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Abstract

We show that there are two types of leaky modes in a left-handed
slab (i) leaky slab modes which are always backward and (ii) leaky
surface plasmons which may be forward or backward. The propagation
direction of these modes are studied using complex plane analysis. The
fact that slab modes are backward explains several previously reported
results concerning lateral shifts. The complex plane analysis is shown
to be particularly relevant for the study of this structure.

1 Introduction

Since it has been demonstrated that left-handed materials[1] could be made
using meta-materials[2], they have attracted much attention. Many exciting
applications have been suggested for the left-handed media. A slab of such a
material could be used as a flat lens[1] allowing in some particular conditions
to overcome the Rayleigh limit[3], a phenomenon in which the surface modes
play a role.

The Goos-Hänchen shift experienced by a reflected beam[4, 5] has at-
tracted a renewed interest too, especially in the case of multi-layered struc-
tures [6, 7]. Since left-handed materials were in the mood, the Goos-Hänchen
shift has been studied for the reflection on such materials and has been
found to be negative[8, 9]. It has been shown that the shift could even
be huge for multilayered structures[10] because of the excitation of back-
ward plasmons[11, 12]. Some large shift have been reported[13], wrongly
attributed to such surface modes, in our opinion. Some other works report
large shifts of the reflected beam on a left-handed slab[14] but these have not
been interpreted in terms of the excitation of leaky guided modes.
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The goal of this paper is to study all the leaky modes which can be
supported by a left-handed slab. We will see that the slab does not only
support leaky slab modes as for the right-handed slab. Leaky surface modes
can be excited in this case - and the left-handed slab is the only structure
for which these to types of leaky modes are observed. We will explain which
modes are backward and why, using complex plane analysis. As we will see,
leaky slab modes and leaky surface modes should not be confused[13], and
leaky slab modes explain some large lateral shifts[14, 15].

2 Reflection coefficients

In this section, we will consider the reflection coefficient of a plane wave
propagating in a right-handed medium on an interface with a right- (section
2.1) or a left- (section 2.2) handed medium and the relation between theses
two reflectivities. We will put emphasize on complex plane properties of
these coefficients to introduce the complex plane tools and concepts.

2.1 Right-handed medium

Let us consider an interface between two right-handed media 1 and 2 charac-
terized by their respective permittivity ǫ and permeability µ, all positive. The
reflection coefficient of an incident plane ei(α x−β1 y−ω t) wave can be written

r =
κ1 − κ2

κ1 + κ2

, (1)

where κi = βi

µi
in TE polarization (or κi = βi

ǫi
in TM polarisation) with

βi =
√

ǫi µi k
2
0 − α2 and k0 = ω

c
. The index of a medium is defined by

n =
√

ǫ µ, and the propagation angle θ is defined by α = n k0 sin θ.
When total reflection occurs, which requires n2 < n1 and α > n2 k0 then

the lateral displacement of the reflected beam’s barycenter along the interface
is given by the formula

δ = −dφ

dα
, (2)

where φ is the phase r = eiφ. This formula holds as long as the incident
beam is spatially large enough (and hence spectrally narrow enough)[7].

This displacement is noticeable (a few wavelength) when the incidence
angle is just above the critical angle and it is called the Goos-Hänchen shift[4].
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Figure 1: The asymetric slab. The lateral displacement can be measured
along the interface (δ) or in a direction perpendicular to the propagation of
the reflected beam (∆).

Since the square root can be continued on the complex plane, r can be
continued as well. We choose to take

√
z =

√
r ei θ

2 with z = r eiθ and
θ ∈] − π, π], as a definition of the square root. This means that we place
the cut line on the negative part of the real axis and if x is a positive real,√
−x = i

√
x. This defines the square root on the entire complex plane, to

which we refer as the first Riemann sheet. When we will write the z is on
the second Riemann sheet, it will mean that we choose to take the opposite
of

√
z as defined above.

With this choice, we have (i) ℜ(
√

z) ≥ 0 (ii)
√

z∗ =
√

z
∗

for z on both
sheets but not on the cut line (iii) if ℑ(z) < 0, ℑ(

√
z) < 0 and if ℑ(z) > 0,

ℑ(
√

z) > 0 (iv) the function β(z) =
√

ǫ µ k2
0 − z2 has a cut line on the real

axis (on ]−∞,−n k0]∪ [n k0, +∞] more precisely) and the function β on the
real axis is continuous with the part of the complex plane which is under the

cut line : when z passes through the cut line from the first Riemann sheet
(coming from the lower part of the plane) to the second Riemann sheet, β(z)
is continuous. When a function which can be written using β(z) presents a
pole, it must be found either (i) for z on the first Riemann sheet and under
the real axis (we will say that the pole itself is on the first Riemann sheet in
this case) or (ii) for z on the second Riemann sheet but above the real axis.

2.2 Left-handed medium

Let us consider the case when medium 2 is left-handed. We should then
distinguish between two cases : either α < n2 k0 or α > n2 k0.
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If α < n2 k0, then the outgoing wave condition is fulfilled only if ei(α x+β2 y−ω t)

is considered as an outgoing wave. In left handed materials, the Poynting
vector is indeed opposite to the propagation vector. The reflection coefficient
can thus be written

r =
κ1 + κ2

κ1 − κ2

. (3)

Let us define κ+
2 = β2

|µ2|
in TE polarization (or κ+

2 = β2

|ǫ2|
in TM polariza-

tion). This would be the value of κ for a right-handed medium characterized
by |ǫ2| and |µ2|. Let us denote r+ the reflection coefficient from a medium 1
on such a right-handed medium. Since κ+

2 = −κ2, we have r = r+.
When α > n2 k0, there is no need to use any outgoing wave condition so

that, again,

r =
κ1 − κ2

κ1 + κ2
. (4)

This time, we have r = 1
r+ . While |r| = 1, this can be written r+ = r∗ as in

[9], which explains why the Goos-Hänchen shift is negative in this case.
For α > n k0 whatever the index n the guided modes of the interface

can be found (surface modes). It has been shown[11, 12] that an interface
between a right-handed medium (here, air with µ1 = ǫ1 = 1) and a left-
handed medium 2 could support surface waves either forward (if ǫ2 µ2 < 1,
|µ2| < 1 and |ǫ2| > 1 in TE polarization) or backward (if ǫ2 µ2 > 1, |µ2| > 1
and |ǫ2| < 1 in TE polarization). The surface mode has a propagation
constant αp which is given (in TE polarization and for ǫ3 = µ3 = 1) by

αp = k0

√

µ2
µ2 − ǫ2

µ2
2 − 1

. (5)

Since a guided mode does not need any incident wave to exist, the reflec-
tion coefficient diverges when z = αp. The coefficient is said to have a pole
in z = αp. This is not the case for the right-handed slab : since r+ = 1

r
, r+

goes to zero when z = αp.

3 Leaky modes

A leaky mode of a given structure is a propagative mode which is attenuated
because its energy leaks out. It can be considered as a guided mode which is
coupled with an outgoing wave. The propagation constant α of such a mode
thus has an imaginary part.
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A mode (guided or leaky) being a solution without any incident wave,
it always corresponds to a pole of the reflection coefficient (continued to
the complex plane) of the structure. A guided mode is a pole on the real
axis, that cannot be excited by an incident plane wave or beam. A leaky

mode corresponds to a pole for z = α with ℑ(α) 6= 0. It can be excited
by an incident beam and its behaviour is well studied[5]. Such a mode can
be forward of backward. A forward mode is decreasing when propagating
towards +∞ so that the imaginary part of its constant propagation α is
positive. The corresponding pole is hence above the real axis. A backward
mode is decreasing when propagating towards −∞ so that ℑ(α) < 0 and the
pole belongs to the lower part of the complex plane. Until recently, backward
leaky modes had been considered in some very particular cases only[5, 16].

When a leaky mode is excited by an incident beam, the reflected beam
undergoes a very large displacement and it is generally distorted. In the case
when the reflection coefficient has a modulus equal to one, the displacement
of the beam’s barycenter is given by equation (2). This means that the pole
linked to the leaky mode produces a very swift variation of the phase of the
reflection coefficient on the real axis. This is due to the fact that each pole
is linked to a zero. When |r| = 1 on the real axis, the pole and the zero
are even symetrical with respect to the real axis. And the phase of r varies
quickly on a line between the zero and the pole.

Let us stress that in this case the displacement is linked to the existence
of a pole (a leaky mode) in the complex plane. We think that for this reason,
this type of lateral shift should maybe not be called a Goos-Hänchen shift :
the original Goos-Hnchen shift is due to the existence of a branch point and
not to a pole of the structure[18].

Before discussing the case of the left-handed slab, let us now recall some
well-known examples of leaky modes.

3.1 Leaky modes of the right-handed slab

Let us consider a right-handed slab of thickness h, as shown figure 1.
The reflection coefficient for this structure can be written

r =
r23 e2iβ2 h − r21

1 − r21 r23 e2iβ2 h
(6)

where

rij =
κi − κj

κi + κj

. (7)
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A pole can then be found in the complex plane when the condition

r23 r21 = e−2 iβ2 h (8)

is verified. These modes have been partly investigated. Some have been
studied experimentally[17], at least when there is a total internal reflection
on the third medium. Figure 2 shows a leaky mode which leaks out in the
upper and lower media.

Figure 2: Modulus of the field for a symetrical slab with ǫ1 = ǫ3 = 9,
µ1 = µ3 = 1, ǫ2 = 1.5, µ2 = 1 and h = 1.3 λ using a gaussian incident beam
with a waist of 20 λ and an incidence angle of θ = 22.78.

3.2 Leaky surface plasmons

The prism coupler is used to excite surface plasmons, which are leaky in
this case[18]. The leaky surface plasmons can be excited using two different
configurations. The Kretschmann-Raether (KR) configuration corresponds
to the case of a thin metallic slab between a high index medium (the prism)
and a low index medium (air). The incident beam is propagating in the high
index medium (medium 1). Above the critical angle between medium 1 and
the air, it is possible to excite a leaky surface plasmon. But the metallic
slab does not support slab modes, because the waves in media with negative
permittivity are all evanescent.

The Otto configuration is the case when the upper medium is the high
index medium, the lower medium the metallic one and when there is a small
thickness of air between the two. In both configuration, the surface mode is
localized at the interface between metal and air.

It has been shown that, in the case of the Otto configuration, with a
left-handed medium instead of the metal, a leaky surface plasmon could be
excited[10], leading to a large lateral displacement of the reflected beam.
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4 Left-handed slab

The left-handed slab’s reflectivity has the same expression as the right-
handed slab’s, which is

r =
r23 e2iβ2 h − r21

1 − r21 r23 e2iβ2 h
. (9)

The propagation direction of the energy must be taken into account when
there is a semi-infinite left-handed medium like in section 2.2, but not in the
case of a finite structure (inside the slab) when the real propagation direction
does not matter.

The reflection coefficient r may present poles for two reasons. First, if
the condition

r23 r21 = e−2 iβ2 h (10)

is verified. Such poles correspond to leaky slab modes, like in the case of the
right-handed slab. Secondly, if r23 presents a pole corresponding to a surface
mode, then r will present a pole nearby too, corresponding to a leaky surface
mode. This never happens with the right-handed slab, because the interface
between two right-handed media does not support surface waves. We will, in
the following, study both cases. Let us just underline that a left-handed slab
presents both types of leaky modes, which is remarkable. These two different
types of leaky modes cannot be confused.

4.1 Modulus of rij

We have

rij =
κi − κj

κi + κj

. (11)

We will now prove that for z on the first Riemann sheet (but not on the
cut line) we have |rij(z)| > 1 when media i and j are not both right-handed.

The modulus of rij reads as

|rij|2 =
(κi − κj) (κ∗

i − κ∗
j )

(κi + κj) (κ∗
i + κ∗

j)
(12)

=
|κi|2 + |κj|2 − 2 (κ′

i κ
′
j + κ′′

i κ′′
j )

|κi|2 + |κj|2 + 2 (κ′
i κ

′
j + κ′′

i κ′′
j )

, (13)

(14)
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where κ = κ′ + i κ′′.
Let us define x and y the real and imaginary part of z = x + i y on the

first Riemann sheet. Let us assume that x > 0. We have

β =
√

n2 k2
0 − z2 =

√

n2 k2
0 − x2 + y2 − 2 i x y. (15)

If y > 0, then x y > 0 and thus ℑ(n2 k2
0 − z2) < 0 so that finally ℑ(β) < 0.

If y < 0, then x y < 0 so that ℑ(β) > 0. Since β(−z) = β(z) the result will
hold for x < 0 too and for x = 0, β(z) is real and positive so that the result
obviously holds. Hence the imaginary part of beta(z) is thus positive (resp.
negative) when the imaginary part of z is negative (resp. positive).

For any right-handed medium, κ has the same property than β. For a
left-handed medium, since κ = β

µ
or κ = β

ǫ
depending on the polarization,

the imaginary part of κ has the sign of ℑ(z). Since i and j are not both
right-handed, then κ′′

i and κ′′
j have not the same sign and the product κ′′

i κ′′
j

is always negative. Since ℜ(
√

z) > 0 for all z on the first Riemann sheet then
κ′

i κ
′
j is always negative too.
Finally, since κ′

i κ
′
j + κ′′

i κ′′
j < 0, we have |rij| > 1 for all z except on the

real axis.
On the real axis, whether α > max(n1, n2, n3) k0 or α < max(n1, n2, n3) k0

it is easy to see that |r| > 1. Let us just stress that r has two cut lines (one
for β1 and the other for β3), but there is no cut line for β2 since changing
β2 into −β2 does not change rij . The modulus of |rij| is equal to 1 only if
κ1 is real and κ2 is imaginary (or the contrary), which occurs for the total
internal reflection.

4.2 Fundamental relation

If the medium j is a left-handed medium characterized by ǫj < 0 and µj < 0,
then κj = −κ+

j , κ+
j being, as in section 2.2, the κ coefficient for a right-handed

medium with |ǫj | and |µj|. We will denote r+
ij the reflection coefficient rij

when the medium j is this particular right-handed medium.
It is easy to see that we have

r+
ij =

1

rij

. (16)

Let us underline that, as we just have seen section 2.2, the coefficient rij

is not exactly the reflection coefficient on a left-handed medium. That is
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why its modulus is superior to one in all the complex plane, as shown just
above. Relation (16) allows to conclude that |r+

ij | < 1 in all the complex
plane (except on the cut line).

The reflection coefficient r can be written

r =

e2iβ2 h

r+

23

− 1
r+

21

1 − e2iβ2 h

r+

21
r+

23

(17)

=
r+
23 e−2iβ2 h − r+

21

1 − r+
21 r+

23 e−2iβ2 h
(18)

(19)

Since
√

z∗ =
√

z
∗

except when z is on the cut line, then β(z∗) = β(z)∗ and
hence r+

ij(z)∗ = r+
ij(z

∗) so that

r(z)∗ =
r+
23(z

∗) e2iβ2(z∗) h − r+
21(z

∗)

1 − r+
21(z

∗) r+
23(z

∗) e2iβ2(z∗) h
, (20)

which can simply be written

r(z)∗ = r+(z∗), (21)

where r+ is the coefficient reflection of a right-handed slab with |ǫj | and |µj|.
There is a tight connexion between the left-handed slab’s reflectivity and the
right-handed slab’s. Note that this relation does not hold on the cut line,
but that it holds for the two Riemann sheets.

The main consequence of relation (21) is that the zeros and the poles of
r are symmetrical of those of r+ in the complex plane. As we will see, this
does not mean that the left-handed slab’s leaky modes can be excited for the
same angle of the incident beam as for the right-handed slab : the relation
does not hold on the cut line, which is a part of the real axis here.

Figure 3 shows the phase of the reflection coefficient when z is on the first
Riemann sheet. It has been obtained for h = 2λ,ǫ1 = 9, µ1 = ǫ3 = µ3 = 1,
ǫ2 = −5 and µ2 = −1. A zone where the phase varies quickly can be seen
between each pole and the corresponding zero. The real axis is continuous
with the lower part of the complex plane (ie r(z) is continuous when z arrives
on the real axis coming from the lower part of the complex plane) , so that
the zeros which are above the cut line (and which correspond to poles on the
other Riemann sheet) have no effect on it. These zeros are the symmetrical
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of the zeros of right-handed slab’s leaky modes. On the contrary, the poles
which are under the real axis are “seen” by the real axis. The corresponding
zeros are on the other Riemann sheet.

Figure 3: The phase of the reflection coefficient in the complex plane. Be-
tween a pole (represented by a cross) and a the corresponding zero (repre-
sented by a circle), a zone where the phase varies quickly can be found. The
imaginary range is [−k0

π
, k0

π
] and the real range is [0, n1 k0] and n1 > n2 > n3

so that a cut line is clearly visible.

4.3 Leaky slab modes

There is a pole of r in the complex plane when relation (10) is verified. This
relation gives

|r23 r21| = e2 β′′

2
h. (22)

Since |rij | > 1 if one of the media is left-handed, relation (10) can be
verified only for β ′′

2 > 0, which happens, as seen in section 2.1, for α′′ < 0
and hence only in the part of the complex plane which is under the real axis.
The fact that rij > 1 is thus the main reason why the poles of r are under
the axis and hence that the leaky slab modes are backward.
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Now we have to distinguish between two types of leaky modes.
When ℜ(α) < min(n1, n2, n3) k then the mode leaks out both in the upper

and lower right-handed media. We will call these modes S2 modes. Since
there is no cut line on the real axis for these modes, and since r 6= 1 on the
real axis, the corresponding pole and zero are both on the first Riemann sheet
and are not symmetrical with respect to the real axis. The pole is located
under the real axis, so that the S2 modes are always backward. Figure 4
shows what happens when the leaky mode is excited by an incoming beam.

Since r+(z)∗ = r(z∗) then the right-handed slab of the same thickness
presents a pole too, which corresponds to a forward leaky mode and can be
excited for the same angle of incidence of the incoming beam. Figures 4 and
2 correspond in fact to poles which are symmetrical with respect to the real
axis.

When the leaky slab modes are excited, both the reflected and the trans-
mitted beam undergo a large negative lateral shift. Although they have
not been interpreted, large negative shifts have been reported in a previous
work[14]. Our work allows to interpret these shifts as the excitation of leaky
S2 modes, which have not been much studied even for the right-handed slab.
The small positive shifts reported for the left-handed slab[14] are not due to
the excitation of leaky modes.

Figure 4: Modulus of the field for a symetrical slab with ǫ1 = ǫ3 = 9,
µ1 = µ3 = 1, ǫ2 = −1.5, µ2 = −1. and h = 1.3 λ using a gaussian incident
beam with a waist of 20 λ and an incidence angle of θ = 22.78. The pole
corresponding to the leaky mode is located at αp = (1.16823 − 0.01125i) k0

When n3 k0 < ℜ(α) < min(n1, n2) k0 then the mode is leaky only in
the upper medium. The beam undergoes a total internal reflection when
reflecting on medium 3. We will call such modes S1. For such modes, there
is a cut line on the real axis, so that the upper part of the complex plane and
the lower one are not continuous any more. We have demonstrated above
that all the poles in the complex plane are located under the real axis. This
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does not mean that there cannot be any pole on the second Riemann sheet
above the real axis, which would then have an effect on the real axis. Indeed,
|r23| < 1 on the second Riemann sheet, so that the product r23 r21 has a
modulus which is greater than 1 on the real axis, but not necessarily in all
the second Riemann sheet. The existence of a forward S1 mode cannot, using
this argument, be completely excluded. It is highly improbable though.

Let us stress that S1 modes of the right-handed slab cannot be excited
using the same angle of incidence as for the left-handed slab, as it has been
explained above.

4.4 Leaky surface modes

The leaky surface modes (or leaky plasmons) corresponds to poles for which
max(n2, n3) k0 < ℜ(α) < n1 k0, so that they cannot be confused with the
leaky slab modes. These poles can be linked to the fact that coefficient
r23 has a pole on the real axis in the vicinity. We will now assume that
ǫ3 = µ3 = 1.

The backward leaky plasmon is expected to be found for µ2 < 1 and
µ2 ǫ2 > 1. We have indeed found that there is a pole of r under the real
axis. The corresponding zero is located on the other Riemann sheet (for
both β2 and β3 this time). We have studied the location of this pole in the
complex plane when the thickness of the slab varies, and more particularly
for small thicknesses. The location of the pole is shown figure 5. Even when
the thickness of the left-handed material is very small, the mode remains
backward.

In the case when ǫ2 µ2 < 1 and µ2 > 1, the leaky surface mode is expected
to be forward. There is indeed a zero on the first Riemann sheet, under the
axis. The corresponding pole is on the other sheet. Its location is shown
figure 6 for different thicknesses. The behaviour of the pole is very different
from the case of the KR configuration with a metallic slab[18]. Figure 7 shows
what happens when a forward leaky plasmon is excited. Let us underline that
this kind of leaky mode is the only one which is forward for a left-handed
slab.

Since r+(z)∗ = r(z∗) the poles corresponding to leaky surface modes exist
for the right-handed slab too, but they are located on the wrong side of the
real axis so that they have no effect on it.

Finally, our study firmly assesses that the large negative displacements
reported in [13] are due to the excitation of leaky slab modes and not of
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Figure 5: Location ( α
k0

) of the pole corresponding to the backward leaky sur-
face plasmon for different thicknesses of the left-handed slab. The thickness
is given as a fraction of the wavelength.

leaky surface plasmons. They actually present propagation constants such
that ℜ(α) < n2 k. In these conditions, it is not possible to excite any leaky
surface plasmon.

5 Grounded left-handed slab

The case of the grounded left-handed slab can easily be treated with the
tools that have been used above. The reflection coefficient of the grounded
slab is given by (9) with r23 = −1 for the TE polarization and r23 = 1 for
the TM polarization. This means that the relation r+(z)∗ = r(z∗) holds. For
such a grounded slab, no leaky surface mode can be excited, so that all the
leaky modes are leaky slab modes. They can be found with ℜ(α) < n2 k so
that there is no cut line problem for these modes. As a consequence, the
right-handed grounded slab and the left-handed grounded slab present leaky
modes for the same incidence angle.

For a leaky mode, the relation

|r21| = e2 iβ′′

2
h (23)

is verified, in TM or TE. For the same reasons as above, this can be verified
for ℑ(α) < 0 only, so that all the leaky modes of the left-handed grounded
slab are backward (the corresponding poles being under the real axis on the
complex plane).
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Figure 6: Location ( α
k0

) of the pole corresponding to the forward leaky surface
plasmon for different thicknesses of the left-handed slab. The thickness is
given as a fraction of the wavelength.

Figure 7: Modulus of the field for a left-handed slab with ǫ1 = 9,ǫ3 = µ1 =
µ3 = 1, ǫ2 = −0.5,µ2 = −1.5 and h = 0.6 λ using a gaussian incident
beam with a waist of 20 λ and an incidence angle of θ = 21.496. The pole
corresponding to the leaky mode is located at αp = (1.0993+ 0.001267i) k0.

6 Conclusion

We have studied the leaky modes of a left-handed slab, using a complex plane
analysis of the slab’s reflection coefficient. First, we have shown that there is
a fundamental relation between the reflection coefficients of the left-handed
slab and of the right-handed slab which is true for all the complex plane,
except a part of the real axis.

The leaky modes can be classified into two main types : the leaky slab
modes (usually supported by right-handed slabs) and the leaky surface modes
(usually supported by metallic slabs). The left-handed slab can support both
types and we have explained why they cannot be confused : the field is
propagative in the left-handed medium for slab modes and evanescent in this
medium for leaky surface modes, so that the leaky surface modes are excited
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for higher incidence angle than all the leaky slab modes. More precisely,
the slab modes poles are due to the form of the reflection coefficient for the
whole structure, while the leaky modes are linked to a pole of the reflection
coefficient of one interface only. This discussion on the nature of a resonance
using complex plane analysis is useful even for other structures[19]

We have explained why the leaky modes of the slab are backward : they
correspond to poles of the reflection coefficient which are located under the
real axis. We have thoroughly studied why this is the case using complex
plane analysis.

The leaky slab modes present different properties if they are leaky in both
the upper and the lower medium (S2 modes) or if they are totally reflected on
the lower medium (S1 modes). The S2 modes of the left-handed slab can be
excited for the same incidence angle as for a right-handed slab with opposite
permittivity and permeability and the same thickness. This is not the case
for the S1 mode.

Then we have studied the behaviour of the poles corresponding to leaky
surface plasmons when the thickness of the slab varies. We have found that
the modes were backward (resp. forward) when the plasmons on the interface
alone is expected to be backward (resp. forward), whatever the thickness.

Finally, we have extended our results to the grounded left-handed slab.
We hope that this paper will help to interpret the lateral shifts of a

beam reflected by a left-handed slab (already reported) as the excitation of
backward leaky modes.
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