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Résultats d'unicité pour des problèmes pseudomonotones avec p > 2

R ésum é.

Nous considérons un opérateur pseudomonotone du type -div (b(x, u)|∇ u| p-2 ∇ u), avec 1 < p < +∞ et b(x, s) une fonction Lipschitzienne en s qui vérifie 0 < α b(x, s) β < +∞. Nous démontrons que cet opérateur satisfait le principe de comparaison (et donc qu'on a unicité pour le problème de Dirichlet) dans deux cas particuliers : en dimension 1, et dans le cas où au moins l'un des deux seconds membres ne change pas de signe. A notre connaissance, ces résultats sont nouveaux quand p > 2. Les démonstrations complètes sont données dans cette Note. Les résultats restent valides quand Ω est non borné. c XXXX Académie des sciences/ Éditions scientifiques et médicales Elsevier SAS

Version franc ¸aise abr ég ée

Dans cette Note, nous démontrons deux résultats d'unicité pour la solution du problème de Dirichlet pseudomonotone

u -U 0 ∈ W 1,p 0 (Ω), Ω a(x, u, ∇u)∇v dx = f, v , ∀ v ∈ W 1,p 0 (Ω), (1) 
Note présentée par XXX S0764-4442(00)0????-?/FLA c XXXX Académie des sciences/ Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés.

quand Ω est un ouvert borné de R N (aucune hypothèse de régularité n'est faite sur le bord de ∂Ω), quand 1 < p < +∞, et quand la fonction a : Ω × R × R N → R N est une fonction de Carathéodory qui vérifie les hypothèses ( 6), ( 7) et [START_REF] Casado-Díaz | Existence and comparison of maximal and minimal solutions for pseudomonotone elliptic problems in L 1[END_REF] de la version anglaise. De fac ¸on précise, nous démontrons sous ces hypothèses le principe de comparaison, c'est-à-dire que les hypothèses (3) et (4) de la version anglaise impliquent (5) (ce qui évidemment entraîne l'unicité de la solution de (1)) dans les deux cas suivants : le cas où N = 1, et le cas où dans (3), f 1 ou f 2 est de signe constant. Un résultat plus fort est connu quand 1 < p 2 (voir [START_REF] Boccardo | Unicité de la solution de certaines équations elliptiques non linéaires[END_REF]), à savoir le principe de comparaison (et donc l'unicité) dans le cas où la fonction a vérifie les hypothèses ( 6) et (2) de la version anglaise et une hypothèse de coercivité, et ce sans restriction sur la dimension ni sur le signe du second membre. En revanche nos résultats semblent nouveaux quand p > 2. Les démonstrations, qui sont intégralement données dans la Section 2 de cette Note, reposent sur deux lemmes (Lemma 2.1 et Lemma 2.2 de la version anglaise) qui ont leur intérêt propre. Ils utilisent de fac ¸on essentielle l'hypothèse [START_REF] Casado-Díaz | Existence and comparison of maximal and minimal solutions for pseudomonotone elliptic problems in L 1[END_REF], qui n'est pas l'hypothèse de croissance classiquement faite sur la fonction a. Enfin dans la brève Section 3, nous expliquons comment modifier nos énoncés pour que le principe de comparaison et les résultats d'unicité restent valables, avec les mêmes démonstrations, dans le cas d'ouverts non bornés.

Introduction and main results

In this Note we prove two uniqueness results for the solution of the Dirichlet pseudomonotone problem

u -U 0 ∈ W 1,p 0 (Ω), Ω a(x, u, ∇u)∇v dx = f, v , ∀ v ∈ W 1,p 0 (Ω), (1) 
where Ω is a bounded open set of R N (no smoothness assumption is made on ∂Ω) (see Section 3 for the case where Ω is unbounded), a : Ω × R × R N → R N is a Carathéodory function which satisfies coerciveness and growth conditions, so that the operator u → -div a(x, u, ∇u) is pseudomonotone in the Sobolev space W1,p 0 (Ω), f belongs to W -1,p ′ (Ω) and U 0 to W 1,p (Ω). The existence of at least one solution for this problem is known since the celebrated result of J. Leray and J.-L. Lions (see [START_REF] Leray | Quelques résultats de Visik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder[END_REF], [START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linéaires[END_REF]). When 1 < p 2, and when the function a(x, s, ξ) is strongly monotone in ξ (condition (6) below) and satisfies the (weighted) Lipschitz continuity condition in s

|a(x, s, ξ) -a(x, s ′ , ξ)| (γ|ξ| p-1 + γ 0 (|s| + |s ′ |) p-1 + |ℓ(x)|) |s -s ′ |, (2) 
a.e. x ∈ Ω, for every s, s ′ ∈ R, for every ξ ∈ R N , with γ > 0, γ 0 0 and [START_REF] Chipot | Uniqueness results and monononicity properties for strongly nonlinear elliptic variational inequalities[END_REF] (see also [START_REF] Artola | Sur une classe de problèmes paraboliques quasilinéaires[END_REF], [START_REF] Carrillo | Unicité des solutions du type Kruskov pour des problèmes elliptiques avec des termes de transport non linéaires[END_REF], [START_REF] Carrillo | On some elliptic equations involving derivatives of the nonlinearity[END_REF], [START_REF] Mokrane | The Lewy-Stampacchia inequality for bilateral problems[END_REF], [START_REF] Porretta | Uniqueness of solutions for some nonlinear Dirichlet problems[END_REF]) that the operator u → -div a(x, u, ∇u) satisfies the comparison principle in the following sense: when

ℓ ∈ L p ′ (Ω), it is proved in [2] 1 ,
u i ∈ W 1,p (Ω), f i ∈ W -1,p ′ (Ω), -div a(x, u i , ∇u i ) = f i in D ′ (Ω), (3) 
and when

f 1 f 2 in Ω, u 1 u 2 on ∂Ω, (4) 
(where the first assertion has to be understood in the sense of distributions or equivalently in the sense of W -1,p ′ (Ω), and the second one as (u 1 -u 2 ) + ∈ W 1,p 0 (Ω)), then one has

u 1 u 2 in Ω. (5) 
In particular, uniqueness holds for problem (1).

In the present paper, we assume 1 < p < +∞ (although it follows from the comparison principle stated just above that our results are not new when 1 < p

2) and that a satisfies the following assumptions: there exist α > 0, β > 0, γ > 0 such that a.e. x ∈ Ω, for every s, s ′ ∈ R, for every ξ, ξ

′ ∈ R N , (a(x, s, ξ) -a(x, s, ξ ′ ))(ξ -ξ ′ ) α(|ξ| + |ξ ′ |) p-2 |ξ -ξ ′ | 2 , ( 6 
) |a(x, s, ξ) -a(x, s ′ , ξ)| γ|ξ| p-1 |s -s ′ |, (7) 
|a(x, s, ξ)| β|ξ| p-1 . (8) 
Observe that assumption [START_REF] Casado-Díaz | The capacity for pseudomonotone operators[END_REF] is less general than (2), and that assumption ( 8) is less general than the growth condition which is classically assumed on a, namely |a(x, s, ξ)

| β|ξ| p-1 + β 0 |s| p-1 + |ℓ(x)|.
The model example for the function a is a(x, s, ξ) = b(x, s)|ξ| p-2 ξ, where b is a Carathéodory function which is Lipschitz continuous in s and satisfies 0 < α b(x, s) β < +∞. In the very special case where b(x, s) = c(x)g(s), the comparison principle for (1) is easily proved by using the change of unknown

function v(x) = u(x) 0 g(t)
1 p-1 dt, which transforms in this case the pseudomonotone problem (1) into a strongly monotone one. However, in our knowledge, if b does not have this special form and only satisfies assumptions ( 6), ( 7) and ( 8), the comparison principle (and uniqueness) for ( 1) is an open problem for p > 2. Here we prove that the comparison principle and uniqueness hold in two particular cases: in the one dimensional case, and when the sign of f 1 and/or f 2 is constant. Unfortunately the general case remains an open problem. THEOREM 1.1. -Assume N = 1 and that ( 6), [START_REF] Casado-Díaz | The capacity for pseudomonotone operators[END_REF] and ( 8) hold. Let u 1 , u 2 , f 1 , f 2 satisfy (3) and [START_REF] Carrillo | Unicité des solutions du type Kruskov pour des problèmes elliptiques avec des termes de transport non linéaires[END_REF]. Then u 1 u 2 a.e. in Ω. In particular, uniqueness holds for problem [START_REF] Artola | Sur une classe de problèmes paraboliques quasilinéaires[END_REF] when N = 1. THEOREM 1.2. -Assume that ( 6), [START_REF] Casado-Díaz | The capacity for pseudomonotone operators[END_REF] and ( 8) hold. Let u 1 , u 2 , f 1 , f 2 satisfy (3) and [START_REF] Carrillo | Unicité des solutions du type Kruskov pour des problèmes elliptiques avec des termes de transport non linéaires[END_REF]. If the sign of f 1 and/or the sign of f 2 is constant in Ω, then u 1 u 2 a.e. in Ω. In particular, uniqueness holds for problem [START_REF] Artola | Sur une classe de problèmes paraboliques quasilinéaires[END_REF] when the sign of f is constant in Ω.

Proofs

In this Section we give complete proofs of the above results. We begin with two Lemmas which have their own interest. LEMMA 2.1. -Assume that ( 6), ( 7) and ( 8) hold. Let u 1 , u 2 , f 1 , f 2 satisfy (3) and ( 4). Then, for every ε > 0, we have

         α {0<u1-u2<ε} (|∇u 1 | + |∇u 2 |) p-2 |∇(u 1 -u 2 )| 2 dx γ ε {0<u1-u2<ε} min{|∇u 1 |, |∇u 2 |} p-1 |∇(u 1 -u 2 )| dx. ( 9 
)
Moreover we have

lim ε→0 1 ε 2 {0<u1-u2<ε} (|∇u 1 | + |∇u 2 |) p-2 |∇(u 1 -u 2 )| 2 dx = 0. ( 10 
)
Proof . -For ε > 0, we define T ε : R → R as the usual truncation at height ε, namely

T ε (s) = s if |s| ε, T ε (s) = ε sgn(s) if |s| ε. (11) 
Taking T ε (u 1 -u 2 ) + as test function in (3) for i = 1 and i = 2, making the difference, denoting

U ε 1 = {0 < u 1 -u 2 < ε, |∇u 1 (x)| |∇u 2 (x)|}, U ε 2 = {0 < u 1 -u 2 < ε, |∇u 2 (x)| < |∇u 1 (x)
|}, then adding and subtracting in the integral on U ε 1 the term a(x, u 2 , ∇u 1 )∇(u 1 -u 2 ) and in the integral on U ε 2 the term a(x, u 1 , ∇u 2 )∇(u 1 -u 2 ), we get, for every ε > 0

U ε 1 (a(x, u 2 , ∇u 1 ) -a(x, u 2 , ∇u 2 ))∇(u 1 -u 2 ) dx + + U ε 2 (a(x, u 1 , ∇u 1 ) -a(x, u 1 , ∇u 2 ))∇(u 1 -u 2 ) dx - U ε 1 (a(x, u 1 , ∇u 1 ) -a(x, u 2 , ∇u 1 ))∇(u 1 -u 2 ) dx - - U ε 2 (a(x, u 1 , ∇u 2 ) -a(x, u 2 , ∇u 2 ))∇(u 1 -u 2 ) dx.
From ( 6) and ( 7) we obtain [START_REF] Chipot | Uniqueness results and monononicity properties for strongly nonlinear elliptic variational inequalities[END_REF]. Using in [START_REF] Chipot | Uniqueness results and monononicity properties for strongly nonlinear elliptic variational inequalities[END_REF] 

min{|∇u 1 |, |∇u 2 |} |∇u 1 | + |∇u 2 |
, Cauchy-Schwartz's inequality and the fact that the measure of the set {0 < u 1 -u 2 < ε} tends to zero with ε yields (10). LEMMA 2.2. -Assume that ( 6), ( 7) and ( 8) hold. Let u 1 , u 2 , f 1 , f 2 satisfy (3) and [START_REF] Carrillo | Unicité des solutions du type Kruskov pour des problèmes elliptiques avec des termes de transport non linéaires[END_REF]. Then for every ϕ ∈ W 1,p (Ω) ∩ L ∞ (Ω) and for T ε defined by [START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linéaires[END_REF], we have

{u2<u1} a(x, u i , ∇u i )∇ϕ dx = lim ε→0 f i , T ε (u 1 -u 2 ) + ε ϕ , i ∈ {1, 2}. ( 12 
)
Proof . -For ϕ ∈ W 1,p (Ω) ∩ L ∞ (Ω) and i ∈ {1, 2}, we take ϕ T ε (u 1 -u 2 ) + /ε as test function in (3). This gives

         Ω a(x, u i , ∇u i )∇ϕ T ε (u 1 -u 2 ) + ε dx + 1 ε {0<u1-u2<ε} a(x, u i , ∇u i )∇(u 1 -u 2 ) ϕ dx = = f i , T ε (u 1 -u 2 ) + ε ϕ . ( 13 
)
We easily pass to the limit in the first term of ( 13) by using Lebesgue's dominated convergence theorem.

For the second term of (13), using [START_REF] Casado-Díaz | Existence and comparison of maximal and minimal solutions for pseudomonotone elliptic problems in L 1[END_REF],

|∇u i | p-1 (|∇u 1 | + |∇u 2 |) p-1
and Cauchy-Schwartz's inequality, we get

1 ε {0<u1-u2<ε} a(x, u i , ∇u i )∇(u 1 -u 2 ) ϕ dx β ϕ L ∞ (Ω) {0<u1-u2<ε} (|∇u 1 | + |∇u 2 |) p dx 1 2 1 ε 2 {0<u1-u2<ε} (|∇u 1 | + |∇u 2 |) p-2 |∇(u 1 -u 2 )| 2 dx 1 2
, which tends to zero by [START_REF] Leray | Quelques résultats de Visik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder[END_REF]. This implies [START_REF] Mokrane | The Lewy-Stampacchia inequality for bilateral problems[END_REF].

Remark 1. -In Lemma 2.2, we easily pass to the limit in the right-hand side of ( 12) if f 1 and f 2 belong to L p ′ (Ω). In such a case, u i satisfies

-div (a(x, u i , ∇u i ) χ {u2<u1} ) = f i χ {u2<u1} in D ′ (Ω), (14) 
a(x, u i , ∇u i ) χ {u2<u1} n = 0 on ∂Ω, ( 15 
)
where n is the exterior normal vector to ∂Ω. Assertion ( 14) has been proved in [START_REF] Boccardo | Quelques propriétés des opérateurs elliptiques quasi linéaires[END_REF] under stronger assumptions. Since f i χ {u2<u1} ∈ L p ′ (Ω), assertion ( 15) is not only formal but takes place in

X ′ = = W -(1-1 p ),p ′ (∂Ω), the dual space of X = W 1-1 p ,p ( 
∂Ω), when the boundary ∂Ω is sufficiently smooth for the functions of W 1,p (Ω) to have traces in W 1-1 p ,p (∂Ω). Note that for a general boundary ∂Ω without any type of regularity, one can define the space of traces as X = W 1,p (Ω)/W 1,p 0 (Ω); assertion (15) then takes places in X ′ . Remark 2. -When the function a is assumed to satisfy assumptions which are more general than ( 7) and [START_REF] Casado-Díaz | Existence and comparison of maximal and minimal solutions for pseudomonotone elliptic problems in L 1[END_REF], property ( 15) is no more true in general, but one can still prove (see [START_REF] Casado-Díaz | Minimal and maximal solutions for Dirichlet pseudomonotone problems[END_REF], [START_REF] Casado-Díaz | The capacity for pseudomonotone operators[END_REF], [START_REF] Casado-Díaz | Existence and comparison of maximal and minimal solutions for pseudomonotone elliptic problems in L 1[END_REF]) that two solutions of ( 1) satisfy (a(x, u 1 , ∇u 1 ) -a(x, u 2 , ∇u 2 )) n = 0 on ∂Ω.

Proof of Theorem 1.1. From Lemma 2.2 and

f 1 f 2 , we deduce {u2<u1} a(x, u 2 , du 2 dx ) -a(x, u 1 , du 1 dx ) dϕ dx dx 0, (16) 
for every ϕ ∈ W 1,p (Ω) ∩ L ∞ (Ω) with ϕ 0 a.e. in Ω. Replacing ϕ by ϕ + ϕ L ∞ (Ω) , we deduce that (16) holds for every ϕ ∈ W 1,p (Ω) ∩ L ∞ (Ω), thus by density for every ϕ ∈ W 1,p (Ω), and ( 16) is therefore an equality and not only an inequality. Since in the one dimensional case every function of L p (Ω) is the derivative of a function of W 

(Ω) (recall that u 1 u 2 on ∂Ω) |{u 1 -u 2 > ε}| Ω T ε (u 1 -u 2 ) + ε dx C Ω d dx T ε (u 1 -u 2 ) + ε dx = = C ε {0<u1-u2<ε} d(u 1 -u 2 ) dx dx Cγ α {0<u1-u2<ε} du 1 dx + du 2 dx dx.
Taking the limit when ε tends to zero, we deduce |{u 1 > u 2 }| = 0, and then u 2 u 1 a.e. in Ω.

Proof of Theorem 1.2. We assume that the sign of f 1 is constant in Ω (the other case is similar). Taking ϕ = 1 in (12) for i = 1, we deduce that f 1 , T ε (u 1 -u 2 ) + /ε tends to zero when ε tends to zero. But when the sign of f 1 ∈ W -1,p ′ (Ω) is constant, it is well known that f 1 can be identified with a nonnegative or nonpositive Radon measure which vanishes on the sets of zero W 1,p 0 -capacity. Therefore one has f 1 χ {u2<u1} = 0. Taking then ϕ = T k (u 1 ) in ( 12) for i = 1, and passing to the limit when k tends to infinity, we get {u2<u1} a(x, u 1 , ∇u 1 )∇u 1 dx = 0 , which from (6) and a(x, s, 0) = 0 (which results from ( 8)) implies that ∇u 1 = 0 a.e. in {u 2 < u 1 }. By [START_REF] Chipot | Uniqueness results and monononicity properties for strongly nonlinear elliptic variational inequalities[END_REF] this also implies ∇u 2 = 0 a.e. in {0 < u 1 -u 2 < ε} for each ε > 0, then in {u 2 < u 1 }. Since u 1 u 2 a.e. on ∂Ω, Poincaré's inequality yields

Ω |(u 1 -u 2 ) + | p dx C {u2<u1} |∇(u 1 -u 2 )| p dx = 0, which implies u 1 u 2 a.e. in Ω.

The case where Ω is unbounded

When Ω is unbounded, the results given in the present Note continue to hold (with the same proofs) if the space W 1,p 0 (Ω) is replaced by an adequate space. If 1 < p < N , for any open set Ω, we consider the space D 1,p 0 (Ω) obtained by completion of D(Ω) for the norm u D 1,p 0 (Ω) = ∇u L p (Ω) . Then in (1) we replace W 1,p 0 (Ω) by D 1,p 0 (Ω), and we take f in (D 1,p 0 (Ω)) ′ and U 0 such that ϕ U 0 ∈ W 1,p (Ω), for every ϕ ∈ D(R N ), and ∇U 0 ∈ L p (Ω). This formulation corresponds to a Dirichlet boundary condition both on ∂Ω and at infinity. If 1 < p < +∞, we assume that there exists a ball B R such that Cap 1,p (Ω c ∩ B R ; B 2R ) > 0. We define the space V 1,p 0 (Ω) = {u : ϕ u ∈ W 1,p 0 (Ω), ∀ ϕ ∈ D(R N ), ∇u ∈ L p (Ω)}, endowed with the norm u V 1,p 0 (Ω) = ∇u L p (Ω) . Then in (1) we replace W 1,p 0 (Ω) by V 1,p 0 (Ω), and we take f in (V 1,p 0 (Ω)) ′ and U 0 as above. This formulation corresponds to a Dirichlet boundary condition on ∂Ω and to a Neumann boundary condition at infinity.

A further generalization could be to consider the Dirichlet boundary condition on a part of ∂Ω and the Neumann boundary condition on its complementary, by a convenient modification of the definition of the space V 1,p 0 (Ω). In all these generalizations the above proofs remain unchanged since one can still use Poincaré's inequality in Ω ∩ B S (with S large enough) for functions in V 1,p 0 (Ω), or Sobolev's inequality for functions in D 1,p 0 (Ω).

  -u 1 | , a.e. in {u 2 < u 1 }. Then, for ε > 0 and T ε defined by[START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linéaires[END_REF], we deduce from Poincaré's inequality in W 1,1 0

	1,p (Ω), we get			
	a(x, u 2 ,	du 2 dx	) -a(x, u 1 ,	du 1 dx	) χ {u2<u1} = 0 a.e. in Ω.	(17)
	Adding and subtracting a(x, u 2 , du 1 dx p-1 du 1 dx + du 2 dx p-1 du 1 dx , we obtain ) in (17), then multiplying by d(u 2 -u 1 ) dx γ α	d(u 2 -u 1 ) dx du 1 dx + du 2 and using (6), (7) and dx |u 2

Let us explicitly note that there is a mistake in the writing of some of the assumptions in[START_REF] Boccardo | Unicité de la solution de certaines équations elliptiques non linéaires[END_REF]: indeed there is no function which satisfies assumption (3) of[START_REF] Boccardo | Unicité de la solution de certaines équations elliptiques non linéaires[END_REF] when p <

(just take ξ = 0 fixed and let η tend to zero). Nevertheless the results of[START_REF] Boccardo | Unicité de la solution de certaines équations elliptiques non linéaires[END_REF] are correct and can be proved by (essentially) the proof used there, once assumptions (1) and (3) of[START_REF] Boccardo | Unicité de la solution de certaines équations elliptiques non linéaires[END_REF] are replaced by a(x, s, ξ)ξ α|ξ| p -γ|s| σθ(x) with σ < p and by assumption (6) of the present paper.
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