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Abstract: We propose a new space efficient operator to multiply elements lying in a binary fieldF2k . Our approach is
based on a novel system of representation calledDouble Polynomial Systemwhich set elements as a bivariate
polynomials overF2. Thanks to this system of representation, we are able to use a Lagrange representation
of the polynomials and then get a logarithmic time multiplier with a space complexity ofO(k1:31) improving
previous best known method.

1 Introduction

Efficient hardware implementation of finite field
arithmetic, and specifically of binary fieldF2k, is often
required in cryptography and in coding theory (Berle-
kamp, 1982). For example in elliptic curve cryptosys-
tem (Koblitz, 1987; Miller, 1986), the main operation
is the scalar multiplication on the curve, which ne-
cessitates thousands of multiplications and additions
over a finite field. Similarly, hundreds of multiplica-
tions over a binary field are required for the Diffie-
Hellman Key exchange protocol (Diffie and Hellman,
1976).

Previously to this work, several architectures have
already been proposed to efficiently implement the
arithmetic inF2k. These architectures are mostly de-
dicated to the multiplication since this operation is ex-
tensively used and is often the most expensive. Each
of them takes advantage of a special representation of
the field. In particular, one of them uses polynomial
basis or shifted polynomial basis (Mastrovito, 1991;
Koc and Sunar, 1999; Fan and Dai, 2005) while ano-
ther uses normal basis (Gao, 1993; Koc and Sunar,
1998). The latter providing a really efficient squaring
in the field since in this basis the squaring is just a
cyclic shift of the coefficients.

In these representations the main approach to per-
form the multiplication consists to express the ope-

ration as a matrix-vector product with binary entries.
Parallel architectures are thus capable to perform this
product within logarithmic time. However, these ar-
chitectures still achieve a space complexity ofk2. Ac-
cording to the recent improvements proposed in (Fan
and Hasan, 2007), one can still perform the matrix-
vector product in logarithmic time but with a space
complexity ofk1:56 or k1:63. This has been made pos-
sible thanks to structured matrices such as Toeplitz
ones and a divide-and-conquer approach for the pro-
ducts.

In this paper we propose a new approach which
reduces the exponent in the space complexity to 1:31
while keeping a logarithmic time complexity. First,
we introduce a novel system of representation, the
Double Polynomial System. In this representation,
elements ofF2k are polynomials in two variables
A(t;Y)=∑n�1

i=0 ai(t)Yi whereai(t) have degree strictly
less thanr.

Therefore, as in classical polynomial represen-
tation, the multiplication can be performed in two
steps : a polynomial multiplication, and then a reduc-
tion phase to reduce the degrees inY and int.

The reduction inY is simple due to the definition
of DPS. The same is not true for the reduction int.
Here, we use a Montgomery-like reduction approach
in order to perform this reduction with few polyno-
mial multiplications, this enabling us to easily use



the Fast Fourier Transform. Therefore, our multiplier
fully benefits from the FFT process which is highly
parallelizable and provides a subquadratic space com-
plexity.

Hence, we propose a binary field multiplier which
has a delay of(16log3(k)+20)TX +8TA and a space
complexity ofO(k1:31), whereTX andTA correspond
respectively to the delay of one XOR gate and one
AND gate.

Let us briefly give the outline of the paper. We
first introduce the DPS representation for binary fieldsF2k (Section 2). We present the DPS multiplication in
Section 3 and discuss the problem of finding a sui-
table polynomial to achieve our Montgomery-like co-
efficient reduction in Section 4. Then, we present in
Section 5 a modified version of our multiplication
introducing Lagrange basis. We recall in Section 6
some basic facts on the architecture design of a ter-
nary FFT on which we rely for our multiplier. We fi-
nally conclude this paper by a detailed explanation
of the complete architecture for our DPS-Lagrange
multiplier and its complexity analysis and compari-
son (Section 7).

2 DPS Representation

A binary fieldF2k is generally constructed as the
set of polynomials modulo an irreducible polynomial
P2 F2[t] of degreekF2k = F2[t]=(P(t))= fA(t) 2 F2[t] s.t. degA(t)< kg

We introduce a novel binary field representation,
the Double Polynomial System (DPS), inspired from
AMNS number system of Bajardet al. (J.-C. Bajard,
2005).

Definition 1 (DPS representation). A Double Poly-
nomial System (DPS) is a quintupletB = (P;γ;n; r;λ)
such that

– P(t) 2 F2[t] is an irreducible polynomial of de-
gree k,

– γ(t);λ(t) 2 F2[t]=(P(t))) satisfy

γ(t)n� λ(t) modP;
andλ(t) has a low degree in t.

A DPS representation of an element A(t) 2 F2[t]=(P)
is a polynomial AB(t;Y) 2 F2[t;Y] such that

AB(t;Y) = n�1

∑
i=0

ai(t)Yi with degt ai(t)< r

and AB(t;γ(t))� A(t) modP

In the sequel we will often omit the subscriptB to
denote the DPS form of an elementA. In some cases,
when it is clear from the context, we may discard the
variablest;Y to define the DPS representation of an
element. We will also denote byE the polynomial
E =Yn�λ.
Example 1. Let us consider the fieldF24, then the
quintupletB = (P= t4+ t3+ t2+ t +1;γ = t3+ t2+
t;n = 3; r = 2;λ = t) is a DPS for this field. We can
check this with Table 1 which gives the DPS expres-
sion of each element inF24.

TAB . 1: Elements ofF24 in B.

A(t) 0 t2 t3+ t2+ t +1 t3+ t
AB 0 (t +1)Y2 Y+1 Y2+ t +1

A(t) 1 t2+1 t3+ t2+ t t3+ t +1
AB 1 (t +1)Y2+1 Y Y2+ t

A(t) t t2+ t t3+ t2 t3+1
AB t Y2+Y+1 Y+ t Y2

A(t) t +1 t2+ t +1 t3+ t2+1 t3

AB t +1 Y2+Y Y+ t +1 Y2+1

In particular, we can verify that if we evaluate(t+
1)Y2+1 in γ, we get(t +1)γ2+1= (t +1)(t3+ t2+
t)2+1= t2+1 modP, as expected. One can also see
that degY((t + 1)Y2 + 1) = 2 < 3 = n and degt((t +
1)Y2+1) = 1< 2= r. �
Remark 1. The DPS can be seen as a generaliza-
tion of the polynomial representation of double ex-
tensionsF2rn . Such extensions are usually construc-
ted first asF2r = F2[t]=(P(t)) and then asF2rn =F2r [Y]=(Yn� λ)) with λ 2 F2r , see (Guajardjo and
Paar, 1997). However, this construction is not possible
when the degreek of the fieldF2k is prime. DPS pro-
vides an alternative for double extension in this situa-
tion.
Remark 2. As in classical polynomial representa-
tion, the addition in DPS is just a parallel bitwise
XOR on the coefficients.

We proceed now by considering the problem of
the multiplication of two elements expressed in a
DPS. This can be done in two steps as described in
Algorithm 1.

The first step of the algorithm consists of a clas-
sical polynomial multiplication modulo the binomial
E(Y)= (Yn�λ). The resulting polynomialC(t;Y) sa-
tisfiesC(t;γ) = A(t;γ)B(t;γ) modP(t) sinceE(γ) �
0 modP(t) by definition of the DPS.

The second step computes an elementR(t;Y) such
that it becomes a valid DPS representation ofA�B :

R(t;γ) = A(t;γ)B(t;γ) modP(t) and degt(R)< r:



Algorithm 1 DPS multiplication scheme.

Input : A;B2 B = (P;γ;n; r;λ)
Output : C= A�B2 B

1. Polynomial multiplication inY :
C= AB mod(Yn�λ).

2. Coefficients reduction :
R= RedCoe f f(C).

It is clear from the DPS system and from the multi-
plication modulo a binomialYn�λ thatC has coef-
ficientsci(t) with degree int bounded by 2(r �2)+
degt λ. Therefore, these coefficients must be reduced
to get the result of the multiplication expressed in the
DPS representation.

3 Multiplication in DPS

A straightforward method for the reduction phase
in t of Algorithm 1 is to perform an Euclidean division
C = Q�M +R where degt R< r. This reduction is
only valid if M(t;Y) is monic int and satisfies

M(t;γ)� 0 modP(t) with degt(M) = r: (1)

Generally, one can easily compute a polynomialM
satisfying equation (1), e.g. Section 4, but ensuring
monicity is difficult.

In order to avoid monicity attached to a division
strategy, we adapt the Montgomery trick (Montgo-
mery, 1985) to our DPS system. The idea is to re-
place the Euclidean division by few multiplications
and one exact division. This corresponds to annihila-
ting the lower part of theci(t) instead of the higher
ones.

This method is given in Algorithm 2 assuming a
polynomialM(t;Y) satisfyingM(t;γ)� 0 modP(t) is
given.

Algorithm 2 DPS Multiplication.

Input : A;B2 B = (P;γ;n; r;λ)
with E =Yn�λ

Data : M such thatM(γ)� 0 modP,
a polynomialm2 F2[t] and
M0 =�M�1 mod(E;m)

Output : Rsuch that
R(t;γ) = A(t;γ)B(t;γ)m�1 modP

begin
C A�B modE;
Q C�M0 mod(E;m);
R (C+Q�M modE)=m;

end

Example 2. We consider the fieldF24, with the DPS
B = (P= t4+ t3+ t2+ t+1;γ = t3+ t2+ t;n= 3; r =
2;λ = t). In Table 2, we give an example of trace of
DPS multiplication.

TAB . 2: DPS multiplication trace.

Operations Results
A tY2+ tY
B (t +1)Y+ t
M tY2+Y+ t +1
M0 (1+ t)Y2+(1+ t)Y+1
m t2

C tY2+ t2Y+ t3+ t
Q tY2

Q�M (t2+ t)Y2+ t3Y+ t2

C+Q�M t2Y2+(t3+ t2)Y+ t3

R Y2+(t +1)Y+ t

We can check thatR(t;γ)� t2+ t modP is equal
to A(t;γ)B(t;γ)t�2 modP. �
Lemma 1. Algorithm 2 is correct.

Proof. We need to demonstrate that the outputR of
the algorithm satisfies the following equation

R(t;γ) = A(t;γ)B(t;γ)m�1 modP: (2)

From the definition 1 of DPS representation, we
know thatE(γ)� 0 modP. Thus, we have

C(t;γ)� A(t;γ)B(t;γ) modP:
By definition of M, we haveM(t;γ) � 0 modP and
consequently

C(t;γ)+Q(t;γ)M(t;γ) � C(t;γ)� A(t;γ)B(t;γ) modP

We now need to prove that the division bym is
exact. This is equivalent to prove the following equi-
valenceC+Q�M modE� 0 modm. By definition,
we haveQ = C�M0 modE and M0 = �M�1 mod(E;m). We considerR0=C+Q�M mod(E;m), then
the following equivalences hold

R0 � C+C� (�M�1�M) mod(E;m)� (C�C) mod(E;m)� 0 mod(E;m):
Thus, division bym is exact. Hence, the algorithm is
correct since an exact division (the division bym) is
equal to the multiplication by an inverse moduloP.



At this level, we know that the resulting polyno-
mial Rof the previous algorithm satisfies the equation
R(t;γ) = A(t;γ)B(t;γ)m�1 modP but we do not know
whether it is expressed in the DPS, i.e., if the coeffi-
cients ofRhave degree int smaller thanr. This is the
goal of the following theorem.

Theorem 1. Let B = (P;γ;n; r;λ) a Double Poly-
nomial System, M be a polynomial ofB such that
M(γ) � 0 modP andσ = degt(M). Let A;B be two
elements expressed in the DPSB. If r and the polyno-
mial m satisfy

r > σ+degt(λ) and degt(m)> degt(λ)+ r (3)

then the polynomial R output by the Algorithm 2 is
expressed in the DPSB.

Proof. From the Definition 1, the polynomialR be-
longs to the DPSB = (P;γ;n; r;λ) if degY R< n and
if degt(R)< r. The fact that degY R< n is easy to see
since all the computation in the Algorithm 2 are done
moduloE =Yn�λ.

Hence, we have only to prove that degt R < r.
Since by definition degt A;degt B< r we have the fol-
lowing inequalities

degt R = degt((A�B+Q�M) modE)=m)� max(degt A+degt B;degt Q+degt M)+degt λ�degt m� max(2r;σ+degt m)+degt λ�degt m:
According to our hypothesis in the equation (3), we
have both 2r +degt λ�degt m< r andσ+degt m+
degt λ�degt m< r. Hence, we get degt(R)< r as re-
quired.

4 Construction of the polynomialM

The result of this section uses mathematical struc-
tures involving module over the polynomial ringF2[t]
in order to prove existence of a suitable polynomial
M. The remaining of the paper is independent from
this section and readers who are not familiar with such
mathematical structure can skip this section without
misunderstanding.

Our goal is to construct a polynomialM such that
M(t;γ) � 0 modP and degt M is small. This polyno-
mial belongs to the set

M = fA(t;Y)) 2 F2[t;Y] with degY A< ng:
The setM has a natural structure ofF2[t] module.

Recall that anF2[t]-moduleM is an (additive) abelian
group, with a scalar multiplication overF2[t] :F2[t]�M !M :

In order to calculate the elementM with low de-
gree int, we will use a sub-moduleM 0 of M spanned
by the following linearly independent vectors.

Ω =
0BBBBB@

P 0 0 : : : 0�γ 1 0 : : : 0�γ2 0 1 : : : 0
...

...
...�γn�1 0 0 : : : 1

1CCCCCA
 P Y� γ Y2� γ2

... Yn�1� γn�1

Each of the polynomialsV(t;Y) defined by the rows
of Ω satisfyV(t;γ)� 0; and anyF2[t]-linear combina-
tion of these polynomials satisfies also this property.
Therefore, one way to constructM consists to com-
pute aminimal basisof M 0 and defineM as the basis
element with the smaller degree int. The notion of
minimality is related to the degree int of the basis
elements.

According to polynomial matrix properties, one
can find a minimal basis ofΩ by computing its ma-
trix reduced form called the Popov form (Mulders and
Storjohann, 2003). In particular, the properties of the
Popov form (Villard, 1996, §1.2) tell us that it exist
a minimal basis( f1; f2; : : : ; fn) of M 0 which satisfies
the following degree properties :

n

∑
i=1

degt fi = degt(det(Ω)) (4)

degt f1� degt f2� : : :� degt fn (5)

If we setM = f1 then the degree int of M is mini-
mal and satisfies the degree bound

degt M � (degt P)=n (6)

Indeed, according to equations (4) and (5), we
have n� degt M < ∑n

i=1degt fi and since det(Ω) =
P(t) we get the announced bound.

Beside the fact that the calculation ofM is only
needed once at the construction of the DPS represen-
tation, one would need to efficiently compute such po-
lynomial. This can be achieve within a complexity of
O(n3k2) binary operations with AlgorithmWeakPo-
povFormof (Mulders and Storjohann, 2003) or with
an asymptotic complexity ofO(n3k logk) binary ope-
rations with AlgorithmColumnReductionof (Giorgi
et al., 2003).

5 DPS multiplication in Lagrange
representation

In this section, we present a version of Algo-
rithm 2 using a Lagrange representation of the DPS
elements.



5.1 Lagrange representation

Let R a ring, andR [Y] the polynomial ring over
R . The Lagrange representation of a polynomial of
degreen� 1 in R [Y] is given by its values atn dis-
tinct points. For us, thesen points will be the roots
of a polynomialE = ∏n

i=1(Y�αi) 2 R [Y]. From an
arithmetic point of view, this is related to the Chinese
Remainder Theorem which asserts that the following
application is an isomorphism

R [Y]=(E(Y)) g�! n

∏
i=1

R [Y]=(Y�αi) (7)

A 7�! (A mod(Y�αi))i2f1;:::;ng :
The computation ofA mod(Y�αi) is simply the

computation ofA(αi). In other words, the image of
A(Y) by the isomorphism (7) is nothing else than the
multi-points evaluation ofA at the roots ofE. This
fact motivates the following Lagrange representation
of the polynomials.

Definition 2 (Lagrange representation). Let A2
R [Y] with degA< n, andα1; : : : ;αn be the n distinct
roots of a polynomial E(Y).

E(Y) = r

∏
i=1

(Y�αi) modm

If ai = A(αi) for 1 � i � n, the Lagrange repre-
sentation (LR) of A(Y) is defined byLR(A(Y)) =(a1; : : : ;an):

Lagrange representation is advantageous to per-
form operations moduloE : this is a consequence
of the Chinese Remainder Theorem. Specifically the
arithmetic moduloE in classical polynomial repre-
sentation can be costly ifE has a high degree. In
LR representation this arithmetic is decomposed into
n independent arithmetic units, each does arithmetic
modulo a very simple polynomial(X�αi). Further-
more, arithmetic modulo(X�αi) is the arithmetic in
R since the product of two zero degree polynomials
is just the product of the two constant coefficients.

5.2 Multiplication algorithm

Let us go back to the Algorithm 2 and see how
to use Lagrange representation to perform polynomial
arithmetic in each step. The first two steps can be done
in Lagrange representation modulom1(t) such thatE
split modulom1(t) :

E = n

∏
i=1

(Y�αi) modm1(t);

The third step must be done modulo a second po-
lynomialm2(t), which also splitsE,

E = n

∏
i=1

(Y�α0i) modm2(t);
since the division bym1 cannot be performed modulo
the polynomialm1(t).

We then need to represent the polynomialsA and
B in Algorithm 2 with both their Lagrange represen-
tations modulom1(t) andm2(t).
Notation 1. We will use in the sequel the following
notation. For a polynomialA of degreen�1 in Y we
will denote

– A the Lagrange representation inαi modulo
m1(t)

– A the Lagrange representation inα0i modulo
m2(t).

Hence, we can do the following modifications to
the Algorithm 2 :

Algorithm 3 DPS-LR Multiplication.

Input : A;A;B;B
Data : M such thatM(t;γ) � 0 modP, M0

such thatM0 =�M�1 (mod E;m1).
Output : R;R such thatR 2 B andR(t;γ) =

A(t;γ)B(t;γ)m�1
1 modP(t)

begin
Q A�B�M0;
Q Convertm1!m2(Q));
R (A�B)+Q�M)�m�1

1 ;

R Convertm2!m1(R);
end

The operations to computeQ andRare performed
in Lagrange representation and then can be easily pa-
rallelized. It consists ofn independent multiplications
in F2[t]=(m1(t)) andF2[t]=(m2(t)).

The major drawback of this algorithm is the
conversions between Lagrange representations mo-
dulo m1 andm2. It is necessary to perform these ope-
rations efficiently in order to get a multiplier yielding
our announced space complexity.

5.3 Lagrange representations
conversion

In order to provide an efficient implementation
of conversions between Lagrange representations mo-
dulo m1 and m2, we rely on the binomial form of



E =Yn�λ. Indeed, ifµ1 = α1 is a root ofE modulo
m1 then all others roots can be written

α j = µ1ωi
1 modm1

where ω1 is a n-th primitive root of unity inF2[t]=(m1). This property comes from the fact that(α j=µ1)n = 1 modm1 and thus there exists an inte-
ger i such thatα j=µ1 = ωi

1 modm1. This is still true
modulom2.

Thus, the multi-point evaluation of the polynomial
A(Y) in αi modulom1 can be done as follow :

1. seteA(Y) = A(µ�1
1 Y) = n�1

∑
i=0

aiµ
�i
1 Yi

2. computeA= DFTm1(eA;n;ω1),
whereDFTm1(eA;n;ω1) is the evaluations of the poly-
nomial eA in then-th roots of unityωi

1.
Similarly the Lagrange interpolation which com-

puteA(Y) from A can be done by reversing the pre-
vious process.

By gluing together this two processes we get the
following algorithm to perform conversion between
Lagrange representations.

Algorithm 4 Convertm1!m2.

Input : A

Output : AeA(Y) DFT�1
m1

(A;n;ω1) ;

A(Y) eA(µ�1
1 Y) modm1 ;eA(Y) A(µ2Y) modm2 ;

A DFTm2(eA(Y);n;ω2);
As a consequence, the conversion has a the cost

of two Discrete Fourier Transforms. This can be done
efficiently by using FFT algorithm (Gathen and Ge-
rhard, 1999, §8.2). Moreover, such FFT computations
can be done even faster when special modulimi(t)
such thatmi(t) = t2�3s+ t3s+1 are used (Scḧonhage,
1977). These moduli can be seen as a polynomial ana-
log of Fermat numbers.

6 Architecture for FFT computation

We present an architecture to perform the FFT cal-
culation of a polynomialA(Y)2R [Y] of degreen�1,
keeping in mind our targeted Lagrange conversion
algorithm. We consider the ringR = F2[t]=(m(t))
wherem(t) = t2n=3 + tn=3 + 1 andn = 3s. Note that
the FFT process needs to be performed using ternary

method since binary one is not feasible over characte-
ristic 2 rings (Scḧonhage, 1977).

Let us denoteω a primitiven-th root of unity mo-
dulo m(t) andθ = ωn=3 a 3rd root of unity. The ter-
nary FFT process is based on the following three-way
splitting ofA

A1 = ∑n=3�1
j=0 a3 jY3 j ;

A2 = ∑n=3�1
j=0 a3 j+1Y3 j ;

A3 = ∑n=3�1
i=0 a3 j+2Y3 j ;

such thatA= A1+YA2+Y2A3 .
Let bA[i] = A(ωi) be the i-th coefficient of

DFTm(A;n;ω). Let us also denote bŷA1[i]; Â2[i] and
Â3[i] the coefficients of the DFT of ordern=3 of res-
pectivelyA1;A2 andA3.

The following relations can be obtained by evalua-
ting A= A1+YA2+Y2A3 in ωi ;ωi+n=3 andωi+2n=3 :

Â[i] = Â1[i]+ωiÂ2[i]+ω2iÂ3[i];
Â[i +n=3] = Â1[i]+θωiÂ2[i]+θ2ω2iÂ3[i]; (8)

Â[i +2n=3] = Â1[i]+θ2ωiÂ2[i]+θω2iÂ3[i]:
This operation is frequently called the butterfly

operation. It can be performed efficiently if we com-
pute modulom(t)(tn=3+1) = tn+1 instead ofm(t).
Indeed, in this caseω = t and a multiplicationa(t)�
ωi modulotn+1 is a simple cyclic shift. The butterfly
circuit (Figure 1) is a consequence of this remark and
the relations given in (8). In Figure 1, the� blocks
refer to a simple shift operations by the given value
and the

L
blocks refer to XOR operator. When no

value is given, then shift operation is not performed.

2(i+n=3)
i+n=3

2i+n=3

i+2n=3

i

2i

Â[i + n
3]

Â[i + 2n
3 ]

Â[i]
Â1[i]

Â2[i]

Â3[i]

FIG. 1: Ternary butterfly operator.

Within the FFT, the computations of̂A1; Â2 and
Â3 are done in the same way. These polynomials are
split in three parts and butterfly operations are applied
again. This process is done recursively until constant
polynomial are reached. If we entirely develop this
recursive process we obtain the schematized architec-
ture in Figure 2.
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3s�2 butterflies 3s�2 butterflies 3s�2 butterflies

ωi ω2i

A[0] ; A[1] ; A[2] ; : : : ; A[3s
�3] ; A[3s

�2] ; A[3s
�1]

Â[0] ; Â[1] ; Â[2] ; : : : ; Â[3s
�3] ; Â[3s

�2] ; Â[3s
�1]

FIG. 2: Ternary FFT circuit.

Let us now evaluate the complexity of this archi-
tecture. It is composed of log3(n) stages where each
stage consists ofn=3 butterfly operations. Each of
these butterfly operations requires 6n XOR gates, and
has a delay of 2TX, whereTX is the delay of one XOR
gate.

Consequently, this architecture has a space com-
plexity of

S(FFTm(t)) = (2nlog3(n)+n) XOR (9)

and a delay of

D(FFTm(t)) = (2log3(n)+1)TX: (10)

7 Architecture and Complexity

We now present an hardware architecture associa-
ted to Algorithm 3 in the special case wherem1 and
m2 are chosen as

m1 = t2n+ tn+1 andm2 = t2n=3+ tn=3+1:
This choice enables us to use the FFT circuit presen-
ted in the previous section. The architecture of our bi-
nary field multiplier is given in Figure 3. It is consti-
tuted of FFT blocks and multipliers modulom1(t) and
m2(t).

TAB . 3: Complexity of multipliers modulom1 andm2.

Mulm1
Space Time

#AND 3nlog3(6) 1
#XOR 72

5 nlog3(6)�9n�7=5 3log3(n)+3

Mulm2
Space Time

#AND 1
2nlog3(6) 1

#XOR 36
15nlog3(6)�n=5+n�1 3log3(n)

These multipliers are referenced by blocksMulm1

andMulm2 in our architecture. Because of the special
form of m1(t) andm2(t) we can use the multiplier of
Fan and Hasan (Fan and Hasan, 2007) to perform this
operation. Therefore, the complexity (cf. Table 3) of
these blocks are easily deduced from (Fan and Hasan,
2007, Table 1).

The FFT blocks are designed using ternary me-
thod presented in previous section. Therefore, their
complexity are those given in (9) and (10).
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FIG. 3: DPS-Lagrange Multiplier.

The complexity of our multiplier can be eva-
luated with respect to the numbers of each blocks
and their corresponding space complexity denoted
S , and time complexity denotedD. For the space
complexity this gives 4nS(Mulm1) + 5nS(Mulm2) +
2S(FFTm1)+2S(FFTm2)+2n2=3 XOR: Similarly, the cri-
tical path of this architecture gives the delay 4D(Mulm1)+
4D(Mulm2)+2D(FFTm1)+2D(FFTm2)+TX :

Using these expressions, (9),(10) and Table 3, we



TAB . 4: Complexity comparison.

Space Complexity Time Complexity
Method # AND # XOR TA TX

This paper 14:5k1:31 69:6k1:31�31k+k0:5(8log3(k)+39) 8 16log3(k)+20
FH� binary k1:58 5:5k1:58�5k�0:5 1 2log2(k)+1
FH� ternary k1:63 4:8k1:63�4k�0:8 1 3log3(k)+1

FH� = (Fan and Hasan, 2007) ;

can compute the complexity with respect to the num-
ber of XOR and AND gates and their corresponding
delayTX andTA.

Let r be the degree int of the coefficients in
the DPS representation then degt(m2) must satisfy
degt(m2)� r. Therefore, this implies thatk� r�n=
2n2=3 and thus leads to usen� pk, wherek is the
degree of the fieldF2k.

Finally, we obtain the complexity of the DPS-
Lagrange multiplier stated in Table 4. We also give in
this table the complexity of the best known method,
regarding space and time complexity, to perform bi-
nary field multiplication.

One can remark that our approach decrease the
space complexity fromk1:58 to k1:31, while it is slo-
wer by a factor roughly equals to 5:3.

For the sake of simplicity, we have presented our
algorithm with special modulim1 andm2. As a conse-
quence, we have an increase in the degree ofm1 which
has an influence on the final complexity. Another ap-
proach would be to use onlym2 as a special Fer-
mat polynomial and takesm1 such thatF2[t]=(m1)
andF2[t]=(m2) are isomorphic. Therefore, operations
modulom1 could be performed modulom2 through
isomorphism transformations, and then decrease the
space complexity by a factor at least 3.

8 Conclusion

In this paper we have presented a novel algo-
rithm to perform multiplication in binary field, using
a Double Polynomial System of representation. This
system enables the use of Fast Fourier Transform in
the multiplication according to Lagrange representa-
tion. The resulting multiplier still achieve a logarith-
mic time complexity, but asymptotically improve the
space complexity fromO(k1:58) to O(k1:31),

Our method is a first approach to reduce the
space complexity of binary field multiplier. In parti-
cular, some optimizations can be done to reduce the
constant factors in the complexity. For example, lot
of multiplications by a constant are counted as full

multiplication in the current complexity evaluation.
Furthermore, one can also reduce the exponent

in the space complexity by replacing Fan and Ha-
san multipliers with a quasi-linear approach (e.g.
Scḧonhage’s technique (Schönhage, 1977)).
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