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Abstract

We present some variants of stochastic homogenization theory for scalar elliptic equations of

the form —div [A (g,w) Vu(x,w)] = f. These variants basically consist in defining stochastic
coefficients A (f,w) from stochastic deformations (using random diffeormorphisms) of the periodic
setting, as announced in [4]. The settings we define are not covered by the existing theories. We also
clarify the relation between this type of questions and our construction, performed in [3, 5], of the

energy of, both deterministic and stochastic, microscopic infinite sets of points in interaction.

Résumé

Nous présentons dans cet article quelques variantes de la théorie de ’homogénéisation stochastique
pour les équations elliptiques scalaires de la forme —div [A (£,w) Vu(z,w)] = f. Ces variantes
consistent essentiellement & définir les coefficients A (f,w) comme déformations stochastiques (par
des difféomorphismes aléatoires) de coefficients périodiques. Ce travail a été annoncé dans [4]. Les
cas que nous définissons ainsi ne sont pas inclus dans les théories existantes de I’homogénéisation
stochastique. Nous établissons également un lien entre ce type de probléme et celui de définir ’énergie
moyenne d’un systéme infini de particules, que nous avons traité dans [3] pour le cas déterministe, et

dans [5] pour le cas stochastique.
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1 Introduction
We study homogenization for scalar elliptic equations in divergence form with random coefficients:
—div[4; (z,w) Vu(z,w)] = f. (1.1)

In this context, the purpose of this article is two-fold.

First, we aim at slightly extending the usual ergodic stationary setting (see for instance [2, 7]) by
considering specific cases of random coefficients A, (x,w), mainly of the form

x
A (z,w) = A (E,w) , (1.2)
not covered by the existing theories. These coefficients are typically obtained using random deformations
of periodic coefficients. A prototypical case of such coefficients reads:

A(20) = A (71 (2.)). 139

where A, is Z%periodic, and ® is almost surely a diffeomorphism. Its gradient V® is assumed stationary
in the sense

Vk € Z% V&(z+ k,w) = V®(z,7w) almost everywhere in z, almost surely,

for a certain ergodic group action 7. Note that, although this sounds as a special case of existing theories,
it is not. The above setting has been introduced in our previous work [4], and is recalled in details in
Sections 1.2 and 1.3. Several variants along this general line are examined here, in Sections 2 and 5. We
show that all these variants allow for explicit homogenization results. That is, we are able to prove that
homogenization holds and identify the homogenized limit, using corrector problems, which are shown to
be well-posed. A specific case (developed in Section 3) is that of a diffeomorphism @ in (1.3) that is
a “small” perturbation of Identity. Then, using a Taylor expansion with respect to a small parameter
measuring the perturbation, we are able to show that this specific stochastic homogenization setting
reduces to some particular, new, situation of periodic homogenization.

Our second purpose is to clarify the relation between the above questions of homogenization theory
and our long term endeavour to define the energy of an infinite set of point particles in interaction, as
exposed in [3, 5]. The reader is likely to be less familiar with that latter problem than with the classical
homogenization problem. So, let us recall it briefly. More will be said in Section 4. If we are given an
infinite set of points z;, say interacting with the two-body potential W (z; — x;), it is an easy exercise
to define the notion of energy per particle of this assembly of particles when the x; are periodically
arranged. Some slight extensions of periodicity, such as quasi-periodicity, may also be treated. The
construction also applies to energy models more sophisticated than the two-body interaction chosen here
for simplicity of exposition. We will not enter the details of such questions, which have been the subject
of many publications of ours (and others) in the past years. On the other hand, when the positions of
the particles are more general, defining the energy per particle is a challenging question. In [3, 5], we
addressed that latter question, respectively for some “general” deterministic sets of points, and for sets
of random points. We will return to this in Section 4. The point was to determine the appropriate
geometric properties that allow for defining the energy. It turns out that the properties we exhibited
for that purpose have their counterpart in homogenization theory. This is what we are going to show in
Sections 4 and 5 of the present work. In the language of homogenization, the positions x; of the point
particles may intuitively be thought of as the obstacles, or, equivalently, the vertices of the unit cells.
More mathematically, the positions z; may be used to define, using a construction introduced in [3], an



appropriate algebra of functions, namely the smallest algebra, closed for some uniform norm on R? (say
L), containing functions of the form

a() = Y plo — 1)

€N

with, say ¢ € D(R?). Taking the entries 4;; of the matrix A in (1.2) in this algebra, one may then ask
the question of the homogenization of (1.1) within this algebra. Using this construction, we establish a
correspondence between the homogenization problem and the, apparently distant, problem of definition
of energies for sets of point particles.

Let us also mention that the developments below, in particular those of Section 2, foremost Section 3,
are likely to yield new, appropriate numerical strategies for stochastic homogenization in these particular
settings.

The present work has been announced as references Ref. 3 and Ref. 4 in [4], as far as the variants
of stochastic homogenization theory are concerned. This is the content of Sections 2 and 3. It has also
been announced as reference Ref. 8 in [5], for what regards the definition of the energy for a large class
of random sets of points. This is some of the material contained in Sections 4 and 5.

1.1 Elliptic homogenization theory

To begin with, let us recall some basic ingredients of elliptic homogenization theory. At least this will
serve as a preliminary to set the notation. For this purpose, we argue in the canonical periodic setting
(see for instance [2, 6, 7] for all the details). We thus consider, on a regular domain D in R?, the problem

—div [Aper (f) Vus] =f in D,
(1.4)
u®* =0 on 9D,

where the matrix A,., is symmetric and Z%periodic. Let us emphasize that in the present section we
will manipulate for simplicity symmetric matrices, but that our arguments may be adapted, in the usual
way, to cover the cases of non symmetric matrices.

The problem (1.4) is the homogenization problem (1.1) for A.(2) = Aper (2). The associated corrector
problem reads, for p fixed in R?,

—div (Aper (y) (p + pr)) =0,

(1.5)
wp is 7Z.%-periodic.
It has a unique solution up to the addition of a constant. Then, the homogenized coefficients read
Af = L (e; + Ve, (y))T Aper(y) (ej + Ve, (y)) dy = /Q (ei + Ve, (y))T Aper(y)ejdy, (1.6)
where @ is the unit cube. As e goes to zero, the solution u° to (1.4) converges to u* solution to
—div[A*Vu*]=f in D,
(1.7)

uw*=0 on 9D,

The convergence holds in L?(D), and weakly in Hi (D). The correctors w,, (for e; the canonical vectors
of R?) may then also be used to “correct” u* in order to identify the behavior of u¢ in the strong topology
H} (D). All this is well known.



As one of our purpose in this article is to perform such a homogenization procedure in a much more
general setting, it is useful for us to recall now the main mathematical ingredients used in the proof of
the above assertions regarding the convergence of u® and the existence and uniqueness of u*. There are
several approaches to do so. We will primarily argue on the so-called energy method of Murat and Tartar.
Then we shall mention the two-scale convergence approach by (independently) Nguetseng and Allaire.

The energy method The energy method, also termed method of oscillating test functions, is due to
Murat and Tartar [15, 17]. It is based on the principle of compensated compactness. Let us briefly sketch
their proof. We do this in the periodic setting, but it should be borne in mind that the approach is not
restricted to periodic setting and has been designed for more general settings. First, remark that the
solution u. of (1.4) is bounded in H', and thus converges, up to an extraction, weakly in H'. Similarly,
A(z/e)Vu. converges weakly in L?%:

Vu. — Vug in L?, (1.8)
E — 1 2
Aper (6) Vu, ro in L*. (1.9)
Then, the solution w, to (1.5) satisfies
T *
YV, <E) (V) =0, (1.10)

(where (-) denotes the average in the periodic setting), thus:
X * .
p+ Vuw, <E) —pin L. (1.11)

In addition,
X T * T .
AT (g) (p+ Vu, (g)) (A9 pin L. (1.12)
Next, pointing out that (1.8) and (1.11) are curl-free, and (1.9) and (1.12) are divergence-free, the
compensated compactness principle [15, 17] (or, more precisely here, the celebrated div-curl Lemma)
allows to pass to the limit in both sides of

[ (2) (v ()] 9 = (o V(D)) [r (2) 9]

(47 ] Vuo = pro.

getting

All this is valid for any p € R?. This, along with — div(rg) = f, gives the homogenized equation.
Looking back at the proof we have just outlined, we see that the main two ingredients have been
(i) the weak convergence of rescaled functions (for Ape, and Vw,),
(ii) the well-posedness of the corrector problem (that is (1.5)),

along with the compensated compactness principle. At least formally, we may say that whenever we may
define a setting for homogenization for which the above two properties (i)-(ii) are satisfied, we will be in
position to apply the energy method, and perform an explicit homogenization of our equation. This will
be exemplified by our argument in Section 1.3.



The two-scale convergence method. This method was first introduced by NGuetseng [10], and
further developed by Allaire [1]. In contrast to the above energy method, it was originally introduced
to deal with the periodic setting. In this setting, the crucial tool (which in some sense plays the role of
the compensated compactness principle in the preceding method) is that any bounded sequence u. in H*
satisfy the following convergences (up to extraction of a subsequence):

Us — Ug In Hl,
Ve (DL (@), [ Vuk (7)o — [ ] (Tuoe) + V(@ )ete )y,

for some u; € L*(D,H}..(Q)). Using this result, the proof of homogenization goes as follows: we

multiply the first line of (1.4) by po() + ep1 (¢, 2) , where po € H'(D) and 1 € H'(D, H}.(Q)), and
use {(z,y) = A(y)(Veo(z) + Vyp1(z,y)) in the above convergence. This implies

/D /Q (Vo (&) + Vyur(2,4)) AW) (Voo (&) + V01 (2, 9))dyde = /D feo. (1.13)

It follows
—divy [A(y)(Vuo(z) + Vyui(z,y))dy] = 0,

in @ with periodic boundary condition. This implies that

d
8u0
ul(w7y) - 12:; 8(1!, (x)wei (.Z’)
Inserting this equation into (1.13) gives the homogenized problem.
Again, we see that the convergence of rescaled functions plays a key role, together with the definition
of the corrector problem (in fact implicitly contained in (1.13)). This somehow shows that our general
belief on the key ingredients hold true, at least formally.

As we pointed out above, the two-scale convergence method was at first designed to deal with the
periodic setting. However, it was then developed further to deal with much more general cases (see [11,
12, 13, 14]), which provide a nice, rather technical, framework for putting the above formal considerations
into mathematical terms. It remains that it intrinsically exploits the fact that we have two different scales:
a micro scale, which we denote by €, and a macro scale, which we set equal to 1. This explains the words
"two-scale" convergence. In some sense, what depends on the micro scale is set on some unit cell (which
is the unit cell of the periodic lattice in the periodic case), giving an "explicit" corrector equation. We
thus have in this case a more explicit way of computing homogenized coefficients than with the energy
method.

We will not overview the works [11, 12, 13, 14] in the present introductory section, because we will
comment on them in Section 5.

1.2 Some stochastic settings

The present section introduces a discrete and a continuous stationary ergodic setting. Both settings will
be used to define homogenization problems more general than the periodic one overviewed in the previous
section.



1.2.1 Discrete setting

In what follows, (2, F,P) denotes a probability space. For any random variable X € L'(Q, dP), we denote
by E(X) = [, X (w)dP(w) its expectation value. We fix d € N*, and assume that the group (Z¢ +) acts
on . We denote by (7% ) ez« this action, and assume that it preserves the measure P, i.e

VkeZd VYAeF, P(rA)=PA). (1.14)
We assume that 7 is ergodic, that is,
VAeF, (VkeZ? m,A=A)= (P(A)=0orl). (1.15)

In addition, we define the following notion of stationarity: any F € L{ (R?,L'(Q)) is said to be
stationary if

Vk € 2% F(x + k,w) = F(z,,w) almost everywhere in z, almost surely. (1.16)
In this setting, the ergodic theorem [8, 16] can be stated as follows:

Theorem 1.1 (Ergodic theorem, [8, 16]) Let F € L> (R?,L'(Q2)) be a stationary random variable
in the sense of (1.16). For k = (ky, k2,...kq) € RY, we set |k| = sup |k;|. Then

1<i<d
1 E F(z,mhw) — E(F(z,-)) in L®°R?), almost surel (1.17)
2N +1)¢ T N ’ ’ v '
[kloo <N
This implies that (here, Q is the unit cube)
x * . 00 /md
F (—,w) —E F(z,-)dx in L (R?), almost surely. (1.18)

£ e—0 Q

1.2.2 Continuous setting

Alternately to the discrete setting of Subsection 1.2.1, it is possible to define a continuous ergodic setting
as follows. The probability space is here again denoted by (2, F,P), the expectation value is E.

We fix d € N*, and assume that the group (R¢, +) acts on . We denote by (7;),cre this action, and
assume that it preserves the measure P, i.e

Vye R, VYAeF, P(r,A)=DP(A). (1.19)
We assume that 7 is ergodic, that is,
VAeF, (VzeR', 71,A=A4)= (P(A)=0 or 1). (1.20)

Accordingly, we define the notion of stationarity as follows: F € L{, . (R?, L*(£2)) is said to be stationary
if
Vy € R4, F(z +y,w) = F(z,7,w) almost everywhere in z, almost surely. (1.21)

To emphasize one difference (among many others) between the discrete setting of the previous section
and the continuous one of the present section, let us simply mention the specific situation of a Z%periodic
function F. Tt is a particular case of (1.16), when F' is assumed to be deterministic. In contrast, it is a
particular case of (1.21), when F' is genuinely random, Q is the d dimensional torus and 7,y = x + y.

Note also that none of the two settings is a particular case of the other.

In the present continuous setting, the ergodic theorem [8, 16] can be stated as follows:



Theorem 1.2 (Ergodic theorem, [8, 16]) Let F € L™ (R?,L'(2)) be a stationary random variable
in the sense of (1.21). Then

1

— F(z,m,w)dy — E(F(z,-)) =E(F) in L°(R?), almost surely. (1.22)
|BR| BR N—oo
This implies that
F (E,w) ZSE(F) in L®(R?), almost surely. (1.23)
15 e—0

1.3 Stochastic deformations for periodic homogenization

Let us fix D an open smooth and bounded subset of R?, and A(y) = [A;;(y)] a square matrix of size d,
which is Z%periodic, and satisfies the following hypotheses:

Iy>0 | VEeR?, ¢TAy)E > v|€)?, almost everywhere in y € R?, (1.24)
Vi,j€{1,2,...,d}, Ay eL®(RY). (1.25)
We also introduce a probability space (2, F,P), like in the previous section. A natural, and well-known,

extension of the periodic setting recalled in Section 1.1 is the stationary ergodic setting (which is contin-
uous in the sense defined in the previous section). Namely, the problem under consideration is then

—div(A(%,w)Vu):f in D,

(1.26)
u=0 on ID,
The matrix A is assumed stationary in the sense of (1.21), that is
Yy € R?, A(z +y,w) = A(z,7yw) almost everywhere in z, almost surely, (1.27)

where the action 7 is ergodic in the sense of (1.20). The problem under consideration is thus the homog-
enization problem (1.1) for

A(z,w)= A (gw) : (1.28)

Then the standard results of stochastic homogenization hold [2, 7]. They generalize the periodic results
recalled in Subsection 1.1 (recall from Subsection 1.2 that periodicity is a special case of the above
stochastic setting). We will not recall them here.

In [4], we have introduced a specific stochastic setting, which is not a particular case of (1.27). Let us
recall the results obtained there. We fix some Z%periodic matrix Ape, and we consider the homogenization
problem (1.1) for

Ac(,w) = Aper (qu((g,w)) , (1.29)
that is, we consider the following problem:
—div (Aper (7' (2,w)) Vu) = f in D,
(1.30)
u=0 on 0D,

where the function ®(-,w) is assumed to be a diffeomorphism from R? to R? for P-almost every w. The
diffeomorphism is assumed to additionally satisfy

EssInf [det(V®(z,w))] =v >0, (1.31)
€Q,zcRe
EssSup (|V®(z,w)|) = M < oo, (1.32)
weR,rcRe
V& (z,w) is stationary in the sense of (1.16). (1.33)



Such a @ will be called a random stationary diffeomorphism.

We proved in [4] the following results:

Theorem 1.3 Let A be a square matriz which is Z%periodic and satisfies (1.24)-(1.25) and ® a random
stationary diffeomorphism satisfying hypotheses (1.81)-(1.32)-(1.38). Then for any p € R?, the system

(—div [Aper (271 (y,w)) (p+ Vwp)] =0,

wy(y,w) = b, (27 (y,w),w), Vi, is stationary in the sense of (1.16), (1.34)
9 .

\ q)(Qa)

has a solution in {w € L} (R?,L?(Q)), Vw € L2 (R?,L*(Q))}. Moreover, this solution is unique up

loc unif
to the addition of a (random) constant.

Theorem 1.4 Let D be a bounded smooth open subset of R, and let f € H™'(D). Let A and ® satisfy
the hypotheses of Theorem 1.3. Then the solution u.(z,w) of (1.80) satisfies the following properties:

(i) ue(x,w) converges to some ug(z) strongly in L?(D) and weakly in H' (D), almost surely;
(i) the function ug is the solution to the homogenized problem:

—div(A*Vu) =f in D,
(1.35)
u=0 on OD.

In (1.85), the homogenized matrixz A* is defined by:

A3 = det (IE( /Q va(, )d))E( / o €6 TR ) A (270 dy>, (1.36)

where for any p € RY, wy, is the corrector defined by (1.34).

In the theorems above, we have used the notation L2

this type will play a role throughout this article, let us recall the standard definition of WEP spaces:

unif

for the uniform L? space. Because spaces of

Definition 1.5 for k € N and p € [1, o0],

k’ p— k7
Wit = {1 €WEL sup fllwesco o < o0
xr

and || fllyre = sup [[fllwe.rB+0)- (1.37)
unif RS

In the case k = 0, we set L%

— wor ; — k. _ k2
nit = Wimie, and in the case p = 2, we set HJ .. = W .

We will also need in the following sections the notion of normalized integral:

Definition 1.6 For any open subset D C R> of finite measure, for any f € L'(), we define the

normalized integral of f by
1
= z)dx. 1.38
1= [ r@ (1.39)



We now outline the main ideas of the proofs of these results. The details may be found in [4]. First,
the following lemma is a direct consequence of (1.18):

Lemma 1.7 Let ® be a random stationary diffeomorphism from R? to R?, which satisfies (1.81)-(1.32)-
(1.33). Then

e—0

ed E,w —E V® )z in LS (RY), almost surely. (1.39)
€ loc
Q

In addition, the following type of convergence is needed:

Lemma 1.8 Let ® be a random stationary diffeomorphism satisfying (1.31)-(1.32)-(1.33). Assume that
g € L™ (R4, L}(Q)) is a stationary function in the sense of (1.16). Then

g (qu (gw) ,w) L det (]E (/Q Vo (z, -)da:))l]E (L(Q,-)g (3 Y(a,"),") da:) in L™(R%),

(1.40)
almost surely.

Remark 1.9 Toking g =1 in Lemma 1.8 yields

det (]E(/QV<I>>> :E(/Qdet(W)).

This equality stems from (1.18) applied to F = V® and the fact that the determinant is (in particular)
continuous for the L™ weak-x topology.

Given the above lemmas, let us give now a sketch of the proof of Theorems 1.3 and 1.4. As announced
in the introduction, it is a simple adaptation of the energy method introduced by Murat and Tartar
[15, 17].

The proof of Theorem 1.3 is performed applying Lax-Milgram lemma to prove the existence and
uniqueness of the solution wy of

—div [A (87" (y,w)) (p + Vw,)] + aw, =0,
(1.41)
wy(y,w) =, (27 (y,w),w), W, is stationary in the sense of (1.16),

and then passing to the limit a — 0.
In order to prove Theorem 1.4, we introduce the test-function v,(y,w) = @, (2! (y,w),w) which is

the solution to (1.34) with A7 instead of A, and define g(y,w) = (V®(y,w))”" V,(y,w). Applying
Lemma 1.8, one finds that

z _* : oo (mpd
Vo, (E;UJ) s_>00 in L*(R%), almost surely.

Similar arguments allow to prove that

-1 (T T z * T : oo (d

A (<I> (—,w)) [va (—,w) +p] — (A% p in L*(R%), almost surely.
3 g e—0

On the other hand, considering the solution u. of (1.30), one easily proves that it is bounded in

H'(D), and thus converges (up to extracting a subsequence) strongly in L? and weakly in H' to

some ug. The function A ($~! (£),w) Vu.(z,w) is bounded in L?, and thus converges (up to extract-

ing a subsequence) weakly in L? to some rg. Then, applying the div-curl lemma (see [15, 17]) to the

10



product A (<I>’1 (%,w))T [VU,, (%,w) —l—p] Vu. on the one hand, and on the other hand to the product
[Vop (2,w) +p] A(®! (%,w)) Vu,, one finds that

rop = (A*Vug) p.

Since this is valid for any p € R? and — div(rg) = f, this implies (1.39).

2 Extensions

2.1 Stationary coefficients

As pointed out in [4], the above results are also valid in the case of a stationary (instead of periodic)
matrix, that is the homogenization problem (1.1) for

A (z,w) = A (<I>_1 (g,w) ,w) , (2.1)

with A a stationary ergodic matrix (in the sense of (1.27)).
We give here the corresponding results. The proofs are similar to those of Subsection 1.2.1 above, so
we again skip them.

In the case of a discrete ergodic setting, using the same notations as in section 1.2.1, we have:

Theorem 2.1 Let A be a square matriz which is stationary and satisfies (1.24)-(1.25) and ® a random
stationary diffeomorphism satisfying hypotheses (1.31)-(1.82)-(1.83). Then for any p € R?, the system

( —div [A ((I)_l(yaw)aw) (p+ va)] =0,

wy(y,w) = W, (27 (y,w),w), Vi, is stationary in the sense of (1.16),

{ 3(Q)

has a solution in {w € L} (R?,L?(Q)), Vw € L2 (R?,L?(Q))}. This solution is unique up to the
addition of a (random) constant.

Theorem 2.2 Let D be a bounded smooth open subset of RY, and let f € H™'(D). Let A and ® satisfy
the hypotheses of Theorem 2.1. Then the solution u-(z,w) of (1.30) satisfies the following properties:

(i) u.(z,w) converges to some ug(x) strongly in L?(D) and weakly in H*(D), almost surely;

(i) the function ug is a solution to the homogenized problem:

—div(A*Vu)=f in D,
(2.3)
u=0 on OD.

In (2.3), the homogenized matriz A* is defined by:

Aj; = det (E (/Q V&(z, -)dz))_1 E (L(Q,_) (e + Ve, (y,-))" A (@ (y,-),) ej dy) . (2.4)

where for any p € R%, wy, is the corrector defined by the system (2.2).

11



2.2 Ergodic Continuous setting

In this subsection, we extend the results of Subsection 2.1 to the setting of Subsection 1.2.2. Here again,
(Q,F,P) is a probability space. But now, 7 is an action of R?, and not Z¢, on Q. We assume that this
action preserves the measure P and satisfies (1.20).
The application ® is here again a diffeomorphism satisfying (1.31) and (1.32), but we replace (1.33)
by
VreRY, VyeR:, V(z,7,w) =VeE(z+y,w) almost surely. (2.5)

The setting is again that of (1.29), with a different notion of stationarity for V® though. We have:

Theorem 2.3 Let A be a stationary (in the sense of (1.21)) square matriz satisfying (1.24)-(1.25) and
® a random stationary diffeomorphism satisfying hypotheses (1.31)-(1.82)-(2.5). Then for any p € R,
the system

—div [A (27! (y,w),w) (p+ Vwy)] =0,
wy(y,w) = b, (27 (y,w),w), Vi, is stationary in the sense of (1.21), (2.6)
E((Vwp o ®)det(V®)) =0,

has a solution in {w € L} (R?,L*(Q)), Vw € L2 (R?,L?*(Q))}. This solution is unique up to the
addition of a (random) constant.

Theorem 2.4 Let D be a bounded smooth open subset of R?, and let f € H™1(D). Let A and ® satisfy
the hypotheses of Theorem 2.3. Then the solution u.(z,w) of (1.30) satisfies the following properties:

(i) uc(z,w) converges to some ug(x) strongly in L?(D) and weakly in H*(D), almost surely;
(i) the function ug is a solution to the homogenized problem:

—div(A*Vu)=f in D,

(2.7)
u=0 on OD.
In (2.7), the homogenized matriz A* is defined by:
A;; = det (E(V®))'E [(ei + Ve, 0 ®)7 Ae; det(W)] , (2.8)

where, for any p € R?, w,, is the corrector defined by the system (2.6).

The proofs follow the same pattern as for the discrete case. Formally, one only needs to replace the
notion of average of the discrete case, namely E |, o by that for the continuous case, that is, E. For

instance, the convergence analogous to (1.40) reads (assuming g is stationary)

g(<1>—1 (g,w),w)jdet (E(V®)) 'E(gdet(V®)) in L®(RY),

almost surely. Indeed, in the discrete setting,

E ( Lo, 9@ @) dw) = ( [ 000, dex(va(0, )y ).

We therefore skip the proofs, which are a straightforward adaptation of our previous arguments, once the
above formal analogy has been observed.
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2.3 Problems with two different types of stationarity

A natural question is to try and carry out a similar analysis in the case of two different notion of
stationarity, respectively for A and for V®? The answer is not clear to us, but we give in this subsection
some information about a somewhat related, interesting, case.

Let us consider a Z%periodic matrix A satisfying (1.24)-(1.25), and & a (deterministic) diffeomorphism
satisfying (1.31) and (1.32), but with

V® is aZ? - periodic, (2.9)

with @ ¢ Q. It is possible to carry out the same homogenization theory as above. Of course, this is a
particular case of almost periodicity, which is treated for instance in [7]. However, the explicit feature of
the present case seems interesting to us. For instance, proving a convergence result similar to Lemma 1.8
(which actually solves the homogenization problem in dimension one) requires the existence of

ima (e (2)):

in L°°-weak-x. In order to compute this limit, we proceed as follows: for any set open bounded subset B

of R¢, we have
[0 @) = [, 4Eae(Ea()n

Now, the function 154,(2) converges in L'(R?) to 1 fog VOB Hence, in order to pass to the limit in the

above formula, we need to investigate the L*°-weak-x limit of A (£) det (V® (¥)). For this purpose, we
write (here, |i|cc = max{|ix|,1 < k < d})

1 1
EﬁfIﬁEAQHDQA@ﬁh“V@@»ﬂl-— Eﬁf;ﬁgmm%ng QHA@MEMVQ@D@
_ m 3 / A(y) det(V(y + i))dy.

i€z4,)il <N’ @

Setting F(z) = fQ A(y) det(V®(y + 2))dy, we see that F is aZ%periodic, which implies that

1
S FG) — 4 F
DY :
(2N +1) s T <N N—oo /o

where the normalized integral f is defined by (1.38). As a consequence, we infer

4 (Y) det (vq>(€))L/ Al det(va). (2.10)
Q

£ e—0 aQ

A (0) )

The above argument does not only identify the limit of A (&~ (%)) Indeed, the convergence (2.10) gives
a more general view of this convergence: we have an explicit form for the limit of product of functions
with different period. This replaces Lemma 1.8 in the homogenization framework we are dealing with,
and hence will allow to carry out the corresponding theory. We will not go further in this direction (see
however Subsection 3.2 for a remark on the present setting).

This implies

Finally, note that the situation completely changes if & € Q. Then, A and V® share a periodic cell,
which may be used to compute averages of the type (2.10), leading to the standard periodic homogeniza-
tion theory.
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3 Perturbations of identity

In this subsection, we return to the setting of Subsection 1.2.1, and consider the specific case when the
diffeomorphism @ is close to the identity. Then the matrix A,.,(®~'(y,w)) is, formally, close to the
periodic matrix Ape,(y). The expansion

B(y,w) =y +n¥(y,w) + O(n?), (3-1)
with 7 small, being known, we now try and identify a similar development in powers of 5 for the homog-
enized coefficients (1.36). We will show in this section that such an expansion indeed exists, and that,
furthermore, the computation of its coefficients, is much simpler than that of the homogenized matrix
itself.

3.1 First order expansion
Formally expanding the solution w, to the corrector equation (1.34) as
wp(é(m,w),w) = wg + 77“);1; + 0(772);

we see, identifying terms of identical order in 7, and performing a tedious calculation that we skip here

for brevity, that w9 and wy, respectively solve the following two problems. The zero order term w) is a
solution to the periodic corrector problem (1.5), that is
—div (Aper(y) (p + ng)) =0,
(3.2)

wy is Z%periodic.
On the other hand, w%, is a solution to the following problem:

—div [Aper (Vwp — VEIVWI) + (VET — (div ®)Id) Ape, (p+ Vw))] =0,

IE(/Q Vw},) =E (/Q(V\Il — (div w)[d)vwg) _ (3.3)

The problem (3.3) is a priori stochastic in nature. However, taking the expectation value and setting
—1 _ 1
w, = E(w,), (3.4)
we have
— div [Aper VL] = div [~ Aper (V) V) + (E(VE)T — B(div ©))1d) Aper (p+ V2],
(3.5)
/ Vw, = / (E(VT) — E(div ¥)Id)Vw).
Q Q
The first point is, VE}D is periodic since szl, is stationary, and it is the solution to (3.5), which involves
only E(V¥) and ng, both of which are periodic. Hence, szl) is the solution to a periodic problem. The
existence and uniqueness of the solution to this problem is readily proved applying techniques similar to
those for (3.3). Here again, see for instance [2], [6] or [7].

The second point is, only the knowledge of VE}, (and not of Vw}) itself) is required for the calculation
of the first order correction of the homogenized coefficient. Indeed, formally computing the expansion

% _ 40 1 2
Al = Aj + 04 +0M7),
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we have, after another tedious calculation we also skip here,
A?j = / (e; + ngi)TAperej, (3.6)
Q
(as in (1.6)) and
Al =- / E(div ¥)AY; + / (ei + Vwd)T Apere;E(div T) + / (Vo) —E(VE)Vwl )T Apere;.  (3.7)
Q Q Q

As it is clear in the above formula, only E(V¥) and Vi, are needed in order to compute A}j.

The determination of the homogenized coefficients for (1.30) is stochastic in nature. However, if we
trust the above formulas (and we will see below they do hold true), this problem, in the specific case
(3.1) reduces, at the first two orders in 7, to the simpler solution to two periodic problems, namely (3.2)
and (3.5). Both of them are of the same nature, basically corrector problems. Importantly, note that ¥
is only present through E(V¥), both in (3.5) and in (3.7).

The question to know whether the same simplification (namely periodic replaces stationary) also holds
true at higher orders in n will be examined at the end of this section. Let us now make precise the above
formal expansions at the first order.

Let us now state the main results, and next prove them.

Proposition 3.1 For any n € (0,1), let ®, be a stationary diffeomorphism (in the sense of (1.81)-
(1.32)-(1.83)), and assume that

o, (z,w) =z +n¥(z,w) + O(n?), (3.8)

in CY(R*, L?(Q)), with V¥ stationary. Then, for any p € R?, the solution w} = @7 o ! to (1.84)
satisfies

Vi) (z,w) = ng(x) + anzl,(x,w) +0®m?) asn—0, in L*(Q x Q) — weak, (3.9)
where wY is the solution to (3.2), and wy, is the solution to (3.3).

Theorem 3.2 Under the hypotheses of Proposition 3.1, consider a bounded open subset D of R?, and
f € H7Y(D). Then, the solution u.(z,w) of (1.80) satisfies the following properties

(i) uc(z,w) converges to some ug(x) strongly in L*(D) and weakly in H*(D), almost surely;
(i) the function ug is a solution to the homogenized problem:

—div(A*Vu)=f in D,

(3.10)
u=0 on OD.
In (1.85), the homogenized matriz A* satisfies
Al = AY AL +0@"), asn— 0, (3.11)

where AY; and Aj; are defined by (3.2) - (3.6), and by (3.5) - (3.7), respectively.

Remark 3.3 The convergence (8.9) is only weak because the coefficients A are only in L. Using
stronger assumptions on A would yield a stronger convergence. For instance, if A € C% for some
a > 0, then it is possible to prove the strong convergence in (3.9).
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Proof of Proposition 3.1: The corrector w!! = @1 o ®~' satisfies (1.34), and w] € L{ (R?, L*()),

loc
and Vw]! € L7 ;«(R%, L?(€2)). In addition, the last line of this system implies, using Lemma 1.8, that
w] z
”p”L& — 0, almost surely. (3.12)

Next, we define a cut-off function y g such that
xr € DRY), xg=1inBg, xr=0inBf,, [IVXkllrems < 2. (3.13)

We mutlipy the first line of (1.34) by w]lxr, and integrate, finding

[ per (0710)) (V0 +2)] - Vi = = [ [Aper (87 @) (Vs + 9)] - V.

Using (3.12), one easily proves that the right-hand side of this equation is of order o(R?) as R goes to
infinity. Hence,

lim

Jim e | e (2710)) (V) + )] - Vugxe = 0.

Using the ergodic theorem, this implies

E (L(Q) |ng|2> =E (/Q |(vq>)—1vwg|2det(v<1>)> <, (3.14)

for some constant C' that does not depend on 7. As a consequence, it is possible to extract a subsequence

n going to 0 such that Vw;) weakly converges to some Wg. Now, differential operators being continuous

with respect to the weak topology, Wz? is a gradient:
Vw) — ng in L2(Q, L*()).
n—0

With similar arguments, one proves that Vi) — ng in L2(Q x Q). We then write the equation satisfied
by Vw], that is,

VE € D(RY), / [4per(@) (V@)™ Virj(a) +p)| - VE@(2)) det(VD())dz = 0. (3.15)
Rd

As 1 goes to zero, (V®(z))~! converges to Id in L®(R?), almost surely, and V&(®(x))det(VP(z))
converges to V&(z) in L>(R?) almost surely. Hence, passing to the limit in (3.15), we have

V¢ € D(RY), /R . [Aper (z) (VW) +p)] - V&(z)dz =0,

that is, the first line of (3.2). Next, as we did above, we pass to the limit in the third line of (1.34),
finding

/ Vwy = 0. (3.16)
Q

In addition, the fact that V] is stationary implies that Vw is Z%periodic. This and (3.16) implies
that w itself is periodic. We thus have the first term of (3.9). We now turn to the second one. For this

purpose, we first use (3.15), and setting 8 = £ o ®, we infer

V0 € D(R?), /Rd [Aper () (V®(2)) "' Vap(z) +p)] - [(VE(x))~'VO(z)] det(VP(z))dz, (3.17)
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hence
— div [det(V®)(V®) ™" Aper (VR) ™'V +p)] = 0. (3.18)

Next, using (3.8), we have, in C°(R¢, L2(12)),

(V®)™' = Id — nV¥ + O(n?), (3.19)

V® =1Id+nVP + O(n?),
det(V®) = 1 + ndiv ¥ + O(n?),

Inserting these estimates in (3.17), we infer

—div (ApeT(Vu?I"J +p)) =ndiv f,, (3.20)

where f, is a stationary function such that [|f||z2 (rar2(q)) is bounded independently of n. Hence,
setting

and using (3.2), we see that
—div (Apeerg) =div(fy).

Using exactly the same argument as for Vw]!, we have, using the fact that v}] satisfies (3.12),
(IVollL2(@xa) < CllfallL2(oxa) < C (3.21)

where neither C nor C' depend on 7. Hence, up to extracting a subsequence, we may find w,l, such that
Vw] € L*(Q x Q) and
—_ 1
Vo, o Vuw,.
We then return to (3.18), subtract the first line of (3.2) and divide by 7, finding
— div (Aper VU] + (div ) Ape, (V! + p) — VU Aper (Vi) + p) — Aper VEVDT) = ndiv(gy),

where g, is bounded in L?(Q) x Q) and is stationary. Hence, passing to the limit as n goes to 0, we find
the first line of (3.3). On the other hand, developing the third line of (2.2), we have

0 — ]E(/Q(vq))—lvwg det(V«I))) ;

nE (/Q(divxy)vwg—/c?wvmg) +]E(/Q vmg) +0(n?),

nE (/ (div ¥)Vw) — VEVw) + vvg) +0(m?).
Q

Dividing by 7 and passing to the limit 7 — 0, this gives the second line of (3.3). Finally, we point out
that the solution to (3.3) is unique. Indeed, the difference v of two solutions satisfies

—div(4per V) =0,

E ( / Vv) =0, Vv~ is stationary,
Q

which implies that v is constant. Hence, the whole sequence Vv converges to szl,. O
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Proof of Theorem 3.2: In view of Theorem 1.4, we already know that (i) and (ii) are satisfied, with
A* given by (1.36). We now write it as

Ay = det (]E (/Q Va(, -)dz)) Tk (/Q (e + Ve, (8(2))) Aper () €; dm) ,
—  det (]E (/Q V(2 -)dz)) Tk (/Q (ei + (V) 'V )" Aper (a:)e,-dx> . (3.22)
We then insert (3.9) and (3.19) into (3.22) and find (3.11). O

Remark 3.4 Here, we implicitly let e — 0 first, and then let n — 0. It is possible to do the same
computation the other way around, at least formally: first let n go to zero, with € fixed, and then let e
go to zero. This would yield the same results. However, in this process, one needs to keep track of the
dependance on 1 in the convergence € — 0, which is much more technical then the method we use here.

3.2 Remarks and extensions

We devote this subsection to some remarks on the previous proofs, along with some extensions.

Strong form of the equations First, we would like to mention it is also possible, at least formally,
to carry out the same computation using a formulation of the equations in the strong sense. To be
made rigorous, this alternate strategy requires proving a better convergence for the corrector, which is
neither obvious, nor necessarily true. However, for the sake of illustration, we find it useful to outline the
approach. Notably, the calculations are then significantly simpler, and somewhat more intuitive, than
the calculations performed in the previous section.

We begin by expressing
—divy (Aper (27 (2))(Vwp (2) +p)) = — dive |:[Ape’r (V@) 'V +p)] (‘ﬁl(m))] ;

where we used the fact that @] = w} o ®, hence Vw! =V (0 0o ®~1) = [(V<I>)_1 V’IIJZ] o ®~1 according

to the chain rule. Next, we note that for any vector field G, we have, when z = ®(2),
div, (G(@  (z))) =0 < [(V®)"T-V,]G(2) =0,

where the operator (V®) 7 -V, is defined by (V®)~ T -V,G = (V®);,8,,G;, with the convention of
summation over repeated indices. Hence, the first line of (1.34) also reads

(V&)™ V. [Aper (2) (VE) ! (2) Vi (2) +p)] =0,

which is easily seen to be equivalent to (3.18) using a weak formulation and a change of variables.
Then, the approach consists in directly expanding both ® and @, in the above equation. All calcula-
tions performed, we obtain:
— div [Aper (Vb +p)] =0, (3.23)

— div (Aper V) + div [Aper VEVW)] + (V)T -V [Aper (Vo +p)] =0, (3.24)

where, as above, we may take the expectation value and find a (periodic) elliptic equation set on w;,.
Equations (3.23) and (3.24) can be advantageously compared to the weak forms (3.2) and (3.3), showing
that the results are formally identical. Moreover, using expressions (3.23) and (3.24), we of course obtain
the values (3.6) and (3.7) of A° and A!, respectively.
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Development at higher orders The natural extension of the previous results is a second-order ex-
pansion of both the corrector and the homogenized coefficient. Indeed, if we assume that

¥(z,w) =z +n¥(z,w) +7°0(z,w) + O(n°)
in C?(R?, L?(0)), then it is possible to carry out the same analysis as above, finding:
V@7 = Vwd + nVw), + 7>V’ + O(n?),

and

Al = A?j + TIA?J' + 772‘412]‘7
where Vw), Vw,, A?; and Aj; are the zero-order and first-order terms already identified. The second-
order terms Vwj and A?; may be defined by equations similar to the “first-order” equations (3.3) and

(3.7), although those are rather intricate. The second order term Vw? is indeed solution to

—div [AW (Vw2 — V&V, + (VE)? — VO)(Vw) + p))] =
div [((div U)Id— VIT) Aper (Vo — wawg)]
1
+ div [((div(@) + §D2 det(VlIl)> Id — (div®)vVeT + (Wﬂ’)2 - v0T> Aper(Vw) + p)] , (3.25)
where D det(H) = Y,; hihjj — hijhji is the second derivative of the determinant. However, the
presence (for example) of the term div(A,., V¥Vw,) indicates that taking the expectation value of the
equation will a priori not simplify into products of expectation values and periodic functions, as it was the
case for the equation for w;). Unless some specific form of ¥ is assumed, the formulae will not simplify. Or
at least we have not been able to make them simpler. Here, one needs a genuinely stochastic computation

to calculate w?. Likewise, the expression of A?; (that we omit here) requires the knowledge of Vw2 and
V¥ themselves, and not only of their expectation values.

Special cases for ¥ The expressions defining lel, and A%j may be simpler for special cases of appli-
cations ¥. For instance, if we impose E(V¥) = \(z)Id, for some (periodic) A € C°(R), then the equation
(3.5) simplifies into

— div (Aper (VI — AVWY)) = (1 — d)VAT Aper (p + V),
/ vl = (1-d) / Az) Vel (2)de,
Q Q
and (3.7) becomes
Al = d/Q ()\(x) - /Q )\) (ei + V. (x))TAper(a:)ejda: + /Q (Vw,, (z) — )\ngi)TAper (z)e;j.

These expressions are much simpler than (3.5) and (3.7). Note that if X is constant, then the above
equations imply E(Vw,) = AVw) and A}; = 0. There is no correction at order 1.
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The one-dimensional case As is generically the case for homogenization theory, the one-dimensional
situation enjoys very specific properties. It is often misleading by its simplicity (which rarely carries
through to the higher dimensional situation), but it may also serves as a useful guideline.

For the question under examination here, we begin by observing that the first-order expansion we
have performed in the general case takes a remarkably simple form in one dimension. The problem (3.5)

then reads (here, @ = (0,1))
d dw' dv\ duw®
— er -E\ - =Y
dz [ap (dx (da:) dz )] 0

dwl
— =0,
Q dz
where w' = E(w'). Since there is only one corrector in this case, which corresponds to p = 1, we have
omitted the subscript p (note that the superscript 1 in w! corresponds to the order of the expansion in

n). Likewise, we have
-1
a® = ( / apelr) )
Q

\J v !
al = / aper]E (d—) - (10 / E (d—> + / a/perd_i.

But of course, it is well known that in the one-dimensional situation, the homogenized (scalar) co-
efficient a* admits an explicit expression where the corrector may be eliminated, and only the original
coefficient ap.r appears. Indeed, since

o (fQE(apJT%))l
B (®) )

we may directly expand ® there, and obtain a formula, at all orders in n, for a*, without identifying the
higher orders expansion on the corrector w. In particular, the first order term reads:

ol = - /Q E(a;elT%) ( /Q a;;) T ( /Q a;gr)_l /Q E(%) (3.26)

and the second order term:
1 -1
@ = (L) (LB~ (Lw) [() [2(5)
-2 2 -1
(L) (Le(m ) - ([o) " [o(m®)] oo

Two questions arise then. First, we may search for special situations when we may deduce, on the basis of
the first and second order corrections (in 7) to the periodic coefficient, that the homogenized coefficient
a* enjoys some qualitative property. A typical case is the situation where, like in Subsection 2.3, we apply
the above expansion method to ap., periodic of period 1, and ¥ periodic of irrational period. Indeed, let
us momentarily return to the setting of Subsection 2.3. It is easily seen that the formalism of the present
section can be mutatis mutandis adapted to the situation of Subsection 2.3. The machinery of the Taylor
expansion remains the same, and the proofs above are only slightly modified. It is of course even simpler
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in one dimension, which is our only concern here. We skip the details and concentrate on the result: if
aper is periodic of period 1, and if ¥’ and 6" are periodic of period a ¢ Q, then the expectation values
decouple. Thus, we have

dv db do
E(a)} d [E(a1? =/ ][_
/Q’ ( per d:L,> / per][ ) an L (aperdx) Qaper dx
mo @=L ([ - ][ﬂ2
a =0, a = 5 Qaper e ,

which is negative as far as % # 0. Hence, in this (very) particular case, the first order correction is

zero, and the second order one is negative: the disorder added by the stochastic diffemorphism & to the
periodic coefficient ap.r decreases the homogenized coefficient in a deterministic way. Of course, this is
a very special case, and we do not know if there is some general feature in this behavior. However, this
result intuitively indicates that the same kind of decoupling may occur in the case of two different notions
of stationarity, with some "independence" assumption between them.

We thus have

A second question regards the calculation of the second order term for the corrector, even if such
a calculation is not needed for the calculations of the second order correction w? to the homogenized
coefficient, as we have just seen. In the higher dimensional case, we have seen that wz cannot be simply
identified in average (that is, in expectation), in sharp contrast to Ell, which can be identified through
the solution to the periodic problem (3.5), without explicitly solving for wj in (3.3). Is it also the case in
one dimension? A not too tedious calculation shows that the equation on w? reads:

A et d (o dvduty A [ (au\ ) (e
de \ P dx ) T dx P dz dx dz | 7" dx dx dx

We see that taking the expectation value does not yield any equation in closed form for @? that would

only depend on averages of e Determining w? itself, using I itself, is necessary.
x x

Remark 3.5 The above considerations indicate a special numerical strategy to tackle homogenization of
the form (1.30), with ® of the form (3.1). Indeed, if n is small enough, it is likely to be sufficient to
compute the two first orders of the development of the homogenized coefficients in powers of 1. Since
these are periodic problems, it is much cheaper numerically then computing the full problem, which is
stochastic.

4 Random lattices as generic sets of points

We now turn to our second purpose in this article. We wish to relate the above questions of homoge-
nization theory, with the question of defining energy per particle for infinite sets of points. The present
section, together with our final section, Section 5, are devoted to this.

For this purpose, we recall in subsection 4.1 some results about the definition of the energy of non
periodic infinite sets of particles. Under consideration are some appropriate geometric conditions that the
set of points needs to satisfy in order for us to be able to define its energy. Next, in Subsection 4.2, we
show how these geometric notions are, in particular, related to the stochastic setting we have introduced
in Section 1.3, in the context of homogenization theory.

Section 5, will further address the relation between these two subjects. Settings in the vein of that of
Section 1.3 will be examined. We will close the article with Subsection 5.3, which discusses some possible
tracks for yet other extensions.
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4.1 Deterministic microscopic energies

In [3], we considered an infinite set of points in R?, denoted by {X;};en, and gave some geometric
properties allowing to define its average energy. More precisely, we proved that the following properties
allowed to define the average energy of the infinite set of particles {X;}ien for a large class of models:

Definition 4.1 We shall say that a set of points {X;}ien is admissible if it satisfies the following:

(H1) sup #{i €N / |z —X;| <1} < 4oo;
z€R?

(H2) 3R > 0 such that inﬂg #{ieN / |z—X;|<R}>0;
z€R4
(H3) for any n € N, the following limit exists

1
lim

dm S D Sy —XeysXeg—Xe) By ) =1, By, (4.1)

X,'O €BRr X;, EBr
and is a non-negative uniformly locally bounded measure.

We use here the convention that if n = 0, I° is the constant function equal to

1
0= lim ——#{i X; € Br}. 4.2
l Rl_r>rgo|BR|#{i€N / Xi€ Bgr} (4.2)
Remark 4.2 It is also possible to give a fully geometric characterization by replacing (H3) with the
following property: Vn € N,  V(do,01,...0p) € (R**)H—H, the following limit exists:

1
fn(do,hl,él,h2,52,...,hn,én) = lim —— {(io,il,...,in) € Nn-H,
| Xio| < 0oR, | Xig—Xiy —ha| <1,y | Xy — Xiy, — hn| < 5n}, (4.3)

with convergence in L™ (R™). The following equality then makes the link between (4.1) and (4.3):
fn(607h17617h27527 .- 7hn76n) = |B(50|ln [(hl + Bél) X X (hn + Bén)] -

Intuitively, (H1) means there is no arbitrarily large cluster of particles, whereas (H2) means there is
no arbitrarily large ball in R? containing none of the X;. The assumptions (H1)-(H2) are usually refered
to as "Delaunay" hypotheses.

Assumption (H3) may be seen as a condition on n-body correlations. It is therefore rather natural
in a context where we aim to define averages. However, the set of assumptions (H1)-(H2)-(H3) is for
genericity. In some particular cases of simple models of energy, such as a two-body potential, there is
no need for a condition on correlations of order higher than 2. In such a case, only (H1)-(H2) and (H3)
for n = 0,1 are needed for the definition of the energy per particle. For the energy per unit volume, it
even sufficient to have (H1)-(H2) and (H3) for n = 1. On the other hand, in the case of quantum models
(such as Thomas-Fermi type theories), as was considered in [3], nonlinearities imply the need of (H3) for
allneN

Remark 4.3 None of the properties (H1), (H2) and (H3) implies another one, as is proved in [3].

Given Definition 4.1, we introduced the corresponding functional spaces:
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Definition 4.4 Let {X;};cn be an admissible set, and denote by A({X;}) the vector space generated by
the functions of the form

Z Z Z 117 _XiQa"'ax_Xi")a (44)

i1 ENi2 EN in €N
with ¢ € D(R®™). Then, for any k € N and any p € [1,+00), we denote by A¥?({X;}), or simply A*P
when there is no ambiguity, the closure of A({X;}) for the norm || - ||Wzc =

When k = 0, we use the notation AP for A°P. The closure of A for the norm || - ||p(r3) being a set
of continuous functions, we will denote it by A.. We will call A the closure for the L= (R%) norm of
the space of functions of the form (4.4), with ¢ € L>®°(R?) having compact support.

Remark 4.5 In the above definition, hypothesis (H2) is actually not needed. It was only needed in [3]
to deal with a definition of N-body energies which are nonlocal (TEW model). This is not the case here.

Note that A*P is the closure for the W o norm of the algebra generated by functions of the form
=> oz —X)), ¢eD®R).
ieN
Let us also point out that in the particular case of a periodic lattice {X;}ien, A¥P({X;}ien) is the
algebra of periodic functions with the appropriate period and regularity.

The point is, any function in the spaces A*P? has an average:

Lemma 4.6 Let {X;}ien be an admissible set of points. Then, for any f € AFP, the following limit
exists:

1
= lim ——

In addition, in the special case of an f of the form ({.4), we have
(f) = / / (@7 — hye o3 — hy ) (- By 1)da. (4.5)
Rd JRd(n—1)

4.2 Stochastic set of points

Being inspired by the stochastic setting introduced in Section 1.3, let us now consider a set of points
{X;}ien, which is the deformation of a periodic lattice by a stationary diffeomorphism ®. More precisely,
we assume that ® satisfies (1.31)-(1.32)-(1.33), and we define

VieZe Xi(w)=®(,w). (4.6)
The relation between Definition 4.1 and the notion of stationary diffeomorphism is best illustrated
by:

Proposition 4.7 Let ® be a stationary diffeomorphism, i.e a diffeomorphism satisfying (1.31)-(1.32)-
(1.83). Let the set {Xi(w)}ieze be defined by (4.6). Then, {X;};cza satisfies (H1)-(H2)-(H3) of Defini-
tion 4.1, almost surely.

Proof: First, it is clear that (1.31)-(1.32) imply that the first eigenvalue \; (z,w) of V®(z,w)V®(z,w)T
satisfies A; (z,w) > v?/ (M?¢=!) almost surely. Thus, we have:

2

— >0,
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almost surely. Hence, (H1) is satisfied almost surely.
Next, (1.32) implies that

Vze R, VieZd |X;—®(z)| < M|i—2,

almost surely. Hence,

inﬂgd# {iez? |z-Xi| <R} inf #{iez% |®(z)- ()| <R}
A

z€R2
R
> inf #{i€Z? —il < —
> zléle#{ze , |z z|<M},

which is positive for some R > 0. Thus, (H2) is satisfied almost surely.
We now turn to (H3). We first deal with the case n = 0, then with the other cases. In order to prove
(4.2), we write

(@' (Bg)| 1 |8 (Br11)|
< i€z ®(i) e B} < —————. 4.7
We have |<I> '(B )|

- R 1 1,

———=—|=% (RBy)|.

Ba B R P

We then point out that, using Lemma 1.7, the function lsé_l(ﬂ) converges in L! to lE(f ve)~'m, as
€ Q

€ — 0. Hence,
(B (B -1
1imM=1imM:det E /vq) .
R—o0 |BR| R—o0 |BR| Q

~1
Returning to (4.7), we thus find (4.2), with [© = det (]E (fQ V<I>)) . We next deal with the case n > 1.
We set

llni(hla---ahn):m Z Z 6(Xi0*Xi1,n.XiO*Xin)(h’l?'"7hn)'

Xig€EBR X, €EBRr
Given ¢ € D(R"?), we have
1 . . . .
(g, &) = Bl > > §(®(io) — @(i1),- .-, (io) — P(in)) - (4.8)
Rl joea-1(Bp)nzd  ined—1(Bp)nzd

We then point out that since £ has compact support, the sums over iy, for ¥ > 1 are almost not changed
if they are replaced by sums over the whole lattice Z?. Indeed, we have

> ) S Y £@i0) - B(i), .., Blio) — Bin))

i0E<I>_1(BR)ﬂZdi1€<1>_1(BR)CﬂZdi2€<1>_1(BR)ﬂZd inEq)_l(BR)ﬂZd
< > DOENED DENEND DR e
ioE<I>_1(BR\BR_A)ﬂZdi1€BA(i0)igEBA(io) ineBA(io)
< CA"# (' (Br\ Br-a)NZ7,

where A is a constant depending on £ and ®, but not on R, and C is a constant depending only on d.
Using Lemma 1.7, we have

1
| Br|

-1
27 (Bri1 \ Br-a)| — 0 almost surely.

# (27 (Br\ Broa) N7 < Bal ik
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Hence, the convergence of (4.8) amounts to the convergence of

S=r Y Y Y E @) — B, . Blio) — D).

i0€®~1(BR)NZIi1€Ze  inZ?

=Y > E(®(io) — B(in), - -, B(io) — B(in)),

i1 €Z4 inZ

We thus set

which is easily seen to be a stationary sequence. In addition, F; € L>®°(Q). We then compare Sg with

1
i€E( [, V@) ' Brnzd

We have
1
|SrR —Tr| < B— |E;| + Z | F3|

BR\<I> I(BR))nZd ie(tb—l(BR)\]E(fQ vq>)‘IBR)nZd

]E fQV@) Br\ 3 (B )) mzd]

= |BR| ||F0||L°°

[( (Br) \E(J, Vo) BR)nZd]

|BR| ||F0||L°°

‘IE (fQ V<I>) " Br\ & 1(Bg)

+ ‘tI)l(BR) \E(fQ vq))_l Br

<
- |Br|

ol

Using Lemma, 1.7 once again, we see that the right hand side converges to 0 as R goes to infinity, almost
surely. To conclude the proof, we point out that

‘]E (fQ vq>) ' Bg

| Br|

R =

— > R

‘RE(IQV‘I’) By | icRrE(f, ve)~'Binza

Applying the ergodic theorem, we thus have

E}i_rgoTR = det (IE (/Q V@))l E(Fp),

almoste surely. This concludes the proof, with

(I",€) = det (]E (/Q V<I>)>_1]E(.Z ---.Z £(<I>(0)—<I>(z‘1),...<I>(O)—«I>(in))> .

i1 €Z2 in €L
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Remark 4.8 The proof of Proposition 4.7 gives the expression of the measures ™ in terms of ®:

vEe DR™M), ("¢ =

det <IE (/Q vq>))11E ( DD §(<I>(0)—@(z‘l),...cb(o)—q>(in))>. (4.9)

i1 €Z4 in €Z4

5 Relation to homogenization theory

5.1 Deformation of a reference periodic lattice

As a consequence of Proposition 4.7, it is possible to construct, for P-almost every w, the algebras
ABP({X;}icz4). They satisfy Lemma 4.6. In particular, any f € A*P({X;};cz4) has an average. In
addition, since the measures [" are trivial random variables, the average in fact does not depend on w.
This is made precise in the following;:

Proposition 5.1 Let ® be a stationary diffeomorphism, i.e a diffeomorphism satisfying (1.81)-(1.32)-
(1.88). Let the set {X;(w)}icza be defined by (4.6). Define A as the vector space generated by the
functions of the form

f(x,w): Z Z Z (,O(ZU—Xil(LU),.CL'—X,'Z(W),...,.Z'—Xin(W)), (51)

11 EZL o €7D in EZ4

with ¢ € D(R3™). Denote by AP the closure of A for the Wfr’"i’f (]Rd,Ll(Q)) norm. Then for any
f € ARP  the following limit exists almost surely:

(f) = lim

R— 00 |BR| Br

In addition, {f) does not depend on w, and

f (g,w) Z:(f),  almost surely. (5.2)

g e—=0

Proof: As pointed out above, we only need to prove (5.2). It is possible to prove it using Proposition 4.7,
but we will give a different proof directly relying on Lemma 1.8. Given f € A, we define

9(y,w) = f(B(y,w),w),
so that f(z,w) = g(® (r,w),w). We claim that g is stationary:

9y, ew) = f(@(y, W), kW)

Z T Z ¥ (Q(yJTkw) - Q(ili Tk(,d), tery (I)(yaTkw) - q)(lﬂi Tde))
i1 EZ in €Z%

Z Z <p(¢>(y+k,w)—‘1>(21+k,w),,<I>(y+k,w)—<1>(zn+k,w))

i1 €Z4 in €EZ4

= [(®(y+Ekw),w) =gy +k,w).

We thus apply Lemma 1.8 and find that

f(g,w)jdet (]E(/QVQ))_IE<L(Q)J°> = (f), (5.3)
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almost surely. We then conclude by a density argument. O

Note that formulae (4.5) and (5.3) give a seemingly different formula for the average (f) of f of the
form (5.1). However, it is possible to recover (4.5) from (5.3) through the following computation:

(L)

D SRS SREEE THRSNFES 1TA)
*(Q) ; i1 €EZ2 in €Z4

S E / Yo ST wl@a — (i) + B(in), ..., w — B(in) + B(ir))

i1€Zd d)(Q)-(I)(il) izEZd inezd

ZE<L Z Z (x,2 — ®(ia —i1) + D(0),..., 2 — B(ip, —zl)—|—<I>(0))>

i1€Z4 (Q 1 ) <I>(0) in€Zd in €Z4

Bl [ X plaa =80+ B0).....z = 8() + 5(0)

Jo€Z4 jn €Z4
Hence, using (4.9), we find (4.5).

Remark 5.2 The properties of the set of points {X;(w)};cze are in fact much richer than simply satis-
fying (H1)-(H2)-(H3). Indeed, these hypotheses do not contain any form of translation invariance. On
the contrary, the stationarity of V® is a form of translation invariance. This is why the averages do not
depend on w. This is also why we have (5.2), which in general is not satisfied by f € A*P as defined in
Definitions 4.1 and 4.4.

Remark 5.3 In view of the proof of Proposition 5.1, we have the following property:
Vf € AFP, there exists g € WED (R?, L1(Q)) such that g is stationary, i.e

unif
VkeZ? VreR? gx+k,w) =gz, mw),

almost surely, and
vz eRY,  f(z,w)=g(® ' (z,w),w),

almost surely.

We are now in position to relate Subsection 4.2 and the homogenization setting discussed in Subsec-
tion 1.2.1. We recall ® is a stationary diffeomorphism (i.e ® satisfies (1.31)-(1.32)-(1.33)), and the set
{X;}icza is defined by (4.6), that is,

VieZt Xi(w)=®(,w).

In addition, the algebras A*® are defined as in Proposition 5.1. Hence, if we consider a matrix A €
A®({X;}icza), Remark 5.3 implies that* there exists a stationary matrix B such that

A(z,w) = B (® !(z,w),w).

Consequently, Theorems 2.1 and 2.2 apply to the present case, giving;:
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Theorem 5.4 Let A € A®°({X,;};cza) be a square matriz which satisfies (1.24)-(1.25). Then for any
p € R, the system

[ —div[A(y,w) (p+ Vuw,)] =0,

wy(y,w) = b, (27 (y,w),w), Vi, is stationary in the sense of (1.16),

E ( Vuwy(y, -)dy> =0,
| *(Q)

has a solution in {w € L} (R?,L*()), Vw € L2 ;(R?,L2(Q))}. In addition, this solution is unique

loc unif
up to the addition of a (random) constant.

Theorem 5.5 Let D be a bounded smooth open subset of RY, and let f € H- (D). Let A satisfy the
hypotheses of Theorem 5.4. Then the solution u.(xz,w) of

—div (4 (%2,w)Vu) = f in D,

(5.5)
u=0 on D
satisfies the following properties:
(i) uc(z,w) converges to some ug(x) strongly in L?(D) and weakly in H*(D), almost surely;
(i) the function ug is a solution to the homogenized problem:
—div(A*Vu)=f in D,
(5.6)

u=0 on OD.

In (2.3), the homogenized matriz A* is defined by:

Ay = det (]E (/Q Vd(z, -)dz)) - E (L(Q“) (i + Vwe, (y, )" A(y, ) e, dy> . (5.7

where for any p € RY, wy, is the corrector defined by the system (5.4).

5.2 Random lattices with stationary increments

As pointed out in [5], a natural property for a random lattice in order to define the corresponding average
energy is the stationarity of its increments, rather than that of the atomic positions themselves. This is
especially obvious in the case of two body interaction potentials, where the energy formally reads

> VX - X))

1<i#j<N
This is the reason why, considering a random set of points
(={X;(w), i€z},
we now impose

V(i,5,k) € Z4x 2 x %,  X;j(rpw) — X;(mhw) = Xjpr(w) — Xigr(w)- (5.8)
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Our publication [5] was definitely focused on stationary positions, and it is time to examine stationary
increments.

Our first point is that, under additional but rather natural conditions, the lattices (5.8) are of the
type (4.6), with ® satisfying (1.31)-(1.32)-(1.33).

Lemma 5.6 Let { = {X;(w), i€ Z%} be a random lattice satisfying (5.8). Assume in addition that

sup # {z €zt |Xi—z| < 1} <M < +00  almost surely, (5.9)
zeR4
and
36>0, VieZ VjeZ (X;—X;) -(i—j)>6li—j|* almost surely. (5.10)

Then there exists a stationary diffeomorphism ® (i.e satisfying (1.81)-(1.32)-(1.33)) such that
VieZd ®(i,w) = Xi(w), almost surely.

Remark 5.7 Note that assumptions (5.9) and (5.10) have a relation to the Delaunay assumptions (H1)
and (H2) respectively. First, (5.9) is exactly assuming (H1) with some uniformity of the assumption for
almost all w. Likewise, (5.10) implies a “uniform” assumption, that is,

3R >0, inﬂgd# {ieZ® |Xi—z|<R}>a>0 almost surely, (5.11)
zTE

even though the converse is not true.

Proof: We give the proof only in dimension one for the sake of clarity. In higher dimensions, the following
argument is easily adapted.
We have:
V(i,j, k) € 7 X 7 X Z, Xj(Tkw) — X,-(Tkw) = Xj+k(w) — X,-_,_k(w),

and (5.10) implies
VieZ, X;11—X;>6 almost surely. (5.12)

We now define @ as follows: let p € D(R) be such that
p >0, supp(p) C (0,1), /Rp =1,
and

Vi€ Z, Voelii+l], ®w) = g(:c — ) + Xi(w) + (X,-+1(w) ~ Xi(w) — g) /Om_ip(t)dt. (5.13)

This application is easily seen to be a diffeomorphism. In addition,
1)
Vie Za Vz € [%Z + 1]7 (I>I(x7w) = 5 + (Xi+1(w) - Xz(w)) p(m - 7’)7

which satisfies (1.31) because of (5.12). It satisfies (1.32) because of (5.9). Finally, (5.8) implies that ®’
is stationary.

In order to adapt this proof to the higher dimensional case, we replace (5.12)

VieZ VjeZ (Xi—X;) (i—j)>dli—j|?
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which is proved in the same way as above. Next, in order to construct ®, we use on each cube i + @)
a polynomial transformation mapping i on X;, i + e1 on Xjye,, ¢ + €2 on X4, etc... Then we use a
regularization kernel p to ensure that the transformation is smooth in R?. O

Lemma 5.6 implies that the theory of homogenization we have developed above for deformation of
periodic settings readily applies to the present setting of lattices with stationary increments.

We conclude this subsection examining the following generalization. Is it possible to drop the assump-
tion (5.10) of Lemma 5.6 (and possibly replace it with (5.11)), and still perform homogenization for the
corresponding setting. It is not clear to us whether in the absence of this assumption the lattice may still
be recasted as an adequate deformation of a periodic lattice (which would again allow to readily apply
the existing theory). So the approach we choose, which might be useful for even more general purposes,
is to redo the construction ez nihilo.

For this purpose, the first task is to define the corresponding algebra A. The key ingredient for this
is proving

T *
vied f(Zw) M),
for some scalar M (f), which of course will be identified with the average of f.

We answer this question in Proposition 5.8 and Lemma 5.9 below. Both of them are stated in
dimension one for the sake of clarity. Although we did not check the computations in higher dimensions,
we do believe our results carry on to this latter case.

Proposition 5.8 Let {X;};cz be a random set of points satisfying (5.8). Assume that {X;}icz satisfies
(5.9) and (5.11). Then, hypotheses (H1), (H2) and (H3) of Definition 4.1 are satisfied. In addition, for
any f € AP({X;}iez (with p € [1,00]), we have the following property

VkeZ Nz e R, f(z,mpw) = f(z+ Xp(w) — Xo(mpw),w), almost surely. (5.14)

Proof: Clearly, (5.9) implies (H1) and (5.11) implies (H2). We next turn to the proof of (H3). Applying
the ergodic theorem to the stationary sequence X;1 — X;, we have

Xy — Xo

N — E(X; — Xo) almost surely. (5.15)

In addition, (5.11) implies that E(X; — Xy) # 0. Without loss of generality, we may assume that it is

positive:
E(X; — Xo) :=L > 0. (5.16)

Let us first prove the (H3) for n = 1: in such a case, we need to prove that
1
Cn = N#{Z €%, X;e€ [O,N]}

converges as N goes to infinity. We first point out that, with (5.15) and the fact that X, does not depend
on N, Cn has the same limit as

~ 1 i
CNZW#{'LGZ7 XZG[X(hXN]}
Then, we write

_ 1 N-1
On =7+ ; Fy(w),
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where
F(W) — #{k € Z, Xi € [X’iJX’i+1)}7 if X; < X’i+17
¢ —F# {k €Z, Xyé€ [Xi+1,Xi)}, if Xi+1 < X;.

which is easily seen to be stationary. Hence, applying the ergodic theorem, we have

. 1 ) 1
lim ~#{iez, X e[o,N} = E(F)

E(Fop)
E(X; — Xo) "

This completes the proof in the case n = 1. For n > 1, we proceed exactly as in the proof of Proposi-
tion 4.7. We thus define

%= |BR| ST D S —xiyeXeg=Xiy) By B,

Xig€Br  Xi,€Br

Given ¢ € D(R™?), we have

(In,€) = Z Y Xy — Xy, X — X3,

X’O €Bgr X; BR

This sum is almost not changed if the sums in 1,142, .. .4, are extended to all X;. Thus,

<lRa€ |BR| Z Z Zg - 217"-7Xi0_Xin)+0(1)7

Xig€EBrU1EZ  in €L

almost surely. We then notice that F;, = 2 Z &( Xy — Xiyy- -, X4y — Xi,,) is a stationary se-
i1€EZ in €L

quence. Thus, applying the ergodic theorem, we conclude. Finally, (5.14) is easilly checked for f €

A({Xi}tiez), and is stable under convergence in L” O

unif”

Next, we have the following Lemma:

Lemma 5.9 Let {X; }zEZ be a random set of points satisfying (5.8). Assume that {X;}icz satisfies (5.9)
and (5.11). Let f € Lt .. (R, L' (Q)) satisfy (5.14). Then,

unif

X1

f (g,w) SAE(X - X0)1E< f(a:,w)da:) in L(R), almost surely. (5.17)

Xo

Proof: Here again, we define L = E(X; — Xj) and assume that it is positive. We then compute

1 NL 1 Xo NL 1 N-1 .X;41
— flz,w)dx = — f(z,w)dx — flz,w)dx | + — / f(z,w)dz.
[ fw) vol| few | Howda )+ 3 [ 7 S
We bound the first two terms as follows:
1| ¥ X
o [ s < B,
1| (NE Xy — NLJ
NI f(z,w)dz| < CNin“L}mf (R)>
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which both converge to 0 almost surely. We then define

Xiq1
G, = / flz,w)dz.
X;

Due to (5.8) and (5.14), G; is stationary. Hence, applying the ergodic theorem, we infer

1 NL 1 X1
— fz,w)de — —E fz,w)dz | .

This concludes the proof. O

On the basis of the above results, and the experience accumulated in the early sections of this article,
it is now easy to perform the homogenization theory in the algebra constructed from Proposition 5.8.

Remark 5.10 Note that setting
y(k,w) = Xi(w) — Xo(kw) (5.18)

we immediately have that y is a random wvariable with stationary increments, satisfying y(0,w) = 0.
Actually, only this structure is indeed utilized for the results above, and thus for homogenization. Therefore
all this carries through to functions satisfying

VkeZ Nz eR, f(z,7w)=f(z+yk,w),w), (5.19)

instead of (5.14).

Let us end this section with a summary of the logical links between the different notions of stationary
lattices we have introduced in [5] and (partially) used here: here, we denote by £(w) the infinite set
{Xi}iez4, which is considered as a random variable as a whole. We then have four different types of
stationary lattices £(w):

(a) £ is such that Vk € Z%, {(1pw) = L(w) + k;
(b) £is such that £ = ® (Z%), with ® a stationary diffeomorphism;
(c) £ is a lattice with stationary increments;

(d) £ is such that £(mpw) = £(w) + Yy (w), where the sequence Yy has stationary increments, and Yy = 0.

We then have the following implications:

(@ = (o <« (b
U

(d).
Moreover, the implications (b) = (a) and (¢) = (a) are clearly false. We have seen that (¢) = (b) only if
we add the hypotheses (5.9) and (5.10) of Lemma 5.6, with a proof which is only valid in dimension one
for now. Finally, we do not know if (d) = (¢).
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5.3 Toward genericity

Here, we have proved Theorems 5.4 and 5.5 explicitly using the stationary feature of the points {X;};czq.
This has in particular brought an additionnal structure “transverse in” w’, which has been very much
employed above. This has already been emphasized in Remark 5.2. However, one may agsk if any infinite
set of points satisfying properties (H1)-(H2)-(H3) gives rise to algebras .A¥? which allow to carry out the
homogenization procedure. Actually, the answer is yes, at least if (H3) is modified in order to include a
form of translation invariance. For instance, one may replace (H3) by

(H3’) for any n € N, the following limit exists

lim " (g,hl, . .,hn) = v"(ha, ... hn),

e—0

where

un(y:hla---ahn) = Z Z Z 5(Xio,Xi0—Xi1,--.Xio—Xin)(:L')h17h25‘“h")‘

i0€EZ i1 EZD in €EZ4

Of course, hypothesis (H3’) is satisfied by any set of the form (4.6), where ® is a stationary diffeomorphism.
Under assumption (H3’), it is possible to prove that the corresponding algebras are particular cases of
those considered by Nguetseng in [11], for which a homogenization procedure, in the same spirit as above,
may be carried out.

Note that the difference between (H3) and (H3’) is that the first one only deals with averages over
balls centered at the origin (or equivalently at any point which is bounded independently of the radius R
of the ball), whereas (H3’) may be recast in the same kind of property as (H3), but with balls centered

at any point zg such that |xg| = O(R). In other words, we have the following three properties, for
f € L®(R?):
: 1 :
(a) lim — (z)dz := M, exists;

R—o00 |BR| Br

(b) for any z € R?, lim f(y)dy := M, (z) exists;

R—co |BR| J Byt Ra

©) f (f) s My(z) in L (RY).

g/ =0

Properties (b) and (c) are equivalent, and M;(z) = ][ M (y)dy, where § denotes the normalized
Bi+x

integral (see Definition 1.6). Both (b) and (c) imply (a), but the converse is not true. Moreover, we use
here only the special case in which M, or equivalently Ms, is a constant function. Indeed, (H3) implies
that any f € A satisfies (a), whereas (H3’) implies that any f € A satisfies (¢) (or equivalently (b)) for
some constant function M.

Let us explain (very) briefly the content of [10]. The main hypotheses are the following: A is an
algebra of functions such that any f € A has an average (f) such that

1(2) =,

£ —0

In addition, 1 € A and A should be separable with respect to || - ||oc- Under these assumptions, it is
proved in [10] that for any matrix A € A which satisfies a deterministic version of (1.24) and (1.25), the
problem
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—div(A(%)Vu)=f in D,
(5.20)
u=0 on 0JD,

has a limit in the sense of homogenization theory. In other words, an adapted version of Theorems 1.3
and 1.4 is also valid in this case. The corrector problem is now deterministic and reads, for any p € R?:

Yoe A, (A(Vw; +e;)Vo) =0, (5.21)
with the condition (Vw;) = 0. The homogenized coefficients then read
a;‘j = (aij + aik(’)kwj),

with summation of repeated indices.

In order to study the corrector problem (5.21), Nguetseng uses the natural C*-algebra structure of A,
and in particular its spectrum A(A) and the associated Gelfand isomorphism. This set A(.A) is compact,
and plays the role here of the unit cell of the lattice in the periodic case. It provides an appropriate
setting to apply the Lax-Milgram theorem, in order to prove that (5.21) is well posed.

However, the homogenization in [11] (and in particular the corrector problem (5.21)) is performed
in a completely abstract setting, for which numerical computations seem difficult to handle. Hence,
the question remains of finding a homogenization procedure making use of the "explicit" feature of the
algebras A®? (in terms of {X;};cz4). In particular, it could be interesting, at least from the perspective
of the theory of elliptic PDEs, to study the corrector equation (5.21), written in the original ambient
space R?, that is,

—div [A(y)(Vwy(y) +p)] = 0,

Vw, € A, (Vwp) =0.

(5.22)
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