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). The structure is assumed clamped on the top of the teeth, with a free boundary elsewhere, and subjected to a transverse load. As ε tends to 0 + , we obtain a "continuum" bending model of rods in the limit domain of the comb, while the limit displacement is independent of x 2 in the rescaled (with respect to h ε ) strip. We show that the displacement in the strip is equal to the displacement on the base of the teeth, if h ε ≫ ε 4 . While, if the strip is thin enough (i.e. h ε ≃ ε 4 ), we show that microscopic oscillations of the displacement in the strip, between the basis of the teeth, may produce a limit average field different from that on the base of the teeth, i.e. a discontinuity in the transmission condition may appear in the limit model.

Résumé

). Le domaine Ω - ε est une bande d'épaisseur h ε (dans la direction x 2 ) qui tend vers 0 avec ε. Le second domaine Ω + ε est consitué d'un ensemble de créneaux bidimensionnels ε-périodiquement répartis dans la direction x 1 et de hauteur constante dans la direction x 2 . La structure est encastrée aux sommets des créneaux, libre sur le reste de la frontière et elle est soumise à un champ de forces transverses. A la limite nous obtenons un "continuum" de modèles de poutres en flexion dans le domaine rempli asymptotiquement par les créneaux et un déplacement constant en x 2 dans la bande (mise à l'échelle par rapport à h ε ). Nous démontrons que si h ε ≫ ε 4 , le déplacement dans la bande est égal à celui de la base des créneaux. Par contre, si l'épaisseur de la bande est de l'ordre de ε 4 , des oscillations microscopiques du déplacement dans la bande entre les bases des créneaux induisent une discontinuité dans la condition de transmission du déplacement pour le modèle limite.

Statement of the problem and main results

Let ω =]a, b[, with 0 < a < b < 1, c, d ∈]0, +∞[, and {ε} and {h ε } be two sequences of positive numbers converging to zero. For every ε, consider the three-dimensional plate with small thickness t > 0 and with middle surface Ω + ε ∪ Ω - ε ⊂ R 2 (see Figure 1), where

Ω + ε = {k∈N: εb+εk<c} (εω + εk) × [0, d[
is a comb with fine teeth of small cross section εω and constant height d, ε-periodically distributed on the upper basis of the thin strip: When the plate is clamped on Γ ε × -

Ω - ε =]0, c[×] -h ε ,
t 2 , t 2 
, with a free boundary on (∂(

Ω ε ∪ Ω - ε ) -Γ ε )× - t 2 , t 2 
, and it is subjected to a transverse load, the Kirchhoff-Love equation satisfied by the transverse displacement U ε of the middle surface Ω + ε ∪ Ω - ε is given by (see pages 205÷207 in [START_REF] Duvaut | Les inéquations en mécanique et en physique[END_REF])

                                       Et 3 12(1 -µ 2 ) ∆ 2 U ε = F ε in Ω + ε ∪ Ω - ε , U ε = ∂ n U ε = 0 on Γ ε , ∆U ε + (1 -µ) 2n 1 n 2 ∂ 2 x 1 x 2 U ε -n 2 2 ∂ 2 x 1 U ε -n 2 1 ∂ 2 x 2 U ε = 0 on ∂(Ω + ε ∪ Ω - ε ) \ Γ ε , ∂ n ∆U ε + (1 -µ)∂ τ n 1 n 2 ∂ 2 x 2 U ε -∂ 2 x 1 U ε + (n 2 1 -n 2 2 )∂ 2 x 1 x 2 U ε = 0 on ∂(Ω + ε ∪ Ω - ε ) \ Γ ε , (1.1) 
where F ε ∈ L 2 (Ω + ∪ Ω - ε ) represents the transverse load, Ω + =]0, c[×]0, d[ is the "limit domain" of the comb, n = (n 1 , n 2 ) and τ denote the exterior unit normal and the unit

tangent to Ω + ε ∪ Ω - ε respectively, µ ∈ 0, 1 2
is the Poisson ratio and E > 0 is the Young modulus of the plate. In the following, M will denote the flexural rigidity modulus of the plate, i.e.

M = Et 3 12(1 -µ 2 )
.

(

The weak formulation of Problem (1.1) is the following one (see pages 205-207 in [START_REF] Duvaut | Les inéquations en mécanique et en physique[END_REF]):

                   U ε ∈ H 2 (Ω + ε ∪ Ω - ε ), U ε = ∂ n U ε = 0 on Γ ε , M Ω + ε ∪Ω - ε ∆U ε ∆V + (1 -µ) 2∂ 2 x 1 x 2 U ε ∂ 2 x 1 x 2 V -∂ 2 x 1 U ε ∂ 2 x 2 V -∂ 2 x 2 U ε ∂ 2 x 1 V dx = Ω + ε ∪Ω - ε F ε V dx, ∀V ∈ H 2 (Ω ε ∪ Ω - ε ) : V = ∂ n V = 0 on Γ ε .
(1.

3)

The goal of our paper is to study the asymptotic behavior of Problem (1.3), as ε tends to zero. To this aim, by following an idea of P.G. Ciarlet (see [START_REF] Ciarlet | A Justification of the Two-Dimensional Linear Plate Model[END_REF]), Problem (1.3) can be reformulated on a domain independent of h ε , through appropriate rescalings mapping Ω - ε into the fixed rectangle: Ω -=]0, c[×] -1, 0[. Namely, by setting

f ε (x) = F ε (x), a.e. x ∈ Ω + , f ε (x) = F ε (x 1 , h ε x 2 ), a.e. x ∈ Ω -, (1.4) 
u ε (x) = U ε (x), a.e. x ∈ Ω + ε , u ε (x) = U ε (x 1 , h ε x 2 ), a.e. x ∈ Ω -,
and Ω ε = Ω + ε ∪ Ω -, it turns out that u ε belongs to the following space:

V ε = {v ∈ H 1 (Ω ε ) : v + ∈ H 2 (Ω + ε ), v -∈ H 2 (Ω -), v = 0, Dv = 0 on Γ ε , ∂ x 1 v + = ∂ x 1 v -on Σ \ ∂Ω ε , h ε ∂ x 2 v + = ∂ x 2 v -on Σ \ ∂Ω ε } , where v + = v | Ω + ε , v -= v | Ω -, Σ =]0, c[×{0}.
Moreover, u ε is the unique solution of the following problem:

                                           u ε ∈ V ε , M Ω + ε ∆u ε ∆v + (1 -µ) 2∂ 2 x 1 x 2 u ε ∂ 2 x 1 x 2 v -∂ 2 x 1 u ε ∂ 2 x 2 v -∂ 2 x 2 u ε ∂ 2 x 1 v dx+ +M h ε Ω - ∂ 2 x 1 u ε + 1 h 2 ε ∂ 2 x 2 u ε ∂ 2 x 1 v + 1 h 2 ε ∂ 2 x 2 v dx+ +M (1 -µ)h ε Ω - 2 1 h ε ∂ 2 x 1 x 2 u ε 1 h ε ∂ 2 x 1 x 2 v -∂ 2 x 1 u ε 1 h 2 ε ∂ 2 x 2 v - 1 h 2 ε ∂ 2 x 2 u ε ∂ 2 x 1 v dx = = Ω + ε f ε vdx + h ε Ω - f ε vdx, ∀v ∈ V ε .
(1.5)

The study of the asymptotic behavior of Problem (1.5) will be performed under the following assumption:

f ε| Ω + → f strongly in L 2 (Ω + ), h ε f ε| Ω -→ g strongly in L 2 (Ω -), (1.6) 
as ε tends to zero. Moreover, the following spaces will be involved:

W 2 (Ω + ) = v ∈ L 2 (Ω + ) : ∂ x 2 v ∈ L 2 (Ω + ), ∂ 2 x 2 v ∈ L 2 (Ω + ), v = ∂ x 2 v = 0 on Γ , (1.7) 
where Γ =]0, c[×{d}, and

H 2 per (]0, 1[) = v ∈ H 2 (]0, 1[) : v(0) = v(1), v ′ (0) = v ′ (1) , with v ′ denoting the first derivative of v. Remark that H 2 per (]0, 1[) is the closure of C ∞ per ([0, 1]) with respect to the H 2 (]0, 1[)-norm, where C ∞ per ([0, 1]) is the set of functions in C ∞ (R) which are 1-periodic.
In the sequel, v denotes the zero-extension to Ω + of any function v defined in a subset of Ω + , and

|ω| = b -a, (1.8) 
We will show that the limit problem depends on

lim ε→0 ε 4 h ε = l ∈ [0, +∞[ (1.9) and 0 -1 g(x 1 , x 2 )dx 2 .
Precisely, the following main result will be proved:

Theorem 1.1. Let u ε be the unique solution of Problem (1.5). Let W 2 (Ω + ) be the space defined in (1.7). Assume (1.6) and (1.9). Then,

u ε ⇀ |ω|u weakly in W 2 (Ω + ), ∂ 2 x 1 u ε ⇀ -µ|ω|∂ 2 x 2 u weakly in L 2 (Ω + ), ∂ 2 x 1 x 2 u ε ⇀ 0 weakly in L 2 (Ω +
), as ε → 0, where u is the unique solution of the following problem:

                   u ∈ W 2 (Ω + ), |ω| Et 3 12 Ω + ∂ 2 x 2 u ∂ 2 x 2 v dx = |ω| Ω + f v dx+ + c 0 0 -1 g(x 1 , x 2 ) dx 2 v(x 1 , 0) dx 1 ∀v ∈ W 2 (Ω + ), (1.10) 
with |ω| defined in (1.8), µ ∈ 0, 1 2 the Poisson ratio, E > 0 the Young modulus and t denoting the small thickness of the 3d plate (see Problem (1.1)), and f and g given by (1.6). Moreover,

∂ x 2 u ε L 2 (Ω -) ≤ ch 3 4 ε , ∂ 2 x 1 x 2 u ε L 2 (Ω -) ≤ ch 1 2 ε , ∂ 2 x 2 u ε L 2 (Ω -) ≤ ch 3 2 ε ,
for every ε, where c is a constant independent of ε, and

u ε ⇀ u | Σ + 1 0 v 0 dy 1 weakly in L 2 (Ω -), (1.11) 
as ε → 0, where v 0 = 0 if l = 0 in (1.9), while, if l ∈]0, +∞[, v 0 (= v 0 (x 1 , y 1 )) is the unique solution of the following problem:

                                     v 0 ∈ L 2 (]0, c[, H 2 per (]0, 1[)), v 0 (x 1 , y 1 ) = 0 in ]0, c[×ω, Et 3 12 1 l ]0,c[×]0,1[ ∂ 2 y 1 v 0 (x 1 , y 1 )∂ 2 y 1 ϕ(x 1 , y 1 )dx 1 dy 1 = = ]0,c[×]0,1[ 0 -1 g(x 1 , x 2 )dx 2 ϕ (x 1 , y 1 ) dx 1 dy 1 , ∀ϕ ∈ L 2 (]0, c[, H 2 per (]0, 1[)) : ϕ (x 1 , y 1 ) = 0 in ]0, c[×ω, (1.12) 
with u | Σ denoting the trace on Σ of the solution u of (1.10). Furthermore, the convergence of the energies holds:

lim ε→0 Et 3 12(1 -µ 2 ) Ω + ε |∆u ε | 2 + 2(1 -µ) |∂ 2 x 1 x 2 u ε | 2 -∂ 2 x 1 u ε ∂ 2 x 2 u ε dx+ + Et 3 12(1 -µ 2 ) h ε Ω - ∂ 2 x 1 u ε + 1 h 2 ε ∂ 2 x 2 u ε 2 + 2(1 -µ) 1 h ε ∂ 2 x 1 x 2 u ε 2 - 1 h 2 ε ∂ 2 x 2 u ε ∂ 2 x 1 u ε dx = Et 3 12 |ω| Ω + |∂ 2 x 2 u| 2 dx + 1 l ]0,c[×]0,1[ ∂ 2 y 1 v 0 (x 1 , y 1 ) 2 dx 1 dy 1 ,
where ∞ • 0 means 0.

Proof. The convergences of the energies is obtained by passing to the limit, as ε tends to zero, in (1.5) with v = u ε , and by making use of assumption (1.6), of the convergences of { u ε } ε , and of the equation satisfied by u and v 0 .

Remark 1.2. Problem (1.10) and Problem (1.12) are the weak formulation of the following problems:

                                   Et 3 12 ∂ 4 u ∂x 4 2 = f in Ω + , u = ∂u ∂x 2 = 0 on Γ, ∂ 2 u ∂x 2 2 = 0 on Σ, ∂ 3 u ∂x 3 2 = 12 |ω|Et 3 0 -1 g(x 1 , x 2 ) dx 2 on Σ, (1.13)
and for a.e.

x 1 ∈]0, c[                                                                            Et 3 12 1 l ∂ 4 v 0 ∂y 4 1 (x 1 , y 1 ) = 0 -1 g(x 1 , x 2 )dx 2 for y 1 ∈]0, a[, Et 3 12 1 l ∂ 4 v 0 ∂y 4 1 (x 1 , y 1 ) = 0 -1 g(x 1 , x 2 )dx 2 for y 1 ∈]b, 1[, v 0 (x 1 , a) = ∂v 0 ∂y 1 (x 1 , a) = v 0 (x 1 , b) = ∂v 0 ∂y 1 (x 1 , b) = 0, v 0 (x 1 , 0) = v 0 (x 1 , 1), ∂v 0 ∂y 1 (x 1 , 0) = ∂v 0 ∂y 1 (x 1 , 1), ∂ 2 v 0 ∂y 2 1 (x 1 , 0) = ∂ 2 v 0 ∂y 2 1 (x 1 , 1), ∂ 3 v 0 ∂y 3 1 (x 1 , 0) = ∂ 3 v 0 ∂y 3 1 (x 1 , 1), v 0 (x 1 , y 1 ) = 0 for y 1 ∈ ω =]a, b[, (1.14) 
respectively. The solution of Problem (1.14) can be explicitly computed, by solving a linear system of 8 equations with 8 unknowns. Then, for a.e.

x 1 ∈]0, c[, it results that v 0 (x 1 , y 1 ) =                    l 2Et 3 (a -y 1 ) 2 (1 -b + y 1 ) 2 0 -1 g(x 1 , x 2 )dx 2 for y 1 ∈ [0, a[, 0 for y 1 ∈ ω = [a, b], l 2Et 3 (1 + a -y 1 ) 2 (b -y 1 ) 2 0 -1 g(x 1 , x 2 )dx 2 for y 1 ∈]b, 1], (1.15)
and consequently

1 0 v 0 (x 1 , y 1 ) dy 1 = l 2Et 3 1 30 + a 6 + a 2 3 + a 3 3 + a 4 6 + a 5 30 - b 6 - 2ab 3 -a 2 b - 2a 3 b 3 - a 4 b 6 + + b 2 3 + ab 2 + a 2 b 2 + a 3 b 2 3 - b 3 3 - 2ab 3 3 - a 2 b 3 3 + b 4 6 + ab 4 6 - b 5 30 0 -1 g(x 1 , x 2 )dx 2 .
(1.16)

In the limit domain Ω + of the comb, we obtain a continuum bending model of rods subjected to a force f , clamped on the upper side Γ, and subjected on the lower side Σ to applied forces but without applied momentum. The forces on Σ depend on the limit density g of the transverse loads on the thin strip Ω - ε , and on the measure of the cross section ω of the reference tooth. The force f depends on the limit of the transverse loads on the teeth.

The limit solution meets a Dirichlet transmission condition between Ω + and the rescaled strip

Ω -, if h ε ≫ ε 4 , or if h ε ≃ ε 4 and 0 -1 g(x 1 , x 2 )dx 2 = 0 a.e. in ]0, c[. While, if
the strip is thin enough and the transverse loads on the thin strip are strong enough, i.e. h ε ≃ ε 4 and 0 -1 g(x 1 , x 2 )dx 2 = 0 in a subset of ]0, c[ with positive measure, a discontinuity in the Dirichlet transmission condition appears. Roughly speaking, this means that microscopic oscillations of the displacement in the strip, between the basis of the teeth of Ω + ε , produce a limit average field different from that on the base of the teeth. Point out that (1.15) provides that

1 0 v 0 (x 1 , y 1 ) dy 1 = 0 in a subset of ]0, c[ with positive measure if and only if 0 -1 g(x 1 , x 2 )dx 2 =
0 in the same subset. Consequently, by taking into account the definition of g in (1.6), for obtaining the additional term in (1.11) when h ε ≃ ε 4 , it is necessary that the transverse loads in the thin strip Ω - ε are strong enough to avoid that lim

ε→0 (h ε Ω - ε |F ε | 2 dx) = 0. For instance, if F ε = ε -4α in Ω -
ε , the additional term in the displacement of the strip intervenes when α = 1 and it is given by formula (1.16) with g = 1, it does not appears when α < 1.

As regards the Laplacian, in [START_REF] Blanchard | Highly Oscillating Boundaries and Reduction of Dimension: the Critical Case[END_REF] the authors prove that h ε ≃ ε 2 is a critical size for the thickness of the thin domain. In particular, if h ε ≪ ε 2 , they give an example in which g = 0 and the sequence {u ε| Ω -} ε is not even bounded in L 1 (Ω -). In our paper, as regard the case h ε ≪ ε 4 , we think that a deterministic limit model may hardly be expected, but we have not an example to validate it.

In what concerns the original Problem (1.3), the result below immediately follows from Theorem 1.1: Corollary 1.3. Let U ε be the solution of Problem (1.3), under the assumptions of Theorem 1.1, with {f ε } ε defined by (1.4).

Then, it results that

U ε ⇀ |ω|u weakly in W 2 (Ω + ), ∂ 2 x 1 U ε ⇀ -µ|ω|∂ 2 x 2 u weakly in L 2 (Ω + ), ∂ 2 x 1 x 2 U ε ⇀ 0 weakly in L 2 (Ω + ), lim ε→0 1 |Ω - ε | Ω - ε U ε dx = 1 c c 0 u | Σ + 1 0 v 0 dy 1 dx 1 , lim ε→0 1 |Ω - ε | α Ω - ε ∂ x 2 U ε dx = lim ε→0 1 |Ω - ε | β Ω - ε ∂ 2 x 1 x 2 U ε dx = lim ε→0 1 |Ω - ε | β Ω - ε ∂ 2 x 2 U ε dx = 0, ∀α < 3 4 , ∀β < 1 2 ,
where u is the weak solution of Problem (1.13), u | Σ denotes the trace of u on Σ, and

v 0 = 0 if l = 0 in (1.9), while, if l ∈]0, +∞[, v 0 (= v 0 (x 1 , y 1 )) is the solution of Problem (1.14).
Furthermore, the energies converge in the sense that

lim ε→0 Et 3 12(1 -µ 2 ) Ω + ε Ω - ε |∆U ε | 2 + 2(1 -µ) |∂ 2 x 1 x 2 U ε | 2 -∂ 2 x 1 U ε ∂ 2 x 2 U ε dx = Et 3 12 |ω| Ω + |∂ 2 x 2 u| 2 dx + 1 l ]0,c[×]0,1[ ∂ 2 y 1 v 0 (x 1 , y 1 ) 2 dx 1 dy 1 ,
where ∞ • 0 means 0.

For the study of multi-structures, we refer to [START_REF] Ciarlet | Plates and Junctions in Elastic Multistructures: An Asymptotic Analysis[END_REF], [START_REF] Cioranescu | Homogenization of Reticulated Structures[END_REF], [START_REF] Kozlov | Asymptotic Analysis of Fields in a Multi-Structure[END_REF], [START_REF] Dret | Problèmes variationnels dans les multi-domaines: modélisation des jonctions et applications[END_REF], [START_REF] Panasenko | Asymptotic Analysis of Rod Structures[END_REF], [START_REF] Pironneau | Optimal Shape Design for Elliptic Systems[END_REF], [START_REF] Trabucho | Mathematical Modelling of Rods Hand-book of Numerical Analysis[END_REF] and the references quoted therein.

Boundary-value problems involving rough boundaries or interfaces appear in many fields of physics and engineering sciences, such as the scattering of acoustic waves on small periodic obstacles, the free vibrations of strongly nonhomogeneous elastic bodies, the behavior of fluids over rough walls, or of coupled fluid-solid periodic structures. For the study of boundary homogenization for highly oscillating boundaries we refer to [START_REF] Amirat | Asymptotic Approximation of the Solution of the Laplace Equation in a Domain with Highly Oscillating Boundary[END_REF], [START_REF] Baffico | Homogenization of a Transmission Problem in Solid Mechanics[END_REF], [START_REF] Blanchard | Homogenization of a Monotone Problem in a Domain with Oscillating Boundary[END_REF], [START_REF] Blanchard | Homogenization of Highly Oscillating Boundaries and Reduction of Dimension for a Monotone Problem[END_REF], [START_REF] Blanchard | Highly Oscillating Boundaries and Reduction of Dimension: the Critical Case[END_REF], [START_REF] Brizzi | Boundary Homogenization and Neumann Boundary Value Problem[END_REF], [START_REF] Esposito | Homogenization of the p-Laplacian in a Domain with Oscillating Boundary[END_REF], [START_REF] De Maio | Optimal Control for a Parabolic Problem in a Domain with Highly Oscillating Boundary[END_REF], [START_REF] Gaudiello | Homogenization of an Elliptic Transmission Problem[END_REF], [START_REF] Gaudiello | Homogenization of the Ginzburg-Landau Equation in a Domain with Oscillating Boundary[END_REF], [START_REF] Keller | Homogenization of Rough Boundary and Interfaces[END_REF], [START_REF] Mel'nyk | Homogenization of the Poisson Equations in a Thick Periodic Junction[END_REF], [START_REF] Mel'nyk | Asymptotic Structure of the Spectrum of the Neumann Problem in a Thin Comb-Like Domain[END_REF] and [START_REF] Mel'nyk | Asymptotics of the Neumann Spectral Problem Solution in a Domain of "Thick Comb[END_REF]. In particular we recall that the asymptotic behavior of a monotone nonlinear second order Neumann problem, with growth p -1 (p ∈]1, +∞[), in an analogous multidomain of R N (N ≥ 2), as considered in this paper, is studied in [START_REF] Blanchard | Homogenization of Highly Oscillating Boundaries and Reduction of Dimension for a Monotone Problem[END_REF] and [START_REF] Blanchard | Highly Oscillating Boundaries and Reduction of Dimension: the Critical Case[END_REF]. The authors prove that h ε = ε p is a critical size for the thickness of the thin domain. Precisely, if ε p ≪ h ε , the limit solution meets a Dirichlet transmission condition between the limit domain of the region with oscillating boundary and the upper side of the rescaled thin domain. If ε p ≃ h ε , a discontinuity in the Dirichlet transmission condition may occur. While, if ε p ≫ h ε , a deterministic limit model may hardly be expected.

As regards the asymptotic behavior of a fourth order problem in a thin multidomain we refer to [START_REF] Gaudiello | Junction in a Thin Multidomain for a Fourth Order Problem[END_REF] and the references quoted therein. In [START_REF] Gaudiello | Junction in a Thin Multidomain for a Fourth Order Problem[END_REF] the authors consider a thin multidomain of R N (N ≥ 2) consisting (e.g. in a 3D setting) of a only one vertical rod upon a horizontal disk. In this thin multidomain they introduce a bulk energy density of the kind W (D 2 U ), where W is a convex function with growth p ∈]1, +∞[. By assuming that the two volumes tend to zero with same rate, under suitable boundary conditions, they show that the limit problem (well posed in the union of the limit domains) is uncoupled if 1 < p ≤ N -1 2 , "partially" coupled if N -1 2 < p ≤ N -1, and coupled if N -1 < p. Our paper is organized as follows: in Section 2, by making use of some results in [START_REF] Blanchard | Homogenization of Highly Oscillating Boundaries and Reduction of Dimension for a Monotone Problem[END_REF], some a priori norm-estimates for the solution of Problem (1.5) are obtained. In Section 3, these estimates provide some convergence results in L 2 -norm, in the weak topology of L 2 , or in the setting of the two-scale convergence method, proposed by G. Nguetseng in [START_REF] Nguetseng | A General Convergence Result for a Functional Related to the Theory of Homogenization[END_REF] and developed by G. Allaire in [START_REF] Allaire | Homogenization and Two-Scale Convergence[END_REF]. Finally, in Section 4, the limit problem is derived by making use of the method of oscillating test functions, introduced by L. Tartar in [START_REF] Tartar | Partially written in F. Murat, H-Convergence[END_REF].

2 A priori norm-estimates Define D 2 (v) =   ∂ 2 x 1 v ∂ 2 x 1 x 2 v ∂ 2 x 1 x 2 v ∂ 2 x 2 v   , v ∈ H 2 (Ω + ε ); D 2 ε (v) =      ∂ 2 x 1 v 1 h ε ∂ 2 x 1 x 2 v 1 h ε ∂ 2 x 1 x 2 v 1 h 2 ε ∂ 2 x 2 v      , v ∈ H 2 (Ω -);
for every ε. This section is devoted to prove the following a priori norm-estimates:

Proposition 2.1. Let u ε be the solution of Problem (1.5). Assume (1.9) and (1.6). Then, there exists a constant c such that

u ε H 2 (Ω + ε ) ≤ c, (2.1) 
h 1 2 ε D 2 ε (u ε ) (L 2 (Ω -)) 4 ≤ c, (2.2) 
for every ε.

To prove Proposition 2.1, the following result is required.

Lemma 2.2. There exists a constant c such that

v 2 L 2 (Ω -) ≤ c v 2 L 2 (Σ\∂Ωε) + ε 2 ∂ x 1 v 2 L 2 (Ω -) + ∂ x 2 v 2 L 2 (Ω -) , ∀v ∈ H 1 (Ω -); (2.3) v 2 L 2 (Σ\∂Ωε) ≤ c v 2 L 2 (Ω + ε ) + ∂ x 2 v 2 L 2 (Ω + ε ) , ∀v ∈ H 1 (Ω + ε ); (2.4) v 2 H 2 (Ω + ε ) ≤ c D 2 v 2 (L 2 (Ω + ε )) 4 , ∀v ∈ v ∈ H 2 (Ω + ε ) : v = 0, Dv = 0 on Γ ε ; (2.5) 
for every ε.

Proof. The proof of inequality (2.3) is performed in the proof of Proposition 3.3 in [START_REF] Blanchard | Homogenization of Highly Oscillating Boundaries and Reduction of Dimension for a Monotone Problem[END_REF]. Easy computations give inequalities (2.4) and (2.5).

Proof of Proposition 2.1. In the sequel, c denotes any positive constant independent of ε.

By choosing v = u ε in (1.5), it results that

M Ω + ε ∂ 2 x 1 u ε 2 + ∂ 2 x 2 u ε 2 + 2µ∂ 2 x 1 u ε ∂ 2 x 2 u ε + 2(1 -µ) ∂ 2 x 1 x 2 u ε 2 dx+ +M h ε Ω - ∂ 2 x 1 u ε 2 + 1 h 2 ε ∂ 2 x 2 u ε 2 + 2µ∂ 2 x 1 u ε 1 h 2 ε ∂ 2 x 2 u ε + 2(1 -µ) 1 h ε ∂ 2 x 1 x 2 u ε 2 dx = = Ω + ε f ε u ε dx + h ε Ω - f ε u ε dx,
for every ε. Consequently, by taking into account that -α 2β 2 ≤ 2αβ, for α, β ∈ R, and by making use of assumption (1.6), one obtains that

Ω + ε ∂ 2 x 1 u ε 2 + ∂ 2 x 2 u ε 2 -µ ∂ 2 x 1 u ε 2 -µ ∂ 2 x 2 u ε 2 + 2(1 -µ) ∂ 2 x 1 x 2 u ε 2 dx+ +h ε Ω - ∂ 2 x 1 u ε 2 + 1 h 2 ε ∂ 2 x 2 u ε 2 -µ ∂ 2 x 1 u ε 2 -µ 1 h 2 ε ∂ 2 x 2 u ε 2 + 2(1 -µ) 1 h ε ∂ 2 x 1 x 2 u ε 2 dx ≤ ≤ c u ε L 2 (Ω + ε ) + u ε L 2 (Ω -) ,
for every ε, that is

D 2 u ε 2 (L 2 (Ω + ε )) 4 + h ε D 2 ε u ε 2 (L 2 (Ω -)) 4 ≤ c u ε L 2 (Ω + ε ) + u ε L 2 (Ω -) , (2.6) 
for every ε.

On the other hand, by applying (2.3) three times and by recalling that

∂ x 2 u - ε = h ε ∂ x 2 u + ε on Σ \ ∂Ω ε , one obtains that u ε 2 L 2 (Ω -) ≤ c u ε 2 L 2 (Σ\∂Ω ε ) + ε 2 ∂ x 1 u ε 2 L 2 (Ω -) + ∂ x 2 u ε 2 L 2 (Ω -) ≤ ≤ c u ε 2 L 2 (Σ\∂Ωε) + +cε 2 ∂ x 1 u ε 2 L 2 (Σ\∂Ωε) + ε 2 ∂ 2 x 1 u ε 2 L 2 (Ω -) + ∂ 2 x 1 x 2 u ε 2 L 2 (Ω -) + +c ∂ x 2 u - ε 2 L 2 (Σ\∂Ωε) + ε 2 ∂ 2 x 1 x 2 u ε 2 L 2 (Ω -) + ∂ 2 x 2 u ε 2 L 2 (Ω -) = = c u ε 2 L 2 (Σ\∂Ωε) + ε 2 ∂ x 1 u ε 2 L 2 (Σ\∂Ωε) + h ε ∂ x 2 u + ε 2 L 2 (Σ\∂Ωε) + +c ε 4 ∂ 2 x 1 u ε 2 L 2 (Ω -) + ε 2 ∂ 2 x 1 x 2 u ε 2 L 2 (Ω -) + ∂ 2 x 2 u ε 2 L 2 (Ω -)
, for every ε, from which, by virtue of (2.4), it follows that

u ε 2 L 2 (Ω -) ≤ c u ε 2 H 2 (Ω + ε ) + +ch ε ε 4 h ε ∂ 2 x 1 u ε 2 L 2 (Ω -) + 1 h ε ∂ 2 x 1 x 2 u ε 2 L 2 (Ω -) + 1 h 2 ε ∂ 2 x 2 u ε 2 L 2 (Ω -) , (2.7) 
for every ε. By combining (2.6) with (2.7), by making use of (2.5) and by assuming that the limit (1.9) is finite, one has that

u ε 2 H 2 (Ω + ε ) + h ε D 2 ε u ε 2 (L 2 (Ω -)) 4 ≤ c u ε 2 H 2 (Ω + ε ) + h ε D 2 ε u ε 2 (L 2 (Ω -)) 4 1 2 ,
for every ε, which provides estimates (2.1) and (2.2).

Corollary 2.3. Let u ε be the solution of Problem (1.5). Assume (1.9) and (1.6). Then, there exists a constant c such that

ε 2 ∂ 2 x 1 u ε L 2 (Ω -) ≤ c, (2.8) 1 h 1 2 ε ∂ 2 x 1 x 2 u ε L 2 (Ω -) ≤ c, (2.9) 1 h 3 2 ε ∂ 2 x 2 u ε L 2 (Ω -) ≤ c, (2.10) 1 h 3 4 ε ∂ x 2 u ε L 2 (Ω -) ≤ c, (2.11 
)

ε∂ x 1 u ε L 2 (Ω -) ≤ c, (2.12 
) 

u ε L 2 (Ω -) ≤ c, (2.13 

Convergence results

The a priori norm-estimates of the solution u ε of Problem (1.5) provide the following convergence result:

Proposition 3.1. Let u ε be the solution of Problem (1.5). Let W 2 (Ω + ) be the space defined in (1.7). Assume (1.6) and (1.9). Then,

∂ x 2 u ε L 2 (Ω -) ≤ ch 3 4 ε , (3.1) 
∂ 2 x 1 x 2 u ε L 2 (Ω -) ≤ ch 1 2 ε , ∂ 2 x 2 u ε L 2 (Ω -) ≤ ch 3 2 ε , (3.2) 
for every ε, where c is a constant independent of ε. Moreover, there exist a subsequence of {ε}, still denoted by {ε}, u

∈ W 2 (Ω + ), η, ζ ∈ L 2 (Ω + ), u 0 (= u 0 (x 1 , y 1 )) ∈ L 2 (]0, c[, H 2 per (]0, 1[)) and ξ(= ξ((x 1 , x 2 ), (y 1 , y 2 ))) ∈ L 2 (Ω -×]0, 1[ 2 ) such that u ε ⇀ |ω|u weakly in W 2 (Ω + ), (3.3) ∂ 2 x 1 u ε ⇀ η weakly in L 2 (Ω + ), (3.4) ∂ 2 x 1 x 2 u ε ⇀ ζ weakly in L 2 (Ω + ), (3.5) {u - ε } ε two-scale converges to u 0 , (3.6 
)

{ε∂ x 1 u - ε } ε two-scale converges to ∂ y 1 u 0 , (3.7 
)

{ε 2 ∂ 2 x 1 u - ε } ε two-scale converges to ∂ 2 y 1 u 0 , (3.8) 1 h 3 2 ε ∂ 2 x 2 u - ε ε two-scale converges to ξ, (3.9) 
as ε → 0, and 

u 0 (x 1 , y 1 ) = u | Σ (x 1 , 0) in ]0, c[×ω. ( 3 
∈ L 2 (Ω -, H 2 per (]0, 1[)). Moreover, u 0 is independent of x 2 , too. In fact, it results that 0 = lim ε→0 Ω - ∂ x 2 u ε ϕ x, x 1 ε dx = -lim ε→0 Ω - u ε ∂ x 2 ϕ x, x 1 ε dx = - Ω -×]0,1[ u 0 (x, y 1 )∂ x 2 ϕ (x, y 1 ) dxdy 1 , ∀ϕ ∈ C ∞ 0 Ω -×]0, 1[ .
Convergence (3.9) springs from estimate (2.10). Statement (3.10) can be obtained by arguing as in the proof of (6.6) in Proposition 6.4 of [START_REF] Blanchard | Highly Oscillating Boundaries and Reduction of Dimension: the Critical Case[END_REF].

If l = 0 in (1.9), then u 0 can be completely identified in terms of u:

Corollary 3.2. Let u ε be the solution of Problem (1.5). Assume (1.9) with l = 0, and (1.6). .11) Proof. Assumption (1.9) with l = 0 and estimate (2.2) ensure that .12) By combining (3.10) with (3.12), one obtains (3.11).

Let u ∈ W 2 (Ω + ) and u 0 ∈ L 2 (]0, c[, H 2 per (]0, 1[)) be satisfying Proposition 3.1. Then, u 0 (x 1 , y 1 ) = u | Σ (x 1 , 0) in ]0, c[×]0, 1[. ( 3 
ε 2 ∂ 2 x 1 u ε → 0 strongly in L 2 (Ω -), as ε → 0. Consequently, by virtue of (3.8), it results that ∂ 2 y 1 u 0 = 0 in ]0, c[×]0, 1[. ( 3 

The limit problem

The following proposition is devoted to identify the limit problem in Ω + . 

and u ∈ W 2 (Ω + ) is the unique solution of M |ω|(1 -µ 2 ) Ω + ∂ 2 x 2 u∂ 2 x 2 v dx = |ω| Ω + f v dx+ + c 0 0 -1 g(x 1 , x 2 ) dx 2 v(x 1 , 0) dx 1 ∀v ∈ W 2 (Ω + ), (4.3) 
where µ ∈]0, 1 2 [ is the Poisson ratio, M > 0 represents the flexural rigidity modulus of the plate (see Problem (1.5)), and f , g ∈ L 2 (Ω -) are given by (1.6).

Proof. At first, claim (4.1) will be proved. To this aim, choose v = ε 2 ψ 1 x 1 ε ϕ(x 1 , x 2 ) as test function in (1.5), where ψ 1 is the 1-periodic function defined by

ψ 1 (y 1 ) = 1 2 y 1 (y 1 -1) in [0, 1] and ϕ ∈ C ∞ 0 (Ω + ) (point out that v ∈ C ∞ (Ω + ε ) C 0 (Ω + ) ⊂ V ε ). Then, it results that M Ω + ε ∆u ε ϕ + 2εψ ′ 1 x 1 ε ∂ x 1 ϕ + ε 2 ψ 1 x 1 ε ∂ 2 x 1 ϕ + ε 2 ψ 1 x 1 ε ∂ 2 x 2 ϕ dx+ +M (1 -µ) Ω + ε 2∂ 2 x 1 x 2 u ε εψ ′ 1 x 1 ε ∂ x 2 ϕ + ε 2 ψ 1 x 1 ε ∂ 2 x 1 x 2 ϕ dx+ -M (1 -µ) Ω + ε ∂ 2 x 1 u ε ε 2 ψ 1 x 1 ε ∂ 2 x 2 ϕ dx+ -M (1 -µ) Ω + ε ∂ 2 x 2 u ε ϕ + 2εψ ′ 1 x 1 ε ∂ x 1 ϕ + ε 2 ψ 1 x 1 ε ∂ 2 x 1 ϕ dx+ = Ω + ε f ε ε 2 ψ 1 x 1 ε ϕ dx, (4.4) 
for every ε. By passing to the limit, as ε → 0, in (4.4) and by making use of (

, it is easy seen that

Ω + ηϕ + µ|ω|∂ 2 x 2 uϕ dx = 0 ∀ϕ ∈ C ∞ 0 (Ω + ),
which provides (4.1).

In the next step, it will be proved that the function ζ ∈ L 2 (Ω + ) is independent of x 2 . To this aim, choose v = εψ 2

x 1 ε ϕ(x 1 , x 2 ) as test function in (1.5), where ψ 2 is the 1-periodic function defined by ψ 2 (y 1 ) = -

y 1 + 1 2 in [0, 1[ and ϕ ∈ C ∞ 0 (Ω + ) (point out that v ∈ C ∞ (Ω + ε ) and supp v ⊂ Ω + , consequently v ∈ V ε ). Then, it results that M Ω + ε ∆u ε -2∂ x 1 ϕ + εψ 2 x 1 ε ∂ 2 x 1 ϕ + εψ 2 x 1 ε ∂ 2 x 2 ϕ dx+ +M (1 -µ) Ω + ε 2∂ 2 x 1 x 2 u ε -∂ x 2 ϕ + εψ 2 x 1 ε ∂ 2 x 1 x 2 ϕ dx+ -M (1 -µ) Ω + ε ∂ 2 x 1 u ε εψ 2 x 1 ε ∂ 2 x 2 ϕ dx+ -M (1 -µ) Ω + ε ∂ 2 x 2 u ε -2∂ x 1 ϕ + εψ 2 x 1 ε ∂ 2 x 1 ϕ dx+ = Ω + ε f ε εψ 2 x 1 ε ϕ dx, (4.5) 
for every ε. By passing to the limit, as ε → 0, in (4.5) and by making use of (3.3), (3.4), (3.5), (1.6) and (4.1), it is easy seen that

Ω + 2µ|ω|∂ 2 x 2 u∂ x 1 ϕ -2µ|ω|∂ 2 x 2 u∂ x 1 ϕ -2(1 -µ)ζ∂ x 2 ϕ dx = 0 ∀ϕ ∈ C ∞ 0 (Ω + ),
that is

Ω + ζ∂ x 2 ϕ dx = 0 ∀ϕ ∈ C ∞ 0 (Ω + ),
which provides that ζ is independent of x 2 .

In the third step, claim (4.2) will be proved . To this aim, choose

v =        εψ 2 x 1 ε φ(x 2 )ϕ(x 1 ) in Ω + ε , εψ 2 x 1 ε ϕ(x 1 ) in Ω -,
as test function in (1.5), where ψ 2 is defined as above,

φ ∈ C ∞ ([0, d]) is such that φ = 1 in 0, d 4 , φ = 0 in 3d 4 , d , and ϕ ∈ C ∞ 0 (]0, c[) (it is evident that v ∈ V ε ). Then, it results that M Ω + ε ∆u ε -2φ∂ x 1 ϕ + εψ 2 x 1 ε φ∂ 2 x 1 ϕ + εψ 2 x 1 ε ϕ∂ 2 x 2 φ dx+ +M (1 -µ) Ω + ε 2∂ 2 x 1 x 2 u ε -ϕ∂ x 2 φ + εψ 2 x 1 ε ∂ x 1 ϕ∂ x 2 φ dx+ -M (1 -µ) Ω + ε ∂ 2 x 1 u ε εψ 2 x 1 ε ϕ∂ 2 x 2 φ dx+ -M (1 -µ) Ω + ε ∂ 2 x 2 u ε -2φ∂ x 1 ϕ + εψ 2 x 1 ε φ∂ 2 x 1 ϕ dx+ +M h 1 2 ε Ω - h 1 2 ε ∂ 2 x 1 u ε -2∂ x 1 ϕ + εψ 2 x 1 ε ∂ 2 x 1 ϕ dx+ +M h 1 2 ε Ω - µ 1 h 3 2 ε ∂ 2 x 2 u ε -2∂ x 1 ϕ + εψ 2 x 1 ε ∂ 2 x 1 ϕ dx = Ω + ε f ε εψ 2 x 1 ε φϕ dx + Ω - h ε f ε εψ 2 x 1 ε ϕ dx, (4.6) 
for every ε. By passing to the limit, as ε → 0, in (4.6) and by making use of (3.3), (3.4), (3.5), (4.1), (2.2) and (1.6), it is easy seen that

Ω + ζϕ∂ x 2 φ dx = 0 ∀ϕ ∈ C ∞ 0 (]0, c[),
from which, by recalling the assumptions on φ and that ζ is independent of x 2 , it follows that

c 0 ζ(x 1 )ϕ(x 1 ) dx = 0 ∀ϕ ∈ C ∞ 0 (]0, c[),
that is (4.2). Now, the limit problem satisfied by u will be identified. To this aim, choose

v =    ϕ in Ω + ε , ϕ(x 1 , 0) + h ε x 2 (∂ x 2 ϕ) (x ′ , 0) in Ω -,
as test function in (1.5), where ϕ ∈ C ∞ (Ω + ), and ϕ = 0, Dϕ = 0 on Γ. Then, it results that

M Ω + ε ∆u ε ∆ϕ + (1 -µ) 2∂ 2 x 1 x 2 u ε ∂ 2 x 1 x 2 ϕ -∂ 2 x 1 u ε ∂ 2 x 2 ϕ -∂ 2 x 2 u ε ∂ 2 x 1 ϕ dx+ +M h 1 2 ε Ω - h 1 2 ε ∂ 2 x 1 u ε + 1 h 3 2 ε ∂ 2 x 2 u ε ∂ 2 x 1 ϕ (x 1 , 0) + h ε x 2 ∂ 3 x 2 1 x 2 ϕ (x 1 , 0) dx+ +M (1 -µ) Ω - 2∂ 2 x 1 x 2 u ε ∂ 2 x 2 x 1 ϕ (x 1 , 0) dx+ -M (1 -µ)h 1 2 ε Ω - 1 h 3 2 ε ∂ 2 x 2 u ε ∂ 2 x 1 ϕ (x 1 , 0) + h ε x 2 ∂ 3 x 2 1 x 2 ϕ (x 1 , 0) dx = = Ω + ε f ε ϕdx + h ε Ω - f ε (ϕ(x 1 , 0) + h ε x 2 (∂ x 2 ϕ) (x ′ , 0)) dx, (4.7) 
for every ε. By passing to the limit, as ε → 0, in (4.7), by making use of (3.3), (3.4), (3.5), (4.1), (4.2), (2.2) and (1.6), and by recalling that

χ Ω + ε ⇀ |ω| weakly in L 2 (Ω + ), it is easy seen that M |ω|(1 -µ 2 ) Ω + ∂ 2 x 2 u∂ 2 x 2 ϕ dx = |ω| Ω + f ϕ dx+ + c 0 0 -1 g(x 1 , x 2 ) dx 2 ϕ(x 1 , 0) dx 1 ∀ϕ ∈ C ∞ (Ω + ) : ϕ = 0, Dϕ = 0 on Γ, (4.8) 
which, by density arguments, provides that u ∈ W 2 (Ω + ) is the unique solution of (4.3).

The following proposition is devoted to identify the limit problem in Ω -.

Proposition 4.2. Let u ε be the solution of Problem (1.5). Assume (1.9) with l ∈]0, +∞[, and (1.6). Let u 0 ∈ L 2 (]0, c[, H 2 per (]0, 1[)) be satisfying Proposition 3.1. Then,

M 1 -µ 2 l ]0,c[×]0,1[ ∂ 2 y 1 u 0 (x 1 , y 1 )∂ 2 y 1 ϕ(x 1 , y 1 )dx 1 dy 1 = = ]0,c[×]0,1[ 0 -1 g(x 1 , x 2 )dx 2 ϕ (x 1 , y 1 ) dx 1 dy 1 , ∀ϕ ∈ L 2 (]0, c[, H 2 per (]0, 1[)) : ϕ (x 1 , y 1 ) = 0 in ]0, c[×ω, (4.9) 
where µ ∈]0, 1 2 [ is the Poisson ratio, M > 0 represents the flexural rigidity modulus of the plate (see Problem (1.5)), and g ∈ L 2 (Ω -) is given by (1.6).

Proof. In the sequel, ε takes values in a subsequence satisfying Proposition 3.1.

The proof of (4.9) will be performed in two steps. At first, it will be proved that

0 -1 1 0 ξ((x 1 , x 2 ), (y 1 , y 2 ))dx 2 dy 2 = -µl -1 2 ∂ 2 y 1 u 0 (x 1 , y 1 ) a.e. in ]0, c[×(]0, 1[), (4.10) 
where admits an intrinsic 1-periodic extension on R). Then, it results that

ξ ∈ L 2 (Ω -×]0, 1[ 2 ) satisfies Proposition 3.1. To this aim, choose v = 0 in Ω + ε , h 3 2 ε x 2 2 ϕ x 1 , x 1 ε in Ω -
M h ε Ω - ∂ 2 x 1 u ε ∂ 2 x 1 h 3 2 ε x 2 2 ϕ x 1 , x 1 ε dx+ +M h ε Ω - ∂ 2 x 1 u ε 1 h 2 ε ∂ 2 x 2 h 3 2 ε x 2 2 ϕ x 1 , x 1 ε dx+ +M h ε Ω - 1 h 2 ε ∂ 2 x 2 u ε ∂ 2 x 1 h 3 2 ε x 2 2 ϕ x 1 , x 1 ε dx+ +M h ε Ω - 1 h 2 ε ∂ 2 x 2 u ε 1 h 2 ε ∂ 2 x 2 h 3 2 ε x 2 2 ϕ x 1 , x 1 ε dx+ +M (1 -µ)h ε Ω - 2 1 h ε ∂ 2 x 1 x 2 u ε 1 h ε ∂ 2 x 1 x 2 h 3 2 ε x 2 2 ϕ x 1 , x 1 ε + -M (1 -µ)h ε Ω - ∂ 2 x 1 u ε 1 h 2 ε ∂ 2 x 2 h 3 2 ε x 2 2 ϕ x 1 , x 1 ε + -M (1 -µ)h ε Ω - 1 h 2 ε ∂ 2 x 2 u ε ∂ 2 x 1 h 3 2 ε x 2 2 ϕ x 1 , x 1 ε dx = = h ε Ω - f ε h 3 2 ε x 2 2 ϕ x 1 , x 1 ε dx, (4.11) 
for every ε. Now, pass to the limit, as ε → 0, in each term of (4.11).

From (1.9) with l ∈]0, +∞[ and (2.2) it follows that

lim ε→0 h ε Ω - ∂ 2 x 1 u ε ∂ 2 x 1 h 3 2 ε x 2 2 ϕ x 1 , x 1 ε dx = = lim ε→0 h ε Ω - h 1 2 ε ∂ 2 x 1 u ε x 2 2 h ε ∂ 2 x 1 ϕ + 2 h ε ε ∂ 2 x 1 y 1 ϕ + h ε ε 2 ∂ 2 y 1 ϕ x 1 , x 1 ε dx = 0. (4.12) 
From (1.9) with l ∈]0, +∞[ and (3.8) it follows that

lim ε→0 Ω - h ε ∂ 2 x 1 u ε 1 h 2 ε ∂ 2 x 2 h 3 2 ε x 2 2 ϕ x 1 , x 1 ε dx = lim ε→0 Ω - h 1 2 ε ∂ 2 x 1 u ε 2ϕ x 1 , x 1 ε dx = = 2l -1 2 ]0,c[×]0,1[ ∂ 2 y 1 u 0 (x 1 , y 1 )ϕ(x 1 , y 1 )dx 1 dy 1 . (4.13) 
From (1.9) with l ∈]0, +∞[ and (3.2) it follows that

lim ε→0 Ω - h ε 1 h 2 ε ∂ 2 x 2 u ε ∂ 2 x 1 h 3 2 ε x 2 2 ϕ x 1 , x 1 ε dx = = lim ε→0 Ω - ∂ 2 x 2 u ε x 2 2 h 1 2 ε ∂ 2 x 1 ϕ + 2 h 1 2 ε ε ∂ 2 x 1 y 1 ϕ + h 1 2 ε ε 2 ∂ 2 y 1 ϕ x 1 , x 1 ε dx = 0. (4.14) From (3.9) it follows that lim ε→0 Ω - h ε 1 h 2 ε ∂ 2 x 2 u ε 1 h 2 ε ∂ 2 x 2 h 3 2 ε x 2 2 ϕ x 1 , x 1 ε dx= lim ε→0 Ω - 1 h 3 2 ε ∂ 2 x 2 u ε 2ϕ x 1 , x 1 ε dx = = 2 Ω -×]0,1[ 2 ξ((x 1 , x 2 ), (y 1 , y 2 ))ϕ (x 1 , y 1 ) d(x 1 , x 2 )d(y 1 , y 2 ). (4.15) 
From (1.9) with l ∈]0, +∞[ and (3.2) it follows that Then, by passing to the limit, as ε → 0, in (4.11) and by making use of (4.12)÷ (4.17 

lim ε→0 Ω - h ε 2 1 h ε ∂ 2 x 1 x 2 u ε 1 h ε ∂ 2 x 1 x 2 h 3 2 ε x 2 2 ϕ x 1 , x 1 ε dx = lim ε→0 Ω - 4∂ 2 x 1 x 2 u ε x 2 h 1 2 ε ∂ x 1 ϕ + h 1 2 ε ε ∂ y 1 ϕ x 1 , x 1 ε dx = 0.
M h ε Ω - ∂ 2 x 1 u ε ∂ 2 x 1 ϕ x 1 , x 1 ε dx+M h ε Ω - 1 h 2 ε ∂ 2 x 2 u ε ∂ 2 x 1 ϕ x 1 , x 1 ε dx+ -M (1 -µ)h ε Ω - 1 h 2 ε ∂ 2 x 2 u ε ∂ 2 x 1 ϕ x 1 , x 1 ε dx = h ε Ω - f ε ϕ x 1 , x 1 ε dx, (4.18) 
for every ε.

Pass to the limit, as ε → 0, in each term of (4.18). From (1.9) with l ∈]0, +∞[ and (3.8) it follows that lim ε→0 Ω -

h ε ∂ 2 x 1 u ε ∂ 2 x 1 ϕ x 1 , x 1 ε dx = = lim ε→0 Ω - h 1 2 ε ε 2 ε 2 ∂ 2 x 1 u ε h 1 2 ε ∂ 2 x 1 ϕ + 2 h 1 2 ε ε ∂ 2 x 1 y 1 ϕ + h 1 2 ε ε 2 ∂ 2 y 1 ϕ x 1 , x 1 ε dx = = 1 l ]0,c[×]0,1[ ∂ 2
y 1 u 0 (x 1 , y 1 )∂ 2 y 1 ϕ(x 1 , y 1 )dx 1 dy 1 .

(4. [START_REF] Dret | Problèmes variationnels dans les multi-domaines: modélisation des jonctions et applications[END_REF] From (1.9) with l ∈]0, +∞[, (3.9) and (4.10) it follows that 

lim ε→0 Ω - h ε 1 h 2 ε ∂ 2 x 2 u ε ∂ 2 x 1 ϕ x 1 , x 1 ε dx = = lim ε→0 Ω - 1 h 3 2 ε ∂ 2 x 2 u ε h 1 2 ε ∂ 2 x 1 ϕ + 2 h 1 2 ε ε ∂ 2 x 1 y 1 ϕ + h 1 2 ε ε 2 ∂ 2 y 1 ϕ x 1 , x 1 ε dx = = Ω -×]0,

  0[, which has a vanishing height h ε and constant basis. Moreover, denote with Γ ε the top of the teeth of the middle surface: Γ ε = {k∈N: εb+εk<c} (εω + εk) × {d}.
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 1 Figure 1: the middle surface of our three-dimensional plate.
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 41 Let u ε be the solution of Problem (1.5). Assume (1.9) and (1.6). Let u ∈ W 2 (Ω + ) and η , ζ ∈ L 2 (Ω + ) be satisfying Proposition 3.1. Then, η = -µ|ω|∂ 2x 2 u a.e. in Ω + , (4.1)ζ = 0 a.e. in Ω + , (4.2)
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 15 , where ϕ(= ϕ(x 1 , y 1 )) ∈ C ∞ 0 (]0, c[×(]0, 1[) (point out that ϕ(x 1 , •)
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 121 u 0 (x 1 , y 1 )ϕ(x 1 , y 1 )dx 1 dy 1 + +2Ω -×]0,1[ 2 ξ((x 1 , x 2 ), (y 1 , y 2 ))ϕ (x 1 , y 1 ) d(x 1 , x 2 )d(y 1 , y 2 )+ -(1µ)2l -1 u 0 (x 1 , y 1 )ϕ(x 1 , y 1 )dx 1 dy 1 = 0, ∀ϕ ∈ C ∞ 0 (]0, c[×(]0, 1[)),that is (4.10). Now, to prove (4.9), choose v = ϕ x 1 , x 1 ε , as test function in(1.5), where ϕ (= ϕ (x 1 , y 1 ))∈ C ∞ [0, c], C ∞ per ([0,1]) such that ϕ (x 1 , y 1 ) = 0 in [0, c] × ω. Then, it results that

1 [ 2 ξ((x 1 , x 2 ), (y 1 , y 2 y 1 ϕ

 1212121 (x 1 , y 1 ) d(x 1 , x 2 )d(y 1 , y 2 ) = = -µ l ]0,c[×]0,1[ ∂ 2 y 1 u 0 (x 1 , y 1 )∂ 2 y 1 ϕ(x 1 , y 1 )dx 1 dy 1 .

(4. 20 )From ( 1 . 6 )y 1 u 0 (x 1 , y 1 )∂ 2 y 1 ϕ(x 1 , y 1 )dx 1 dy 1 1 g(x 1 , x 2 )

 20161111112 it follows that lim ε→0 Ω - h ε f ε ϕ x 1 , x 1 ε dx = Ω -×]0,1[ g(x 1 , x 2 )ϕ (x 1 , y 1 ) d(x 1 , x 2 )dy 1 .(4.21)Then, by passing to the limit, as ε → 0, in (4.18) and by making use of (4.19)÷ (4.21), dx 2 ϕ (x 1 , y 1 )dx 1 dy 1 , ∀ϕ ∈ C ∞ [0, c], C ∞ per ([0, 1]) such that ϕ (x 1 , y 1 ) = 0 in [0, c] × ω,which provides (4.9), by density arguments.

  .10) 

	Proof. Estimates (3.1) and (3.2) follow from estimates (2.11), (2.9) and (2.10). Convergences
	(3.3), (3.4) and (3.5) are a consequence of estimate (2.1). Estimates (2.13), (2.12), (2.8),
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