglected in the space charge region. Moreover, the hole 
density is always greater than the electron density and doping 
concentration. Therefore, (B 1) can be reduced to 

We can show that cr is the solution of (Bl):  Combining (2), 
(31, (6) and (7)  we get 

The hole density is given by [13] 

I"' Diff p s dz = - g ( p .  s) + [(s. I )  (B5) 
- -  

where QP is the quasi-Fermi level for holes and Q ( x )  is 
the electrostatic potential. At the edge z = 0 of the space 
charge region at the p+-side, we assume low level injection, 

Using p = p and s = sJ in (B5) and then combining with 
(B4) we get 

- -  

(B6) 

From the definition of p given by (B3) and the linear property 

hence p ( 0 )  - NA. Then the constant quasi-Fermi level can be 
eliminated from (B3), 

. d P .  S J )  = I )  

(C4) of 9 we get P = "4 exp (r) -Wz) 
r i  

.kS(Wk.  S J )  = [ (s , .  1 )  (B7) where q ( 0 )  is taken as a reference equal to zero. Multiplying 
1 the two sides of (B2) by the electric field E ( E  = -2) and 
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integrating using (B4) and assuming that E(w,) = 0, we get 

1 
2 -&E2 = QuT[1?(z) - 1-)(wc)] (C5) 

from which and taking into account the sign of the electric 
field, we get 

Except for z very near to x = w, we can fairly assume that 
p ( z )  >> p(wc). With this approximation (B6) can be integrated 
using again (B4) to get 

[I31 S. H. Gamal, H. Morel, and J. P. Chante, “Carrier lifetime measurement 
by ramp recovery of p-i-71 diodes,” IEEE Trans. Electron. Devices, vol. 

[ 141 H. Morel, B. Allard and J. P. Chante, “PACTE: A behavioral simulator 
for power electronics,” in Proc. of the International Congress IMACS- 
TC1’90, Nancy-France, pp. 51 1416, 1990. 

[15] L. F. Shampine and C. W. Gear, “A user’s view of solving stiff ordinary 
differential equations,” Siam Review, vol. 21, no. I ,  1979. 

[ 161 M. Bensoam “Alimentation B dCcoupage pseudo-resonnante: analyse et 
simulation du comportement a frequence elevee,” ThPse de doctorut, 
ENSIEG, France, 199 1. 

[I71 P. 0. Lauritzen and Cliff L. Ma, “A simple diode model with reverse 
recovery,”lEEE Trans. PowerElectron., vol. 6, pp. 188-191, Apr. 1991. 

ED-37, pp 1921-1924, 1990. 

where UB = q(wc) is the barrier height. As the barrier height 
is equal to the difference between the built-in voltage 4 and 
the voltage drop on the junction U ,  we obtain (32) directly 
from (C7). 

REFERENCES 

L. W. Nagel, “SPICE2, A computer program to simulate semiconductor 
circuits,” Electron. Research Lab., University of California, Berkeley, 
MEM no. ERL-M520, 1975. 
Y. C. Liang and V. J. Gosbell, “Diode forward and reverse recovery 
model for power electronic SPICE simulations,” IEEE Trans. Power 
Elecrron., vol. 5,  pp. 346-356, 1990. 
S. Selberher, Analysis and Simularion of Semiconductor Devices. New 
York: Springer-Verlaeien, 1984. 
D. Kamopp and R. Rosenberg, System Dynamics: A Unified Approach. 
New York: Wiley Interscience, 1975. 
0. Hamel, H. Morel, K. Besbes and J. P. Chante, “Behavioural sim- 
ulation of diode devices in power systems,’’ Proc. of the International 
Congress IMACS, Pans-France, vol. 3, pp. 219-223, 1988. 
H. Benda and E. Spenke, “Reverse recovery processes in silicon power 
rectifiers,” in Proc. IEEE, vol. 55, pp. 1331-1354, 1967. 
F. Berz, “Ramp recovery in p- i -n  diodes,” Solid-State Electron., vol. 

F. Berz, “Step recovery of p-i-n diodes,” Solid-State Electron., vol. 22, 

G. Strang and G.  J. Fix, An Analysis of the Finite Element Method. New 
York: Prentice Hall, 1973. 
R. E. Showalter, Hilbert Space Methods for Partial Differential Equa- 
rion. New York: Pitman, 1979. 
F. Ben, “A simplified theory of the p-z-11 diode,” Solid-Srate Electron., 

S. M. Sze, Physics of semiconductor devices. New York: Wiley & Sons, 
1981. 

23, pp. 783-792, 1980. 

pp. 927-932, 1979. 

vol. 20, pp. 709-714, 1977. 

Harve Morel was born in Reims, France in 1959. 
He received the engineer degree and Ph.D. in en- 
gineering from L‘Ecole Centrale De Lyon, Lyon, 
France in 1982 and 1985, respectively. 

In 1985 he joined the CNRS, Centre National 
de la Recherche Scientifique at CEGELY, Centre 
de GCnie Electrique de Lyon. He manages the 
power semiconductor device modeling and circuit 
simulation team. 

Dr. Morel develops the system simulator PACTE 
which is based on bond graph and Petri Net technics. 

Salah Hassan Gamal was bom in Cairo, Egypt, in 1958. He received the B. 
Sc. and M. Sc. degrees in electrical engineering from Ain Shams University, 
Cairo, in 1981 and 1985, respectively. 

He received the Ph.D. degree from the INSA (Institut Nartional des Sciences 
AppliquCes), Lyon, France in 1992. 

In 1988 he joined CEGELY, Lyon, as research assistant. Since 1992 he 
has been Assistant Professor in the Department of Engineering, Physics 
and Mathematics, Faculty of Engineering, Ain Shams University, where his 
research activities are devoted to power device modeling and high-temperature 
silicon carbide power devices. 

Jean-Pierre Chante was born in Lyon, France, in 1942. He received the 
“Doctorat d’etat’ from the University of Lyon, France, in 1981. From 1980 
to 1986, he managed a research team in the field of power semicconductor 
devices at the Ecole Centrale de Lyon. 

Since 1986 he has been a Professor of Electronic Components and Applied 
Electronics at the INSA, where he is the head of the Power Devices and 
Applications team which is part of the CEGELY. He is also in charge of the 
Centre Inter-universitaire de MicroClectronique de la RCgion de Lyon, which 
is a regional research center in the microelectronic field. 

His interests are in high-temperature electronics, Sic-based components, 
advanced power devices and CAD tools for power electronics. 

Dr. Chante is the author or co-author of numerous papers on these subjects. 
He is a member of the SEE (SociCtC des Electriciens et des Electroniciens). 

‘ I  


