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(version February 17, 2007)

Nicolas Charalambakis∗, François Murat†,

Abstract.

In this paper we study the homogenization of the system of partial

differential equations describing the quasistatic shearing of heterogeneous

thermoviscoplastic materials. We first prove the existence and uniqueness

of the solution of the system for the general model. We then define “stable

by homogenization” models as the models where the equations in both the

heterogeneous problems and the homogenized one are of the same form.

Finally we show that three types of models, all three with non oscillating

strain-rate sensitivity, are stable by homogenization: the viscoplastic model,

the thermoviscous model and the thermoviscoplastic model under steady

boundary shearing and body force. In these three models, the homogenized

(effective) coefficients depend on the initial conditions, and, in the case of

the thermoviscoplastic model, also on the boundary shearing and body force.

Those theoretical results are illustrated by some numerical examples.
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Résumé.

Dans cet article, nous étudions l’homogénéisation du système d’équations

aux dérivées partielles qui décrit le cisaillement quasi-statique de matériaux

thermoviscoplastiques hétérogènes. Nous démontrons d’abord l’existence et

l’unicité de la solution du système pour le modèle général. Nous définissons

ensuite les problèmes “stables par homogénéisation” comme ceux pour lequels

les équations des problèmes hétérogènes et du problème homogenéisé sont de

la même forme. Enfin, nous montrons que trois types de modèles (tous trois

avec une sensitivité non oscillante par rapport à la vitesse de déformation)

sont stables par homogénéisation : le modèle viscoplastique, le modèle ther-

movisqueux, et le modèle thermoviscoplastique quand les forces de volume

et de surface sont indépendantes du temps. Dans ces trois modèles, les coef-

ficients homogénéisés (effectifs) dépendent des conditions initiales et, dans le

cas du modèle thermoviscoplastique, aussi des forces de volume et de surface.

Ces résultats théoriques sont illustrés par des exemples numériques.SÔnoyi
.Sthn ergas�a aut  meletoÔme thn omoiogenopo�hsh tou sust mato
 twnexis¸sewn me merikè
 parag¸gou
 pou perigr�foun thn oione� statik di�tmhsh eterogen¸n jermoixwplastik¸n ulik¸n. ApodeiknÔoume, arqik�, thnÔparxh kai th monadikìthta th
 lÔsh
 tou sust mato
 gia to genikì montèlo.Sth sunèqeia, or�zoume ta eustaj , w
 pro
 omoiogenopo�hsh, probl mata,w
 eke�na gia ta opo�a oi exis¸sei
 tou eterogenoÔ
 probl mato
 kai touomoiogenopoihmènou e�nai th
 �dia
 morf 
. Tèlo
, apodeiknÔoume ìti trei
tÔpoi montèlwn, sta opo�a h euaisjhs�a w
 pro
 thn taqÔthta paramìrfwsh
e�nai mh talantoÔmenh, e�nai eustaj  w
 pro
 omoiogenopo�hsh: to ixwplas-tikì, to jermoix¸de
 kai to jermoixwplastikì montèlo, ìtan oi katanemh-
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mène
 kai oi sunoriakè
 dun�mei
 e�nai anex�rthte
 tou qrìnou. Sta tr�aaut� montèla, oi omoiogenopoihmènoi suntelestè
 exart¸ntai apì thn arqik jermokras�a kai paramìrfwsh kai, sthn per�ptwsh tou jermoixwplastikoÔmontèlou, kai apì ti
 katanemhmene
 kai sunoriakè
 dun�mei
. Ta jewrhtik�aut� apotelèsmata emplout�zontai me arijmhtik� parade�gmata.
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1 Introduction

Highly heterogeneous materials are difficult to describe, and their solutions

difficult to compute numerically. Many heuristical methods have been pro-

posed to provide “effective” equations in the hope to find a simpler model

for which numerical simulations are feasible and reliable.

Mathematical homogenization provides a rigorous definition of the ho-

mogenization process and of the homogenized equation. It consists in setting

the problem as a sequence of equations describing the heterogeneous material

when the heterogeneities, whose typical size is characterized by a parameter

ε, become smaller and smaller. This method, of course, assumes that the

mathematical problem is well posed, or at least that one is able to prove the

existence of (at least) one solution of the problem and an a priori estimate

for it in some functional space. The problem is then to try to pass to the

limit as ε tends to zero. This task is difficult since weak topologies are in-

volved and since passing to the limit in the problem is a nonlinear process

(even if the problem is linear) when both the solution and the coefficients are

concerned. This method has been proved to be successful in many cases, and

we will use it in the present paper. To quote only a very few works in this

direction (giving a complete list is impossible and probably more difficult

than passing to the limit in any nonlinear problem) let us mention (Babuska

(1976a), Babuska (1976b), Tartar (1977), Murat (1977), Bensoussan et al.

(1978), Sanchez-Palencia (1978)).

In less mathematical and more mechanical words, homogenization aims

at replacing a highly heterogeneous material with an equivalent (effective)

one, providing a way to pass from the microscopic (oscillating) deformation

to the macroscopic (slowly varying) one. This method can of course be used

to “tailor” (design) new materials with enhanced properties by averaging in
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a clever (but very heterogeneous) way simple phases. It has been often de-

scribed (and sometimes revisited) in the mechanical literature and here again

giving a complete list is impossible; let us mention Suquet (1982), Francfort,

Leguillon and Suquet (1983), Francfort, Nguyen and Suquet (1983), Hashin

(1983), Suquet (1983), Maugin (1992), Aboudi et al. (1999), Ghosh et al.

(2001), Bansal and Pindera (2003), Michel and Suquet (2004), Alshirts and

Maugin (2005), Bansal and Pindera (2005), Bardzokas and Zobnin (2005),

Guinovart-Diaz et al. (2005), Suquet (2005), Idiart et al. (2006)). In partic-

ular, the concept of “homogeneous equivalent continuum” (Maugin (1992))

has been used to predict the macroscopic response from microscopic analyses

by replacing the macroscopic heterogeneous medium, represented by an ele-

ment called “representative volume element”, by a continuum model (see Van

der Sluis et al. (1999), where a numerical homogenization technique has been

proposed, which offers the possibility to determine the effective properties of

a viscoplastic constitutive model).

Recent computational techniques have also been proposed, based either

on a multilevel finite element method, which provides information on the evo-

lution of the microstructure during loading (Ghosh et al. (1995), Ghosh et al.

(2001)) or on an explicit coupling of the microstructural responses with the

macroscopic ones (Aboudi et al. (1999)), based on volume averaging of de-

formation quantities and of boundary and interfacial conditions between the

subvolumes used to characterize the microstructure (Aboudi et al. (1999)).

Computer simulation techniques, such as multiscale dynamics plasticity (see

Shehadeh et al. (2005)), merge two length scales, the nano-microscale and

the continuum scale, resulting in a elastoviscoplastic model coupling discrete

dislocation dynamics with finite element analyses.
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Similarly, Batra and Love (2006a) (see also Batra and Love (2006b)) ana-

lyze plane strain deformations of a representative volume element to evaluate

the effective thermophysical parameters of a particulate composite made of

two perfectly bonded heat conducting elastothermoviscoplastic phases. Effec-

tive values of material parameters computed in that way are compared with

those obtained from existing micromechanics models and/or from the rule of

mixtures. An excellent paper (Nemat-Nasser (1999)) presents a number of

exact fundamental results on averaging techniques in finite deformation plas-

ticity as well as a set of exact identities in terms of the deformation gradient

and its rate and of the nominal stress and its rate.

The most obvious possibility of predicting the macroscopic response of

an heterogeneous material is the choice of a macroscopic constitutive model

whose material parameters are fitted onto experimental data (see Geers

(1997), Meuwissen (1998), Van der Sluis et al. (1999)). The macroscopic

model under consideration must then reflect some microstructural informa-

tion. Although not necessary, it could be interesting to consider a model

which has the same form also at the phases’ level. This allows one to look

for effective parameters and makes easier the mechanical characterization of

heterogeneous materials. Another interesting question is whether the homog-

enized parameters are independent of the boundary and initial conditions.

In the present paper, we consider the test problem of simple shearing of

a rigid thermovisoplastic material made of numerous layers of thickness of

order ε perpendicular to the x-direction, with different referential densities

ρε, specific heat coefficients ηε, rates of plastic work converted into heat

βε, strain-rate sensitivities nε and viscosity coefficients ψε. The material is

supposed to be sheared uniformly by shear forces in a direction perpendicular

to x, between two parallel planes located at x = a and x = b. If the elastic
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effects are neglected, the balance laws of the process and the compatibility

equation, which relate the unknowns of the problem (namely the velocity

vε(t, x), the shear stress σε(t, x), the strain γε(t, x) and the temperature

θε(t, x)), satisfy the following system of partial differential equations, for

t ∈ (0, T ) and x ∈ Ω = (a, b)

ρε(x)
∂vε

∂t
=
∂σε

∂x
+ f(t, x), (1.1)

cε(x, θε)
∂θε

∂t
= σε ∂v

ε

∂x
, (1.2)

∂γε

∂t
=
∂vε

∂x
, (1.3)

where the stress is given by the constitutive law

σε = ψε(x, γε, θε)|
∂vε

∂x
|n

ε(x)−1∂v
ε

∂x
, (1.4)

where ψε(x, γε, θε) is the viscosity coefficient, where f denotes the body force

and where the heat coefficient cε is defined by

cε(x, θε) =
ρε(x) ηε(x, θε)

βε(x, θε)
. (1.5)

The corresponding quasistatic problem is obtained by assuming that the

inertial effects are negligible (
∂vε

∂t
∼ 0). Then (1.1) reads as

−
∂σε

∂x
=
∂f

∂x
. (1.6)

A typical form of the constitutive law (1.4) appropriate for metals is

σε = µε(x, θε) νε(x, γε)|
∂vε

∂x
|n

ε(x)−1∂v
ε

∂x
, (1.7)

where the strain-rate sensitivity satisfies 0 < nε ≤ 1 and where the ther-

mal and strain viscosity coefficients µε(x, θ) and νε(x, γ) respectively exhibit

softening and hardening behavior, i.e. satisfy

∂µε

∂θ
≤ 0 and

∂νε

∂γ
≥ 0. (1.8)
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The above system (1.1)–(1.5) has of course to be complemented by suit-

able initial and boundary conditions. We note that all the (given) material

functions ρε(x), cε(x, θ), nε(x) and ψε(x, γ, θ) (or µε(x, θ) or νε(x, θ)) are only

assumed to be bounded from above and from below by strictly positive con-

stants but are allowed to exhibit discontinuities with respect to x, so that

equations (1.1)–(1.3) must be understood in the sense of distributions. More-

over, the heat coefficient cε(x, θ) and the viscosity coefficient ψε(x, γ, θ) (or

the thermal softening µε(x, θ) or the strain hardening coefficient νε(x, γ)) are

supposed to be uniformly Lipschitz continuous with respect to γ and θ.

Homogenization consists of considering a very large number of very fine

layers and of studying the limit, as ε tends to zero, of the solutions of the

sequence of the above problems, i.e. of describing the limit problem and the

overall behavior of the velocity vε, stress σε, strain γε and temperature θε

for fixed external forces and initial and boundary conditions. In mathemat-

ical terms, this overall behavior is expressed by the weak limits (in suitable

spaces) (v0, σ0, γ0, θ0) of (vε, σε, γε, θε) as ε tends to zero.

If the limit problem is of the same type than the heterogeneous problems,

we will say that the problem is stable by homogenization (SbH). More specif-

ically, the quasistatic problem (1.2)–(1.4), (1.6) is stable by homogenization

(SbH) if the homogenized constitutive law is of the form

σ0 = ψ0(x, γ0, θ0)|
∂v0

∂t
|n

0(x)−1∂v
0

∂t
, (1.9)

and if the homogenized energy equation is of the form

c0(x, θ0)
∂θ0

∂t
= σ0 ∂v

0

∂t
, (1.10)

(compare with (1.4) and (1.2)), where (v0, σ0, γ0, θ0) are the weak limits of

(vε, σε, γε, θε) as ε tends to zero, and where c0, ψ0 and n0 are respectively
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the homogenized heat coefficient, the homogenized viscosity coefficient and

the homogenized strain-rate sensitivity.

When nε(x) = 1 and νε(x, γ) = 1 in (1.7), and when (1.8) holds, i.e. in

the case of the special constitutive law

σε = µε(x, θε)
∂vε

∂x
(1.11)

with thermal softening, the dynamical problem (1.1)–(1.4) with Dirichlet or

Neumann or mixed boundary conditions has been studied by the authors

(Charalambakis and Murat (1989), Charalambakis and Murat (2006a)) and

its homogenization has been presented in Charalambakis and Murat (2006b).

Note that in this problem the strain γε is defined from vε by (1.3) and the

corresponding initial condition, and is therefore a by-product of vε. In this

setting, the dynamical problem (1.1)–(1.3), (1.11) is SbH, i.e. there exist an

homogenized viscosity coefficient µ0 and an homogenized heat coefficient c0

which satisfy (1.8) as well as lower and upper bounds and Lipschitz continu-

ity conditions similar to the lower and upper bounds and Lipschitz continuity

conditions satisfied by µε and cε, such that the unique solution (vε, σε, θε)

of (1.1)–(1.3), (1.11) with given boundary and initial conditions converges

weakly to (v0, σ0, θ0), where (v0, σ0, θ0) is the unique solution of the same

problem for the viscosity coefficient µ0, the heat coefficient c0 and the den-

sity ρ0. The homogenized density ρ0 is the weak limit of the densities ρε,

but such is not the case for the homogenized coefficients µ0 and c0, which

are obtained in a much more complicated way. The homogenized (or ef-

fective) coefficients µ0 and c0, which are defined explicitly through rather

complicated formulas, depend only on the corresponding coefficients of the

heterogeneous material and on the initial temperature. They do not de-

pend on the other data (density, boundary conditions and initial velocity).
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Also, the homogenized coefficients µ0 and c0 are independent of the type of

boundary conditions (Dirichlet or Neumann or mixed boundary conditions).

Finally, let us mention that in contrast with this result, the problem where

the heat coefficient cε only depends on x is not SbH since in general the

homogenized heat coefficient c0 does depend on θ.

In the present paper, we prove that the quasistatic problem is SbH if

the constitutive law (1.11) (and, in some cases, the heat coefficient cε) takes

special forms. More specifically, we prove that when nε(x) = n⋆(x) and when

either

(i) ψε(x, γ, θ) = νε(x, γ) and cε(x, θ) = c⋆(x) (viscoplastic case),

or when

(ii) ψε(x, γ, θ) = µε(x, γ) (thermoviscous case),

or finally when

(iii) ψε(x, γ, θ) general but when σε(t, x) = σ⋆⋆(x)

(general thermoviscoplastic case under steady boundary shearing and

body force),

the quasistatic problem (1.2)–(1.4), (1.6) is SbH. Unfortunately, we are not

able to give an answer in the general case. In other words, the problem is

SbH for (at least) the following models: (i) the viscoplastic model, exhibiting

strain dependent viscosity νε(x, γ), with non oscillating strain-rate sensitiv-

ity n⋆(x) and with temperature independent non oscillating heat coefficient

c⋆(x); (ii) the thermoviscous model, exhibiting temperature dependent vis-

cosity µε(x, θ), with non oscillating strain-rate sensitivity n⋆(x) and with

temperature dependent heat coefficient cε(x, θ); (iii) the general thermovis-

coplastic model ψε(x, γ, θ), with non oscillating strain-rate sensitivity n⋆(x)

and with temperature dependent heat coefficient cε(x, θ), in the case where

the material is sheared by steady boundary shearing and body force. In the
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latest case, the homogenized viscosity ψ0 and heat coefficient c0 depend on

the boundary shearing and of the body force. In all the three cases (i)–(iii),

the homogenized coefficients depend on the initial values of the strain or

of the temperature. This reflects the non elastic character of the problem

(1.2)–(1.4), (1.6).

A particular, but of practical interest, remark is that we are unable to

prove that the materials exhibiting an oscillating strain-rate sensitivity are

SbH (see Remark 3.6). On the other hand, in the case of a (even smoothly)

time dependent force and/or boundary shearing, the general thermoviscoplas-

tic setting (with general coefficients ψε(x, γ, θ) and cε(x, θ)) is no more SbH,

since in general a memory effect appears in the viscosity coefficient (see Re-

mark 5.5).

For the models (i) and (ii), the heterogeneous and the homogenized mate-

rials share the same type of constitutive laws, and these constitutive laws are

independent of the boundary conditions. This fact provides an easy charac-

terization of the mechanical behavior of the homogenized material and allows

an easy exploitation of experimental data. For analogous reasons, the model

(iii) may be useful for the prediction of effective properties, provided that

the boundary shearing and the body force are steady.

The paper is organized as follows. In Section 2 we present an existence

and uniqueness result for the general quasistatic problem and define the

notion of stability by homogenization (SbH) of the system describing the

problem. In Sections 3 and 4 we prove that the system is SbH for two cases

of materials: the case where the viscosity coefficient does not depend on the

temperature (viscoplastic case) and the case where the viscosity coefficient

does not depend on the strain (thermoviscous case). Finally, in Section 5,

we prove that the general thermoviscoplastic material submitted to steady
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shearing and body force is SbH. In Sections 3 and 5, we also present numer-

ical examples concerned with multiphase stratified materials with periodic

structure when the phases are characterized by power laws; we observe that

the homogenized materials are no more characterized by power laws, and

therefore power laws are not SbH.

2 Existence and uniqueness result, and defi-

nition of the Stability by Homogenization

(SbH)

In this Section we consider the general quasistatic problem posed in

Q = (0, T ) × Ω, where T > 0 and where Ω = (a, b) is one-dimensional,

namely

−
∂σε

∂x
= f in Q, (2.1)

∂γε

∂t
=
∂vε

∂x
in Q, (2.2)

cε(x, θε)
∂θε

∂t
= σε ∂v

ε

∂x
in Q, (2.3)

σε = ψε(x, γε, θε)

∣

∣

∣

∣

∂vε

∂x

∣

∣

∣

∣

nε(x)−1
∂vε

∂x
in Q, (2.4)

complemented by the initial conditions

γε(0, x) = γ0(x) in Ω, (2.5)

θε(0, x) = θ0(x) in Ω, (2.6)

and by the boundary conditions

σε(t, a) = σa(t) in (0, T ), (2.7)

vε(t, b) = vb(t) in (0, T ). (2.8)
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In this system, the unknowns are the stress σε = σε(t, x), the velocity

vε = vε(t, x), the strain γε = γε(t, x) and the temperature θε = θε(t, x).

The first equation is the equilibrium equation, the second the compatibility

equation, the third the energy equation and the fourth the constitutive law.

The heat coefficient cε(x, θε) is a temperature dependent function and the

viscosity coefficient ψε(x, γε, θε) is a strain and temperature dependent func-

tion. The force f(t, x), the heat coefficient cε(x, θ), the viscosity coefficient

ψε(x, γ, θ), the strain-rate sensitivity nε(x), the initial strain γ0(x), the initial

temperature θ0(x), the boundary stress σa(t) and the boundary velocity vb(t)

are data.

In this Section we first prove that under some conditions on the data,

problem (2.1)–(2.8) has a unique solution (Proposition 2.1). We then define

the notion of Stability by Homogenization(SbH) of this system (Definition

2.2). Three particular cases where system (2.1)–(2.8) is SbH will be presented

in Sections 3, 4 and 5 (see Proposition 3.1, Proposition 4.1 and Proposition

5.1).

Recall that in our papers Charalambakis and Murat (1989), Charalam-

bakis and Murat (2006a) and Charalambakis and Murat (2006b) we con-

sidered the dynamical problem associated with (2.1)–(2.8) in the special

case where nε(x) = 1 (linear setting) and where ψε(x, θ, γ) = µε(x, θ) with
∂µε

∂θ
(x, θ) ≤ 0 (thermoviscous problem with thermal softening). In this case

we proved results of existence, uniqueness and stability by homogenization.

Note that in that setting γε is a by-product of the problem in (σε, vε, θε),

since once vε is determined, γε is obtained by solving (2.2), (2.5), namely

∂γε

∂t
=
∂vε

∂x
in Q,

γε(0, x) = γ0(x) in Ω.
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2.1 Existence and uniqueness

We begin with an existence and uniqueness result in the general case. We

make the following hypotheses on the data, where 0 < M < +∞,

0 < α ≤ β < +∞ and 0 < α ≤ β < +∞ are given:

f = −
∂g

∂x
in Q, where g ∈ C0(Q), (2.9)

x → cε(x, θ) is measurable on Ω, ∀θ ∈ R, (2.10)
∣

∣

∣

∣

∂cε

∂θ
(x, θ)

∣

∣

∣

∣

≤M, a.e. x ∈ Ω, ∀θ ∈ R, (2.11)

α ≤ cε(x, θ) ≤ β, a.e. x ∈ Ω, ∀θ ∈ R, (2.12)

x→ ψε(x, γ, θ) is measurable on Ω, ∀γ ∈ R, ∀θ ∈ R, (2.13)
∣

∣

∣

∣

∂ψε

∂γ
(x, θ, γ)

∣

∣

∣

∣

≤ M, a.e. x ∈ Ω, ∀γ ∈ R, ∀θ ∈ R, (2.14)

∣

∣

∣

∣

∂ψε

∂θ
(x, θ, γ)

∣

∣

∣

∣

≤ M, a.e. x ∈ Ω, ∀γ ∈ R, ∀θ ∈ R, (2.15)

α ≤ ψε(x, γ, θ) ≤ β, a.e. x ∈ Ω, ∀γ ∈ R, ∀θ ∈ R, (2.16)

nε ∈ L∞(Ω), (2.17)

α ≤ nε(x) ≤ β, a.e. x ∈ Ω, (2.18)

γ0 ∈ L∞(Ω), (2.19)

θ0 ∈ L∞(Ω), (2.20)

σa ∈ C0([0, T ]), (2.21)

vb ∈ L∞(0, T ). (2.22)

When considering their regularity with respect to x, the only hypothesis

made on the heat coefficient cε, on the viscosity coefficient ψε and on the

strain-rate sensitivity nε is that they are bounded from below and from above
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by strictly positive constants. More specifically, they are allowed to exhibit

discontinuities with respect to the spatial variable x. The same is valid for

the initial strain γ0 and the initial temperature θ0. It is also worth noticing

that we do not make any softening or hardening hypothesis on the material

behavior, since the viscosity coefficient ψε may have a negative or positive or

non signed derivative with respect to strain and/or temperature.

Proposition 2.1 When hypotheses (2.9)–(2.22) hold true, there exists a

unique solution (σε, vε, γε, θε) of (2.1)–(2.8), which satisfies

σε = σ⋆ in Q, (2.23)

vε ∈ L∞(Q),
∂vε

∂x
∈ L∞(Q), (2.24)

γε ∈ L∞(Q),
∂γε

∂t
∈ L∞(Q), (2.25)

θε ∈ L∞(Q),
∂θε

∂t
∈ L∞(Q), (2.26)

where σ⋆ ∈ C0(Q) is given by

σ⋆(t, x) = σa(t) + g(t, x) − g(t, a) in Q. (2.27)

Moreover σε, vε,
∂vε

∂x
, γε,

∂γε

∂t
, θε and

∂θε

∂t
are bounded in L∞(Q) indepen-

dently of ε.

Proof of Proposition 2.1. Equation (2.1) and condition (2.9) imply that

σε(t, x) − g(t, x) is independent of x, and therefore equal to its value for

x = a, i.e.

σε(t, x) − g(t, x) = σa(t) − g(t, a) in Q.

This proves the existence and uniqueness of σε, as well as (2.23) and (2.27).

15



Then in view of (2.16), equation (2.4) combined with (2.23) is equivalent

to
∣

∣

∣

∣

dvε

dx

∣

∣

∣

∣

nε(x)−1
dvε

dx
=

σ⋆

ψε(x, γε, θε)
in Q,

or to
dvε

dx
=

|σ⋆|
1

nε(x)
−1σ⋆

(ψε(x, γε, θε))
1

nε(x)

in Q, (2.28)

which defines
dvε

dx
in function of γε and θε. This proves the existence and

uniqueness of
dvε

dx
(and therefore of vε in view of the boundary condition

(2.8)) once the existence and uniqueness of γε and θε are proved. Moreover

in view of (2.16), (2.18) and σ⋆ ∈ C0(Q), equation (2.28) implies that
dvε

dx
be-

longs to L∞(Q) and is bounded in this space independently of ε. Combined

with the boundary condition (2.8) on vε and hypothesis (2.22) on vb, this

implies the existence and uniqueness of vε satisfying (2.24) and the bound-

edness of vε and
∂vε

∂x
in L∞(Q) independently of ε once the existence and

uniqueness of γε and θε are proved.

Let us finally prove the existence and uniqueness of γε and θε satisfying

(2.25) and (2.26), and the corresponding bounds in L∞(Q) independent of ε.

In view of the previous results, the problem (2.1)–(2.8) is equivalent to

∂γε

∂t
=

|σ⋆|
1

nε(x)
−1σ⋆

(ψε(x, γε, θε))
1

nε(x)

in Q, (2.29)

∂θε

∂t
=

|σ⋆|
1

nε(x)
+1

cε(x, θε) (ψε(x, γε, θε))
1

nε(x)

in Q, (2.30)

γε(0, x) = γ0(x) in Ω, (2.31)

θε(0, x) = θ0(x) in Ω. (2.32)
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For every ε > 0 and a.e. x ∈ Ω fixed, problem (2.29)–(2.32) is an ordinary

differential equation

dX

dt
= F (t, X) in (0, T ),

X(0) = X0,

where X stands for the vector (γε, θε) and where F (t, X) is continuous in t

(since σ⋆ ∈ C0(Q)) and Lipschitz continuous in X (see (2.11), (2.12), (2.14),

(2.15), (2.16) and (2.18)). Therefore this ordinary differential equation has

a unique solution. This proves the existence and uniqueness of a solution of

(2.29)–(2.32) (and therefore of (2.1)–(2.8)). In view of σ⋆ ∈ C0(Q), (2.12),

(2.16), (2.18), (2.19) and (2.20), this unique solution satisfies (2.25), (2.26)

and the corresponding estimates in L∞(Q) independent of ε.

2.2 Definition of the Stability by Homogenization (SbH)

Since we have σε = σ⋆ for each ε > 0 (see (2.23) in Proposition 2.1), we

define σ0 by

σ0 = σ⋆ in Q, (2.33)

and we have for every ε > 0

σε = σ0 in Q. (2.34)

On the other hand, in view of the a priori bounds on vε,
∂vε

∂x
, γε,

∂γε

∂t
, θε

and
∂θε

∂t
obtained in Proposition 2.1, it is possible to extract a subsequence

ε′ such that, as ε′ tends to zero,

vε′ ⇀ v0 in L∞(Q) weak-star, (2.35)
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∂vε′

∂x
⇀

∂v0

∂x
in L∞(Q) weak-star, (2.36)

γε′ ⇀ γ0 in L∞(Q) weak-star, (2.37)

∂γε′

∂t
⇀

∂γ0

∂t
in L∞(Q) weak-star, (2.38)

θε′ ⇀ θ0 in L∞(Q) weak-star, (2.39)

∂θε′

∂t
⇀

∂θ0

∂t
in L∞(Q) weak-star, (2.40)

for some v0, γ0, and θ0 which belong to L∞(Q), such that
∂v0

∂x
,
∂γ0

∂t
and

∂θ0

∂t
belong to L∞(Q).

It is then easy to pass to the limit in the linear equations of problem

(2.1)–(2.8), namely (2.1), (2.2), and (2.5)–(2.8), obtaining

−
∂σ0

∂x
= f in Q, (2.41)

∂γ0

∂t
=
∂v0

∂x
in Q, (2.42)

γ0(0, x) = γ0(x) in Ω, (2.43)

θ0(0, x) = θ0(x) in Ω, (2.44)

σ0(t, a) = σa(t) in (0, T ), (2.45)

v0(t, b) = vb(t) in (0, T ). (2.46)

In contrast, it is not clear whether one can pass to the limit in the non-

linear equations (2.3) and (2.4), and obtain equations similar to (2.3) and

(2.4), which would read as

c0(x, θ0)
∂θ0

∂t
= σ0 ∂v

0

∂x
in Q, (2.47)

σ0 = ψ0(x, γ0, θ0)

∣

∣

∣

∣

∂v0

∂x

∣

∣

∣

∣

n0(x)−1
∂v0

∂x
in Q, (2.48)
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for some homogenized coefficients c0(x, θ) and ψ0(x, γ, θ) and some strain-

rate sensitivity n0(x).

This leads to the following definition.

Definition 2.2 Assume that hypotheses (2.9)–(2.22) hold true and let

(σε, vε, γε, θε) be the unique solution of problem (2.1)–(2.8). The problem

(2.1)–(2.8) is said to be Stable by Homogenization (SbH) if there exists a sub-

sequence ε′, a heat coefficient c0(x, θ), a viscosity coefficient ψ0(x, γ, θ) and a

strain-rate sensitivity n0(x) satisfying (2.10)–(2.18) (with constants possibly

different of M , α, β, α and β) such that for this subsequence (2.35)–(2.40)

holds true for the unique solution (σ0, v0, γ0, θ0) of problem (2.41)–(2.48).

Then c0(x, θ), ψ0(x, γ, θ) and n0(x) are called the homogenized heat coef-

ficient, the homogenized viscosity coefficient and the homogenized strain-rate

sensitivity of problem (2.1)–(2.8).

Note that in Definition 2.2 the homogenized quantities c0(x, θ), ψ0(x, γ, θ)

and n0(x) can depend on the force f and on the initial and boundary data γ0,

θ0, σa and vb. This is a consequence of the non elastic character of problem

(2.1)–(2.8).

Unfortunately we are not able to prove that problem (2.1)–(2.8) is SbH

when the general hypotheses (2.9)–(2.22) hold true. We are only able to

deal with three special cases: in Sections 3, 4 and 5 we will prove that when

nε(x) = n⋆(x) and when either

ψε(x, γ, θ) = νε(x, γ) and cε(x, θ) = c⋆(x),

or when

ψε(x, γ, θ) = µε(x, γ),
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or finally when

σ⋆(t, x) = σ⋆⋆(x),

the system (2.1)–(2.8) is SbH (see Proposition 3.1, Proposition 4.1 and Propo-

sition 5.1).

3 Problem (2.1)–(2.8) is SbH when the vis-

cosity coefficient ψε(x, γ, θ) does not depend

on the temperature θ (viscoplastic case)

Proposition 3.1 Assume that hypotheses (2.9)–(2.22) hold true and more-

over that

nε(x) = n⋆(x), (3.1)

cε(x, θ) = c⋆(x), (3.2)

ψε(x, γ, θ) = νε(x, γ), (3.3)

for some given n⋆(x), c⋆(x) and νε(x, γ). Then problem (2.1)–(2.8) is SbH

and one has

n0(x) = n⋆(x), (3.4)

c0(x, θ) = c⋆(x), (3.5)

ψ0(x, γ, θ) = ν0(x, γ), (3.6)

where the homogenized viscosity coefficient ν0(x, γ) depends only on the se-

quence νε(x, γ), on the strain-rate sensitivity n⋆(x) and on the initial strain

γ0(x). The homogenized viscosity coefficient ν0(x, γ) is described in Remark

3.2 below.
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Proposition 3.1 asserts that when the strain-rate sensitivity nε(x) is inde-

pendent of ε (nε(x) = n⋆(x)), when the heat coefficient cε(x, θ) is independent

of ε and of θ (cε(x, θ) = c⋆(x)) and when the viscosity coefficient ψε(x, γ, θ)

is independent of θ (ψε(x, γ, θ) = νε(x, γ)), then problem (2.1)–(2.8) is SbH.

Note that in this case the homogenized problem enjoys the same properties.

In particular the homogenized viscosity coefficient is independent of θ.

Proof of Proposition 3.1. Since here cε(x, θ) = c⋆(x) depends neither on

ε nor on θ, it is straightforward to pass to the limit in equation (2.3), which

reads as

c⋆(x)
∂θε

∂t
= σ⋆(t, x)

∂vε

∂x
in Q,

obtaining

c⋆(x)
∂θ0

∂t
= σ⋆(t, x)

∂v0

∂x
in Q.

The only problem is therefore to pass to the limit in the constitutive law

(2.4), which thanks to (2.23) reads here as

σ⋆(t, x) = νε(x, γε)

∣

∣

∣

∣

∂vε

∂x

∣

∣

∣

∣

n⋆(x)−1
∂vε

∂x
in Q,

or equivalently as

∂vε

∂x
=

|σ⋆(t, x)|
1

n⋆(x)
−1σ⋆(t, x)

(νε(x, γε))
1

n⋆(x)

in Q. (3.7)

By (2.2), (2.5) and (3.7) we therefore have

∂γε

∂t
=

|σ⋆(t, x)|
1

n⋆(x)
−1σ⋆(t, x)

(νε(x, γε))
1

n⋆(x)

in Q, (3.8)

γε(0, x) = γ0(x) in Ω. (3.9)

Let us define the function Zε : Ω ×R → R by

Zε(x, s) =

∫ s

γ0(x)

(νε(x, s′))
1

n⋆(x) ds′ in Ω ×R. (3.10)
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We have in particular

∂Zε

∂s
(x, s) = (νε(x, s))

1
n⋆(x) in Ω ×R. (3.11)

For a.e. x ∈ Ω fixed, the function s ∈ R → Zε(x, s) ∈ R is one-to-one,

strictly increasing and Lipschitz continuous with

0 < α1/β ≤
∂Zε

∂s
(x, s) ≤ β1/α < +∞ in Ω × R,

where α, β, α and β appear in (2.16) and (2.18). Therefore for a.e. x ∈ Ω

fixed, this function has a reciprocal function r ∈ R → (Zε)−1(x, r) ∈ R

which is also one-to-one, strictly increasing and Lipschitz continuous with

0 <
1

β1/α
≤
∂(Zε)−1

∂r
(x, r) ≤

1

α1/β
< +∞ in Ω ×R. (3.12)

Then, since (3.8) reads as

∂Zε

∂s
(x, γε)

∂γε

∂t
= |σ⋆(t, x)|

1
n⋆(x)

−1
σ⋆(t, x) in Q,

and since

Zε(x, γ0(x)) = 0 in Ω,

we have

Zε(x, γε(t, x)) = K⋆(t, x) in Q, (3.13)

where K⋆ = K⋆(t, x) is defined by

∂K⋆

∂t
= |σ⋆(t, x)|

1
n⋆(x)

−1σ⋆(t, x) in Q,

K⋆(0, x) = 0 in Ω.

Equation (3.13) is equivalent to

γε(t, x) = (Zε)−1(x,K⋆(t, x)) in Q. (3.14)
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We finally define the function πε : Ω × R → R by

πε(x, r) =
1

(νε(x, (Zε)−1(x, r)))
1

n⋆(x)

in Ω × R. (3.15)

Observe that in view of (2.16) and (2.18), one has

1

β1/α
≤ πε(x, r) ≤

1

α1/β
in Ω × R. (3.16)

In view of (2.14), (2.16), (2.18) and (3.12), we deduce from (3.16) that

∣

∣

∣

∣

∂πε

∂r
(x, r)

∣

∣

∣

∣

=

=
1

n⋆(x)

1

(νε(x, (Zε)−1(x, r)))
1

n⋆(x)
+1

∣

∣

∣

∣

∂νε

∂γ
(x, (Zε)−1(x, r))

∣

∣

∣

∣

∣

∣

∣

∣

∂(Zε)−1

∂r
(x, r)

∣

∣

∣

∣

≤

≤
1

α

1

α1+1/β
M

1

α1/β
in Ω ×R.

(3.17)

Since the functions r ∈ R → (Zε)−1(x, r) ∈ R and r ∈ R → πε(x, r) ∈ R

are (uniformly in x and ε) Lipschitz continuous (see (3.12) and (3.17)), and

since the functions x ∈ Ω → (Zε)−1(x, r) ∈ R and x ∈ Ω → πε(x, r) ∈ R are

measurable and bounded (uniformly in ε) for every r ∈ R fixed, a well known

lemma in homogenization theory (see e.g. Lemma 3.8 in Charalambakis

and Murat (2006b)) asserts that one can extract a subsequence ε′ and that

there exist two functions Y 0(x, r) and π0(x, r): Ω × R → R (which are also

Lipschitz continuous in r uniformly in x and measurable in x and bounded

for every r ∈ R fixed), such that for every r ∈ R fixed

(Zε′)−1(x, r) ⇀ Y 0(x, r) in L∞(Ω) weak-star, (3.18)

πε′(x, r) ⇀ π0(x, r) in L∞(Ω) weak-star. (3.19)
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Moreover the same lemma asserts that for this subsequence ε′ one has

(Zε′)−1(x,K⋆(t, x)) ⇀ Y 0(x,K⋆(t, x)) in L∞(Q) weak-star, (3.20)

πε′(x,K⋆(t, x)) ⇀ π0(x,K⋆(t, x)) in L∞(Q) weak-star. (3.21)

Since Zε(x, γ0(x)) = 0, we have

(Zε)−1(x, 0) = γ0(x) in Ω,

and therefore

Y 0(x, 0) = γ0(x) in Ω.

Since for every r, r′ ∈ R with r ≥ r′ we have (see (3.12))

1

β1/α
(r − r′) ≤ (Zε)−1(x, r) − (Zε)−1(x, r′) ≤

1

α1/β
(r − r′) in Ω,

we also have for every r, r′ ∈ R with r ≥ r′

1

β1/α
(r − r′) ≤ Y 0(x, r) − Y 0(x, r′) ≤

1

α1/β
(r − r′) in Ω, (3.22)

which proves that for a.e. x ∈ Ω fixed, the function r ∈ R → Y 0(x, r) ∈ R

is one-to-one, strongly increasing and Lipschitz continuous. Therefore this

function has a reciprocal function s ∈ R → (Y 0)−1(x, s) ∈ R with the same

properties. We define the function Z0 : Ω × R → R by

Z0(x, s) = (Y 0)−1(x, s) in Ω × R. (3.23)

We also define the function ν0 : Ω ×R → R by

ν0(x, s) =
1

(π0(x, Z0(x, s)))n⋆(x)
in Ω ×R, (3.24)

which is equivalent to (compare with (3.15))

π0(x, r) =
1

(ν0(x, (Z0)−1(x, r)))
1

n⋆(x)

in Ω × R. (3.25)
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Since the function π0(x, r) is bounded from below and from above by

strictly positive constants (this is easily deduced from (3.16) and (3.19)), the

function ν0(x, s) satisfies (2.16) (with constants possibly different of α and

β). On the other hand, since the function Z0(x, s) is Lipschitz continuous

in s uniformly in x (see (3.22) and (3.23)) and since the function π0(x, r)

is Lipschitz continuous in s uniformly in x (this can easily be deduced from

(3.17) and (3.19)), the function ν0(x, s) defined by (3.24) satisfies (2.14) (with

a constant possibly different of M).

Then since by (3.14) one has γε(t, x) = (Zε)−1(x,K⋆(t, x)), we deduce

from (3.20) and (3.23) that

γε′ ⇀ γ0 in L∞(Q) weak-star, (3.26)

where

γ0(t, x) = (Z0)−1(x,K⋆(t, x)). (3.27)

On the other hand, we deduce from (3.14), (3.15), (3.21), (3.25) and

(3.27) that

1

(νε′(x, γε′(t, x)))
1

n⋆(x)

⇀
1

(ν0(x, γ0(t, x)))
1

n⋆(x)

in L∞(Q) weak-star. (3.28)

Turning back to (3.7), convergence (3.28) implies that

∂v0

∂x
=

|σ⋆(t, x)|
1

n⋆(x)
−1σ⋆(t, x)

(ν0(x, γ0(t, x)))
1

n⋆(x)

in Q,

which, thanks to (2.33), is equivalent to

σ0 = ν0(x, γ0)

∣

∣

∣

∣

∂v0

∂x

∣

∣

∣

∣

n⋆(x)−1
∂v0

∂x
in Q. (3.29)
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In conclusion, we passed to the limit in (2.4) and therefore proved that in

the setting of Proposition 3.1, the problem (2.1)–(2.8) is SbH, with n0(x) =

n⋆(x), c0(x, θ) = c⋆(x) and ψ0(x, γ, θ) = ν0(x, γ), with ν0(x, γ) defined

by (3.24). Note that the homogenized viscosity coefficient ν0(x, γ) satisfies

(2.13)–(2.16) (with constants possibly different of M , α and β).

Remark 3.2 Definition of the homogenized viscosity coefficient ν0(x, γ)

Let us summarize in this Remark the way in which ν0(x, γ) is defined in

the viscoplastic case considered in Proposition 3.1.

From the data νε(x, s), n⋆(x) and γ0(x), we define the function Zε(x, s)

by

Zε(x, s) =

∫ s

γ0(x)

(νε(x, s′))
1

n⋆(x) ds′ in Ω × R

(see (3.10)). Then we extract a subsequence ε′ such that the reciprocal

functions (Zε′)−1(x, r) satisfy for every r ∈ R fixed

(Zε′)−1(x, r) ⇀ (Z0)−1(x, r) in L∞(Ω) weak-star,

for some function Z0(x, s) (see (3.18) and (3.23)). From the same data, we

also define (see (3.15), (3.19) and (3.25)) a function ν0(x, s) such that for

every r ∈ R fixed (and possibly for a further subsequence, still denoted by

ε′) one has

1

(νε′(x, (Zε′)−1(x, r)))
1

n⋆(x)

⇀
1

(ν0(x, (Z0)−1(x, r)))
1

n⋆(x)

in L∞(Ω) weak-star.

This function ν0(x, s) depends only (but does depend) on the sequence νε(x, s),

on the strain-rate sensitivity n⋆(x) and on the initial condition γ0(x). It does

not depend on the other data (f, θ0, σa and vb) of the problem.

Then ν0(x, γ) is the homogenized viscosity coefficient ψ0(x, γ, θ) for which

problem (2.1)–(2.8) is SbH.
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Remark 3.3 The case of a multiphase viscoplastic heterogeneous material

made of periodic homogeneous layers

In this Remark we consider the special case of Proposition 3.1 where

the heterogeneous viscoplastic material is made of periodic thin layers (of

thickness of order ε) of homogeneous phases.

In other words, we consider here the case where

n⋆(x) = n⋆⋆, (3.30)

c⋆(x) = c⋆⋆, (3.31)

νε(x, γ) =
∑

i

χi

(x

ε

)

νi(γ), (3.32)

where n⋆⋆ and c⋆⋆ are given in R+, where the index i runs between 1 and

I (I ≥ 2 denotes the number of phases), where νi : R → R are viscosity

coefficients which do not depend on x (and therefore describe homogeneous

phases) and which satisfy (2.14) and (2.16), where

0 = a0 < a1 < ... < ai−1 < aI = 1 (3.33)

are given numbers and where χi is the characteristic function of the interval

(ai−1, ai) extended by periodicity to R, i.e.

χi(x) =







1 if k + ai−1 < x < k + ai for some k ∈ Z,

0 otherwise.
(3.34)

We set

pi = ai − ai−1. (3.35)

The number pi describes the volume fraction of the phase i in the material

and satisfies

pi > 0 ∀i,
∑

i

pi = 1.
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Observe that

χi

(x

ε

)

⇀ pi in L∞(Ω) weak-star. (3.36)

We finally assume that

γ0(x) = γ⋆⋆ in Ω, (3.37)

where γ⋆⋆ is given in R.

Hypotheses (2.9)–(2.22) are then satisfied, and the present setting is a

particular case of Proposition 3.1. In this setting, the function Zε defined by

(3.10) is given by

Zε(x, s) =
∑

i

χi

(x

ε

)

∫ s

γ⋆⋆

(νi(s
′))

1
n⋆⋆ ds′ =

∑

i

χi

(x

ε

)

Ni(s), (3.38)

where Ni : R → R is the function defined by

Ni(s) =

∫ s

γ⋆⋆

(νi(s
′))

1
n⋆⋆ ds′. (3.39)

Therefore the reciprocal function (Zε)−1(x, r) is defined by

(Zε)−1(x, r) =
∑

i

χi

(x

ε

)

(Ni)
−1(r), (3.40)

where (Ni)
−1 : R → R is the reciprocal function of the function Ni.

In view of (3.36) the function (Z0)−1(x, r) = Y 0(x, r) (which is defined

by (3.18) and (3.23)) does not depend on x and one has

(Z0)−1(r) = Y 0(r), (3.41)

where

Y 0(r) =
∑

i

pi (Ni)
−1(r). (3.42)

Similarly, the homogenized viscosity coefficient ν0(x, s), which is defined

by (3.15), (3.19) and (3.25), does not depend on x : indeed, since the function
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πε(x, r) defined by (3.15) is given here by

πε(x, r) =
1

(νε(x, (Zε)−1(x, r)))
1

n⋆(x)

=
∑

i

χi

(x

ε

)

(νi((Ni)−1(r)))
1

n⋆⋆

, (3.43)

we deduce from (3.19), (3.23), (3.25), (3.36) and (3.43) that

1

(ν0(Y 0(r)))
1

n⋆⋆

=
∑

i

pi

(νi((Ni)−1(r)))
1

n⋆⋆

. (3.44)

In the special setting of this Remark, which is concerned with periodic

heterogeneous viscoplastic materials made of thin layers of homogeneous

phases, equation (3.44) combined with (3.42) and (3.39) provides an explicit

formula for the homogenized viscosity coefficient ν0(x, γ).

Remark 3.4 The case of power laws for a multiphase viscoplastic hetero-

geneous material made of periodic layers

Let us complete the previous Remark by an explicit example.

In the setting of Remark 3.3, consider the case where the heterogeneous

viscoplastic material is made of periodic layers of I phases with volume frac-

tions pi, which are characterized by viscosity coefficients νi(s) which satisfy

hypotheses (2.14) and (2.16) and which are given by power laws in some

interval A ≤ s ≤ B of R+, i.e. which satisfy

νi(s) = Gi s
mi , ∀s with A ≤ s ≤ B, (3.45)

where Gi are given in R+, mi are given in R and where A and B are given

with 0 < A < B < +∞. Note that viscosity coefficients defined by power

laws on the whole of R or even of R+ would satisfy neither hypothesis (2.14)

nor hypothesis (2.16); this is the reason why we assume that the viscosity

coefficients νi(s) of the phases are given by power laws only in the interval

29



A ≤ s ≤ B. On the other hand, since we can have A = δ and B = 1/δ with

δ > 0 small, the viscosity coefficients νi(s) can be defined as power laws on

a very large part of R+.

We will assume that the powers mi and the initial strain γ⋆⋆ satisfy

n⋆⋆ +mi 6= 0, (3.46)

γ⋆⋆ ≤ A. (3.47)

These two hypotheses are only technical. Note that in (3.45) the power

laws could be replaced by exponential or logarithmic laws (see Lemaitre and

Chaboche (2001), Wright (2002)). Let us finally emphasize that the powers

mi are assumed to be neither positive nor negative. This allows us to consider

both softening and hardening processes, as well as problems with softening

and hardening processes competing each other.

In this example the functions Ni(s) defined by (3.39) are given by

Ni(s) = gi s
n⋆⋆+mi

n⋆⋆ − κi, ∀s with A ≤ s ≤ B, (3.48)

(in the case where hypothesis (3.46) does not hold true, the power n⋆⋆+mi

n⋆⋆

has to be replaced by a logarithm), where the constants gi and κi are given

by

gi =
n⋆⋆

n⋆⋆ +mi

G
1

n⋆⋆

i , (3.49)

κi = giA
n⋆⋆+mi

n⋆⋆ −

∫ A

γ⋆⋆

(νi(s
′))

1
n⋆⋆ ds′. (3.50)

Note that

κi = giA
n⋆⋆+mi

n⋆⋆ when A = γ⋆⋆. (3.51)

The reciprocal function (Ni)
−1(r) therefore satisfies

(Ni)
−1(r) =

(

1

gi

(r + κi)

)
n⋆⋆

n⋆⋆+mi

, ∀r with Ni(A) ≤ r ≤ Ni(B). (3.52)
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Since the function Ni(s) is strictly increasing and since Ni(γ
⋆⋆) = 0,

hypothesis (3.47) implies that 0 ≤ Ni(A) < Ni(B) < +∞. We will moreover

assume that there exist C and D such that

min
i

(Ni(A)) ≤ C < D ≤ max
i

(Ni(B)). (3.53)

Then on the interval C ≤ r ≤ D, the function Y 0(r) defined by (3.42) is

given by

Y 0(r) =
∑

i

pi

(

1

gi
(r + κi)

)
n⋆⋆

n⋆⋆+mi

, ∀r with C ≤ r ≤ D, (3.54)

and formula (3.44) which defines the homogenized viscosity coefficient ν0

reads as
1

(ν0(Y 0(r)))
1

n⋆⋆

=
∑

i

pi

G
1

n⋆⋆

i

(

1

gi
(r + κi)

)

mi
n⋆⋆+mi

,

∀r with C ≤ r ≤ D.

(3.55)

Formula (3.55) combined with (3.54) explicitly gives the value of the

homogenized viscosity coefficient ν0(s) in the interval Y 0(C) ≤ s ≤ Y 0(D).

Observe that the homogenized viscosity coefficient is no more given by a

power law in this interval, which covers a very large part of R+ when A = δ

and B = 1/δ with δ > 0 small and when γ⋆⋆ is close to zero. Therefore power

laws are not SbH.

Remark 3.5 A numerical example

We now present, in the context of Remark 3.4, some numerical results

concerning the homogenized viscosity coefficient of a bimetallic material (so

I = 2 here) exhibiting strain hardening (so mi > 0 here) and strain-rate
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sensitivity n⋆⋆ > 0. In this case the constitutive law (2.4) reads as

σ =
2

∑

i=1

χi(
x

ε
)Gi γ

mi

∣

∣

∣

∣

∂v

∂x

∣

∣

∣

∣

n⋆⋆
−1
∂v

∂x
, ∀γ with A ≤ γ ≤ B, (3.56)

for some A and B given with 0 < A < B < +∞ (see (3.45)). We moreover

assume that the initial strain satisfies

γ⋆⋆ = A. (3.57)

Formulas (3.55) and (3.54) which define the homogenized viscosity coef-

ficient ν0, together with (3.49) and (3.51), give

1

(ν0(Y 0(r)))
1

n⋆⋆

=

2
∑

i=1

pi

G
1

n⋆⋆+mi

i

(

n⋆⋆+mi

n⋆⋆ r +G
1

n⋆⋆

i (γ⋆⋆)
n⋆⋆+mi

n⋆⋆

)

mi
n⋆⋆+mi

,

Y 0(r) =

2
∑

i=1

pi

G
1

n⋆⋆+mi

i

(

n⋆⋆ +mi

n⋆⋆
r +G

1
n⋆⋆

i (γ⋆⋆)
n⋆⋆+mi

n⋆⋆

)
n⋆⋆

n⋆⋆+mi

,

∀r with C ≤ r ≤ D.
(3.58)

Lemaitre and Chaboche (2001) give the following range of values for the

mechanical parameters in the constitutive law

constants G1 and G2 : 100 – 10000 MPa,

strain hardening m1 and m2 : 0.02 – 0.5,

strain rate-sensitivity n⋆⋆ : 0.01 – 0.5.

We consider a layered material made of two equally distributed phases which

are different steels (so p1 = p2 =
1

2
), with

G1 = 762 MPa, m1 = 0.167, n1 = 0.07, (3.59)
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G2 = 962 MPa, m2 = 0.187, n2 = 0.07, (3.60)

for different given values of the initial strain γ⋆⋆.

Figures 1 and 2 present numerical results due to George Chatzigeorgiou,

whose collaboration is gratefully acknowledged. Both figures present the

values of the viscosity coefficients ν1(r) and ν2(r) given by the power law

(3.56) with the numerical values given by (3.59) and (3.60), for the values

0.001, 0.004, 0.007 and 0.010 of the initial strain γ⋆⋆ (recall that we assumed

that A = γ⋆⋆, see (3.57)). Figures 1 and 2 also present the values of the

homogenized viscosity coefficient ν0(r) given by formula (3.58) for the values

0.001, 0.004, 0.007 and 0.010 of the initial strain γ⋆⋆. The two figures only

differ by the range considered for r. In Figure 1, r takes its values between

0 and 5e + 038 = 5.1038, while in Figure 2, r takes its values between 0

and 4e+ 035 = 4.1035 (the values of the variable in the horizontal axis have

to be read according to the rule ke + l = k 10l). Figure 1 shows that, for

large values of r, the homogenized viscosity coefficient does not depend in

practice on the initial value γ⋆⋆, since the 4 curves seem to coincide. In

contrast, for small values of r (onset of the deformation), the homogenized

viscosity coefficient depends on the initial value γ⋆⋆ since the curves clearly

differ. Finally, it is worth noticing that the homogenized viscosity coefficient

is more “attracted” by the hardening of the weaker material than by the

hardening of the stronger one, in a ratio 2/1.

Remark 3.6 A comment on the hypothesis cε(x, θ) = c⋆(x)

In Proposition 3.1, the heat coefficient cε(x, θ) is assumed to be inde-

pendent of ε and of x (see hypothesis (3.2)). One can wonder whether this

hypothesis is necessary or not, i.e. whether one could pass to the limit in

equation (2.3) when the heat coefficient is of the general form cε(x, θ).
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Thanks to (2.23), equation (2.3) reads as

cε(x, θε)
∂θε

∂t
= σ⋆ ∂v

ε

∂x
in Q. (3.61)

Defining the function Cε : Ω × R → R by

Cε(x, s) =

∫ s

θ0(x)

cε(x, s′) ds′ in Ω × R,

and defining the transformed temperature τ ε = τ ε(t, x) by

τ ε(t, x) = Cε(x, θε(t, x)) in Q, (3.62)

equation (3.61) reads as

∂τ ε

∂t
= σ⋆ ∂v

ε

∂x
in Q, (3.63)

while the initial condition (2.6) on θε yields

τ ε(0, x) = 0 in Ω. (3.64)

Combining (3.63) and (3.64) with the convergence (2.36) implies that

τ ε′ ⇀ τ 0 in L∞(Q) weak-star,

∂τ ε′

∂t
⇀

∂τ 0

∂t
in L∞(Q) weak-star,

where τ 0 is the solution of

∂τ 0

∂t
= σ⋆ ∂v

0

∂x
in Q, (3.65)

τ 0(0, x) = 0 in Ω, (3.66)

which defines in a unique way the limit τ 0 of the transformed temperature

τ ε′.
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But since τ ε′ and θε′ converge only weakly, one cannot pass to the limit in

the relation (3.62) and deduce a relation between τ 0 defined by

(3.65)–(3.66) and θ0 defined by (2.39). This is impossible even in the case

where cε(x, θ) = cε(x) does not depend on θ. Indeed, in this case, (3.62)

reads as

τ ε(t, x) = cε(x)(θε(t, x) − θ0(x)),

in which we do not know how to pass to the limit in the product cε(x) θε(t, x)

(we would not know how to pass to the limit in this product even if we knew

that θε does not depend on t). This is the reason which forces us to assume

that cε(x, θ) is independent of θ and of ε (hypothesis 3.2)).

The same reason forces us to assume in Proposition 3.1 that the strain-

rate sensitivity nε does not depend on ε (hypothesis (3.1)).

In contrast, the key point in the proof of Proposition 3.1 is the fact that

one has

γε(t, x) = (Zε)−1(x,K⋆(t, x)) in Q,

(see (3.14)), i.e. the fact that γε is a function of the fixed function K⋆. This

fact allows us to obtain a relation between the limit γ0 of γε′ and the function

K⋆, and makes the success of the above proof.

4 Problem (2.1)–(2.8) is SbH when the vis-

cosity coefficient ψε(x, γ, θ) does not depend

on the strain γ (thermoviscous case)

Proposition 4.1 Assume that hypotheses (2.9)–(2.22) hold true and more-

over that

nε(x) = n⋆(x), (4.1)
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ψε(x, γ, θ) = µε(x, θ), (4.2)

for some given n⋆(x) and µε(x, θ). Then problem (2.1)–(2.8) is SbH and one

has

n0(x) = n⋆(x), (4.3)

ψ0(x, γ, θ) = µ0(x, θ), (4.4)

where the homogenized heat coefficient c0(x, θ) and the homogenized viscosity

coefficient µ0(x, θ) depend only on the sequences cε(x, θ) and µε(x, θ), on

the strain-rate sensitivity n⋆(x) and on the initial temperature θ0(x). The

homogenized coefficients c0(x, θ) and µ0(x, θ) are described in Remark 4.2

below.

Proposition 4.1 asserts that when the strain-rate sensitivity nε(x) is in-

dependent of ε (nε(x) = n⋆(x)) and when the viscosity coefficient ψε(x, γ, θ)

is independent of γ (ψε(x, γ, θ) = µε(x, θ)), then problem (2.1)–(2.8) is SbH.

Note that in this case the homogenized problem enjoys the same properties.

In particular the homogenized viscosity coefficient is independent of γ.

The result of Proposition 4.1 is close to the homogenization result ob-

tained in Charalambakis and Murat (2006b) which is concerned with the

dynamical problem associated to (2.1)–(2.8) in the case where ψε(x, γ, θ) =

= µε(x, θ). Observe however that the result of Charalambakis and Murat

(2006b) is obtained under the stronger hypotheses that n⋆(x) = 1 (linear

setting) and
∂µε

∂θ
(x, θ) ≤ 0 (thermal softening).

Proof of Proposition 4.1. The proof is very similar to the proof of Propo-

sition 3.1. The problem is to pass to the limit in (2.3) and (2.4).

In view of (2.23), equation (2.4) is here equivalent to

∂vε

∂x
=

|σ⋆(t, x)|
1

n⋆(x)
−1σ⋆(t, x)

(µε(x, θε))
1

n⋆(x)

in Q, (4.5)
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and therefore (2.3) reads as

cε(x, θε)
∂θε

∂t
=

|σ⋆(t, x)|
1

n⋆(x)
+1

(µε(x, θε))
1

n⋆(x)

in Q,

or equivalently as

cε(x, θε) (µε(x, θε))
1

n⋆(x)
∂θε

∂t
= |σ⋆(t, x)|

1
n⋆(x)

+1 in Q. (4.6)

Let us define the function Ẑε : Ω ×R → R by

Ẑε(x, s) =

∫ s

θ0(x)

cε(x, s′) (µε(x, s′))
1

n⋆(x) ds′ in Ω × R. (4.7)

We have in particular

∂Ẑε

∂s
(x, s) = cε(x, s′) (µε(x, s))

1
n⋆(x) in Ω × R. (4.8)

For a.e. x ∈ Ω fixed, the function s ∈ R → Ẑε(x, s) ∈ R is one-to-one,

strictly increasing and Lipschitz continuous with

0 < α1+1/β ≤
∂Ẑε

∂s
(x, s) ≤ β1+1/α < +∞ in Ω × R,

where α, β, α and β appear in (2.12), (2.16) and (2.18). Therefore for a.e.

x ∈ Ω fixed, this function has a reciprocal function r ∈ R → (Ẑε)−1(x, r) ∈ R

which is also one-to-one, strictly increasing and Lipschitz continuous with

0 <
1

β1+1/α
≤
∂(Ẑε)−1

∂r
(x, r) ≤

1

α1+1/β
< +∞ in Ω ×R. (4.9)

Then, since (4.6) reads as

∂Ẑε

∂s
(x, θε)

∂θε

∂t
= |σ⋆|

1
n⋆(x)

+1 in Q,

and since

Ẑε(x, θ0(x)) = 0 in Ω,
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we have

Ẑε(x, θε(t, x)) = H⋆(t, x) in Q, (4.10)

where H⋆ = H⋆(t, x) is defined by

∂H⋆

∂t
= |σ⋆|

1
n⋆(x)

+1 in Q, (4.11)

H⋆(0, x) = 0 in Ω. (4.12)

Equation (4.10) is equivalent to

θε(t, x) = (Ẑε)−1(x,H⋆(t, x)) in Q. (4.13)

We finally define the function ζε : Ω × R → R by

ζε(x, r) =
1

(µε(x, (Ẑε)−1(x, r)))
1

n⋆(x)

in Ω × R. (4.14)

Observe that in view of (2.16) and (2.18), one has

1

β1/α
≤ ζε(x, r) ≤

1

α1/β
in Ω ×R. (4.15)

In view of (2.15), (2.16), (2.18) and (4.9), we deduce from (4.14) that

∣

∣

∣

∣

∂ζε

∂r
(x, r)

∣

∣

∣

∣

=

=
1

n⋆(x)

1

(µε(x, (Ẑε)−1(x, r)))
1

n⋆(x)
+1

∣

∣

∣

∣

∂µε

∂θ
(x, (Ẑε)−1(x, r))

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂(Ẑε)−1

∂r
(x, r)

∣

∣

∣

∣

∣

≤

≤
1

α

1

α1+1/β
M

1

α1+1/β
in Ω ×R.

(4.16)

Since the functions r ∈ R → (Ẑε)−1(x, r) ∈ R and r ∈ R → ζε(x, r) ∈ R

are (uniformly in x and ε) Lipschitz continuous (see (4.9) and (4.16)), and

since the functions x ∈ Ω → (Ẑε)−1(x, r) ∈ R and x ∈ Ω → ζε(x, r) ∈ R are
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measurable and bounded (uniformly in ε) for every r ∈ R fixed, a well known

lemma in homogenization theory (see e.g. Lemma 3.8 in Charalambakis and

Murat (2006b)) asserts that one can extract a subsequence ε′ and that there

exist two functions Ŷ 0(x, r) and ζ0(x, r): Ω×R → R (which are also Lipschitz

continuous in r uniformly in x and measurable in x and bounded for every

r ∈ R fixed), such that for every r ∈ R fixed

(Ẑε′)−1(x, r) ⇀ Ŷ 0(x, r) in L∞(Ω) weak-star, (4.17)

ζε′(x, r) ⇀ ζ0(x, r) in L∞(Ω) weak-star. (4.18)

Moreover the same lemma asserts that for this subsequence ε′ one has

(Ẑε′)−1(x,H⋆(t, x)) ⇀ Ŷ 0(x,H⋆(t, x)) in L∞(Q) weak-star, (4.19)

ζε′(x,H⋆(t, x)) ⇀ ζ0(x,H⋆(t, x)) in L∞(Q) weak-star. (4.20)

Since Ẑε(x, θ0(x)) = 0, we have

(Ẑε)−1(x, 0) = θ0(x) in Ω,

and therefore

Ŷ 0(x, 0) = θ0(x) in Ω.

Since for every r, r′ ∈ R with r ≥ r′ we have (see (4.9))

1

β1+1/α
(r − r′) ≤ (Ẑε)−1(x, r) − (Ẑε)−1(x, r′) ≤

1

α1+1/β
(r − r′) in Ω,

we also have for every r, r′ ∈ R with r ≥ r′

1

β1+1/α
(r − r′) ≤ Ŷ 0(x, r) − Ŷ 0(x, r′) ≤

1

α1+1/β
(r − r′) in Ω, (4.21)

which proves that for a.e. x ∈ Ω fixed, the function r ∈ R → Ŷ 0(x, r) ∈ R

is one-to-one, strongly increasing and Lipschitz continuous. Therefore this
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function has a reciprocal function s ∈ R → (Ŷ 0)−1(x, s) ∈ R with the same

properties. We define the function Ẑ0 : Ω × R → R by

Ẑ0(x, s) = (Ŷ 0)−1(x, s) in Ω × R. (4.22)

We also define the function µ0 : Ω ×R → R by

µ0(x, s) =
1

(ζ0(x, Ẑ0(x, s)))n⋆(x)
in Ω × R, (4.23)

which is equivalent to (compare with (4.14))

ζ0(x, r) =
1

(µ0(x, (Ẑ0)−1(x, r)))
1

n⋆(x)

in Ω × R. (4.24)

Since the function ζ0(x, r) is bounded from below and from above by

strictly positive constants (this is easily deduced from (4.15) and (4.18)),

the function µ0(x, s) satisfies (2.16) (with constants possibly different of α

and β). On the other hand, since the function Ẑ0(x, s) is Lipschitz continuous

in s uniformly in x (see (4.21) and (4.22)) and since the function ζ0(x, r) is

Lipschitz continuous in r uniformly in x (this can easily be deduced from

(4.16) and (4.18)), the function µ0(x, s) defined by (4.23) satisfies (2.15)

(with a constant possibly different of M).

Then since by (4.13) θε(t, x) = (Ẑε)−1(x,H⋆(t, x)), we deduce from (4.19)

and (4.22) that

θε′ ⇀ θ0 in L∞(Q) weak-star, (4.25)

where

θ0(t, x) = (Ẑ0)−1(x,H⋆(t, x)). (4.26)

On the other hand, we deduce from (4.13), (4.14), (4.20), (4.24) and

(4.26) that

1

(µε′(x, θε′(t, x)))
1

n⋆(x)

⇀
1

(µ0(x, θ0(t, x)))
1

n⋆(x)

in L∞(Q) weak-star. (4.27)
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Turning back to (4.5), convergence (4.27) implies that

∂v0

∂x
=

|σ⋆(t, x)|
1

n⋆(x)
−1σ⋆(t, x)

(µ0(x, θ0(t, x)))
1

n⋆(x)

in Q,

which, thanks to (2.33), is equivalent to

σ0 = µ0(x, θ0)

∣

∣

∣

∣

∂v0

∂x

∣

∣

∣

∣

n⋆(x)−1
∂v0

∂x
in Q. (4.28)

We passed to the limit in (2.4). Let us now pass to the limit in (2.3).

From the function Ẑ0 defined by (4.17) and (4.22), and from the function

µ0 defined by (4.23), we define the function c0 : Ω ×R → R by

c0(x, s) =

∂Ẑ0

∂s
(x, s)

(µ0(x, s))
1

n⋆(x)

in Ω × R, (4.29)

or equivalently by

∂Ẑ0

∂s
(x, s) = c0(x, s) (µ0(x, s))

1
n⋆(x) in Ω × R (4.30)

(compare with (4.8)). Since the functions
∂Ẑ0

∂s
(x, s) and µ0(x, s) are bounded

from below and from above by strictly positive constants, the function c0(x, s)

is correctly defined by (4.29) and satisfies (2.12) (with constants possibly dif-

ferent of α and β). Moreover, the function c0(x, s) defined by (4.29) satisfies

(2.11) (with a constant possibly different of M): indeed we proved that the

function µ0(x, s) is Lipschitz continuous in s, and it can be proved that the

function
∂Ẑ0

∂s
(x, s) is Lipschitz continuous in s uniformly in x: this is due

to the fact that
∂Ẑε

∂s
(x, s) is Lipschitz continuous in s uniformly in x and ε

(see (4.8), (2.11) and (2.15)), and can be proved by a proof similar to the

proof used to prove the similar property for the function M0(x, s) defined in

Charalambakis and Murat (2006b) (see the proof of (3.45) in this paper).
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On the other hand, (4.11) and (4.26) imply that

∂Ẑ0(x, θ0(t, x))

∂t
= |σ⋆|

1
n⋆(x)

+1
in Q. (4.31)

Combining (4.30) and (4.31) yields

c0(x, θ0) (µ0(x, θ0))
1

n⋆(x)
∂θ0

∂t
= |σ⋆|

1
n⋆(x)

+1 in Q,

which using (2.33) and (4.28) is equivalent to

c0(x, θ0)
∂θ0

∂t
= σ0 ∂v

0

∂x
in Q.

We passed to the limit in (2.3).

Let us complete this proof by giving another formula, equivalent to (4.29),

for the definition of the homogenized heat coefficient c0. Writing (4.29) at

the point s = Ŷ 0(x, r) yields

c0(x, Ŷ 0(x, r)) =

∂Ẑ0

∂s
(x, Ŷ 0(x, r))

(µ0(x, Ŷ 0(x, r)))
1

n⋆(x)

in Ω × R,

in which we use the chain rule applied to the identity Ẑ0(x, (Ŷ 0(x, r)) = r,

namely
∂Ẑ0

∂s
(x, Ŷ 0(x, r))

∂Ŷ 0

∂r
(x, r)) = 1.

This implies that c0 defined by (4.29) can be equivalently defined by the

formula

c0(x, Ŷ 0(x, r)) =
1

∂Ŷ 0

∂r
(x, r)

1

(µ0(x, Ŷ 0(x, r)))
1

n⋆(x)

in Ω × R. (4.32)

In conclusion, we passed to the limit in (2.3) and (2.4), and therefore

proved that in the setting of Proposition 4.1, the problem (2.1)–(2.8) is SbH,
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with n0(x) = n⋆(x), c0(x, θ) defined by (4.29) and ψ0(x, γ, θ) = µ0(x, θ), with

µ0(x, θ) defined by (4.23). Note that the homogenized coefficients c0(x, θ) and

µ0(x, θ) satisfy (2.10)–(2.16) (with constants possibly different of M , α and

β).

Remark 4.2 Definition of the homogenized heat and viscosity coefficients

c0(x, θ) and µ0(x, θ)

Let us summarize in this Remark the way in which the homogenized coef-

ficients c0(x, θ) and µ0(x, θ) are defined in the thermoviscous case considered

in Proposition 4.1.

From the data cε(x, s), µε(x, s), n⋆(x) and θ0(x), we define the function

Ẑε(x, s) by

Ẑε(x, s) =

∫ s

θ0(x)

cε(x, s′) (µε(x, s′))
1

n⋆(x) ds′ in Ω ×R

(see (4.7)). Then we extract a subsequence ε′ such that the reciprocal func-

tions (Ẑε′)−1(x, r) satisfy for every r ∈ R fixed

(Ẑε′)−1(x, r) ⇀ (Ẑ0)−1(x, r) in L∞(Ω) weak-star,

for some function Ẑ0(x, s) (see (4.17) and (4.22)). From the same data, we

also define (see (4.14), (4.18) and (4.24)) a function µ0(x, s) such that for

every r ∈ R fixed (and possibly for a further subsequence, still denoted

by ε′) one has

1

(µε′(x, (Ẑε′)−1(x, r)))
1

n⋆(x)

⇀
1

(µ0(x, (Ẑ0)−1(x, r)))
1

n⋆(x)

in L∞(Ω) weak-star.

Finally from the functions Ẑ0(x, s) and µ0(x, s), we define a function c0(x, s)

by (4.29), i.e. by

c0(x, s) =

∂Ẑ0

∂s
(x, s)

(µ0(x, s))
1

n⋆(x)

in Ω × R,
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(an equivalent formula for c0(x, s) is (4.32)). The functions µ0(x, s) and

c0(x, s) depend only (but do depend) on the sequences µε(x, s) and cε(x, s),

on the strain-rate sensitivity n⋆(x) and on the initial condition θ0(x). It does

not depend on the other data (f, θ0, σa and vb) of the problem.

Then µ0(x, θ) is the homogenized viscosity coefficient ψ0(x, γ, θ) and

c0(x, θ) the homogenized heat coefficient for which problem (2.1)–(2.8) is

SbH.

Remark 4.3 The case of a multiphase thermoviscous heterogeneous mate-

rial made of periodic homogeneous layers

In this Remark we consider the special case of Proposition 4.1 where

the heterogeneous thermoviscous material is made of periodic thin layers (of

thickness of order ε) of homogeneous phases.

In other words, we consider here the case where (part of the notation in

this Remark is the same as the notation in Remark 3.3)

n⋆(x) = n⋆⋆, (4.33)

cε(x, θ) =
∑

i

χi

(x

ε

)

ci(θ), (4.34)

µε(x, θ) =
∑

i

χi

(x

ε

)

µi(θ), (4.35)

where n⋆⋆ is given in R+, where the index i runs between 1 and I (I ≥ 2

denotes the number of phases), where ci : R → R and µi : R → R are

heat and viscosity coefficients which do not depend on x (and therefore de-

scribe homogeneous phases) and which satisfy respectively (2.11)–(2.12) and

(2.15)–(2.16), where

0 = a0 < a1 < ... < ai−1 < aI = 1 (4.36)
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are given numbers and where χi is the characteristic function of the interval

(ai−1, ai) extended by periodicity to R, i.e.

χi(x) =







1 if k + ai−1 < x < k + ai for some k ∈ Z,

0 otherwise.
(4.37)

We set

pi = ai − ai−1. (4.38)

The number pi describes the volume fraction of the phase i in the material

and satisfies

pi > 0 ∀i,
∑

i

pi = 1.

Observe that

χi

(x

ε

)

⇀ pi in L∞(Ω) weak-star. (4.39)

We finally assume that

θ0(x) = θ⋆⋆ in Ω, (4.40)

where θ⋆⋆ is given in R.

Hypotheses (2.9)–(2.22) are then satisfied, and the present setting is a

particular case of Proposition 4.1. In this setting, the function Ẑε defined by

(4.7) is given by

Ẑε(x, s) =
∑

i

χi

(x

ε

)

∫ s

θ⋆⋆

ci(s
′) (µi(s

′))
1

n⋆⋆ ds′ =
∑

i

χi

(x

ε

)

N̂i(s), (4.41)

where N̂i : R → R is the function defined by

N̂i(s) =

∫ s

θ⋆⋆

ci(s
′) (µi(s

′))
1

n⋆⋆ ds′. (4.42)

Therefore the reciprocal function (Ẑε)−1(x, r) is defined by

(Ẑε)−1(x, r) =
∑

i

χi

(x

ε

)

(N̂i)
−1(r), (4.43)
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where (N̂i)
−1 : R → R is the reciprocal function of the function N̂i.

In view of (4.39) the function (Ẑ0)−1(x, r) = Ŷ 0(x, r) (which is defined

by (4.17) and (4.22)) does not depend on x and one has

(Ẑ0)−1(r) = Ŷ 0(r), (4.44)

where

Ŷ 0(r) =
∑

i

pi (N̂i)
−1(r). (4.45)

Similarly, the homogenized viscosity coefficient µ0(x, s), which is defined

by (4.14), (4.18) and (4.24), does not depend on x : indeed, since the function

ζε(x, r) defined by (4.14) is given here by

ζε(x, r) =
1

(µε(x, (Ẑε)−1(x, r)))
1

n⋆(x)

=
∑

i

χi

(x

ε

)

(µi((N̂i)−1(r)))
1

n⋆⋆

, (4.46)

we deduce from (4.18), (4.22), (4.24), (4.39) and (4.46) that

1

(µ0(Ŷ 0(r)))
1

n⋆⋆

=
∑

i

pi

(µi((N̂i)−1(r)))
1

n⋆⋆

. (4.47)

Finally, we use formula (4.32) to compute the homogenized heat coeffi-

cient c0. Since Ŷ 0(x, r) and µ0(x, s) do not depend on x, the homogenized

heat coefficient is independent on x and formula (4.32) combined with (4.45)

and (4.47) yields

c0(Ŷ 0(r)) =

∑

i

pi

(µi((N̂i)−1(r)))
1

n⋆⋆

∑

i

pi
∂(N̂i)

−1

∂r
(r)

. (4.48)

In the special setting of this Remark, which is concerned with periodic

heterogeneous thermoviscous materials made of thin layers of homogeneous
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phases, equations (4.47) and (4.48) combined with (4.45) and (4.42) provide

explicit formulas for the homogenized viscosity coefficient µ0(x, θ) and for

the homogenized heat coefficient c0(x, θ).

Remark 4.4 The case of power laws for a multiphase thermoviscous hetero-

geneous material made of periodic layers

Let us complete the previous Remark by an explicit example.

In the setting of Remark 4.3, consider the case where the thermoviscous

material is made of periodic layers of I phases with volume fractions pi,

which are characterized by heat coefficients ci(s) and by viscosity coefficients

µi(s) which satisfy hypotheses (2.11)–(2.12) and (2.15)–(2.16) respectively,

and which are given by power laws in some interval A ≤ s ≤ B of R+, i.e.

which satisfy

ci(s) = Ki s
ξi , ∀s with A ≤ s ≤ B, (4.49)

µi(s) = Mi s
λi , ∀s with A ≤ s ≤ B, (4.50)

where Ki and Mi are given in R+, where ξi and λi are given in R and where

A and B are given with 0 < A < B < +∞. Note that heat and viscosity

coefficients defined by power laws on the whole of R or even of R+ would

satisfy neither hypotheses (2.11)–(2.12) nor hypotheses (2.15)–(2.16); this is

the reason why we assume that the heat and viscosity coefficients ci(s) and

µi(s) of the phases are given by power laws only in the interval A ≤ s ≤ B.

On the other hand, since we can have A = δ and B = 1/δ with δ > 0 small,

the heat and viscosity coefficients can be defined as power laws on a very

large part of R+.

We will assume that the powers ξi, λi and the initial temperature θ⋆⋆

satisfy

(1 + ξi)n
⋆⋆ + λi 6= 0, (4.51)
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θ⋆⋆ ≤ A. (4.52)

These two hypotheses are only technical. Note that in (4.49) and (4.50) the

power laws could be replaced by exponential or logarithmic laws. Let us

emphasize that the powers ξi and λi are assumed to be neither positive nor

negative. This allows us to consider both softening and hardening processes,

as well as problems with softening and hardening processes competing each

other.

In this example the function N̂i(s) defined by (4.42) is given by

N̂i(s) = ĝi s
(1+ξi) n⋆⋆+λi

n⋆⋆ − K̂i, ∀s with A ≤ s ≤ B, (4.53)

(in the case where hypothesis (4.51) does not hold true, the power (1+ξi) n⋆⋆+λi

n⋆⋆

has to be replaced by a logarithm), where the constants ĝi and K̂i are given

by

ĝi =
n⋆⋆

(1 + ξi)n⋆⋆ + λi
KiM

1
n⋆⋆

i , (4.54)

K̂i = ĝiA
(1+ξi) n⋆⋆+λi

n⋆⋆ −

∫ A

θ⋆⋆

ci(s
′) (µi(s

′))
1

n⋆⋆ ds′. (4.55)

Note that

K̂i = ĝiA
(1+ξi) n⋆⋆+λi

n⋆⋆ when A = θ⋆⋆.

The reciprocal function (N̂i)
−1(r) therefore satisfies

(N̂i)
−1(r) =

(

1

ĝi

(r + K̂i)

)
n⋆⋆

(1+ξi) n⋆⋆+λi

,

∀r with N̂i(A) ≤ r ≤ N̂i(B).

(4.56)

Since the function N̂i(s) is strictly increasing and since N̂i(θ
⋆⋆) = 0,

hypothesis (4.52) implies that 0 < N̂i(A) < N̂i(B) < +∞. We will moreover

assume that there exist C and D such that

min
i

N̂i(A) ≤ C < D ≤ max
i

N̂i(B). (4.57)
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Then on the interval C ≤ r ≤ D, the function Ŷ 0(r) defined by (4.45) is

given by

Ŷ 0(r) =
∑

i

pi

(

1

gi
(r + K̂i)

)
n⋆⋆

(1+ξi) n⋆⋆+λi

, ∀r with C ≤ r ≤ D, (4.58)

and formula (4.47) which defines the homogenized viscosity coefficient µ0

reads as

1

(µ0(Ŷ 0(r)))
1

n⋆⋆

=
∑

i

pi

M
1

n⋆⋆

i

(

1

ĝi
(r + K̂i)

)

λi
(1+ξi) n⋆⋆+λi

,

∀r with C ≤ r ≤ D.

(4.59)

Similarly, using (4.59) and the definition (4.56) of (N̂i)
−1(r), which implies

that

∂(N̂i)
−1

∂r
(r) =

n⋆⋆

(1 + ξi)n⋆⋆ + λi

1

ĝi

(

1

ĝi
(r + K̂i)

)

−
ξi n⋆⋆+λi

(1+ξi) n⋆⋆+λi

,

∀r with N̂i(A) ≤ r ≤ N̂i(B),

formula (4.48) which defines the homogenized heat coefficient c0 reads as

c0(Ŷ 0(r)) =

∑

i

pi

M
1

n⋆⋆

i

(

1

ĝi
(r + K̂i)

)

λi
(1+ξi) n⋆⋆+λi

∑

i

pi
n⋆⋆

(1 + ξi)n⋆⋆ + λi

1

ĝi

(

1

ĝi

(r + K̂i)

)

−
ξi n⋆⋆+λi

(1+ξi) n⋆⋆+λi

,

∀r with C ≤ r ≤ D.

(4.60)

Formulas (4.59) and (4.60) combined with (4.58) explicitly give the values

of the homogenized viscosity and heat coefficients µ0(s) and c0(s) in the

interval Ŷ 0(C) ≤ s ≤ Ŷ 0(D). Observe that these homogenized coefficient
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are no more given by power laws in this interval, which covers a very large

part of R+ when A = δ and B = 1/δ with δ > 0 small and when θ⋆⋆ is close

to zero. Therefore power laws are not SbH.

5 Problem (2.1)–(2.8) is SbH for a general

viscosity coefficient ψε(x, γ, θ) when σ⋆(t, x)

does not depend on t (general thermovis-

coplastic case with steady stress)

Recall that by (2.23) one has

σε = σ⋆ in Q,

where σ⋆ is given by (2.27). In the special case where σ⋆ does not depend on

the time, i.e. when

σ⋆(t, x) = σ⋆⋆(x), (5.1)

for some σ⋆⋆ , equation (2.3) on θε reads as

cε(x, θε)
∂θε

∂t
= σ⋆⋆(x)

∂γε

∂t
in Q. (5.2)

Note that σ⋆⋆ ∈ L∞(Ω) in view of (2.9), (2.21), (2.27) and (5.1), and that

condition (5.1) is in particular satisfied when the boundary shearing σa and

the body force g do not depend on time.

Defining the function Cε : Ω ×R → R by

Cε(x, s) =

∫ s

θ0(x)

cε(x, s′) ds′ in Ω × R, (5.3)

equation (5.2) is equivalent to

Cε(x, θε(t, x)) = σ⋆⋆(x)(γε(t, x) − γ0(x)), (5.4)
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when (5.1) holds true.

If we moreover assume that σ⋆⋆(x) is bounded away from zero, i.e. that

|σ⋆⋆(x)| ≥ α̂ a.e. x ∈ Ω, (5.5)

for some α̂ > 0, (5.4) is equivalent to

γε(t, x) =
Cε(x, θε(t, x))

σ⋆⋆(x)
+ γ0(x), (5.6)

i.e. the strain γε is an explicit function of the temperature θε. Therefore, in

the special case where (5.1) and (5.5) hold true, the general setting where

the viscosity coefficient ψε(x, γ, θ) depends on both γ and θ can be reduced

to the special case where the viscosity coefficient ψε depends only on θ by

eliminating γ in function of θ by the formula

γ =
Cε(x, θ)

σ⋆⋆(x)
+ γ0(x), (5.7)

(see (5.6)) and by defining a function µε(x, θ) by

µε(x, θ) = ψε(x,
Cε(x, θ)

σ⋆⋆(x)
+ γ0(x), θ). (5.8)

The following result is then an immediate consequence of Proposition 4.1.

Proposition 5.1 Assume that hypotheses (2.9)–(2.22) hold true and more-

over that (see (2.27) for the definition of σ⋆)

σ⋆(t, x) = σ⋆⋆(x), (5.9)

nε(x) = n⋆(x), (5.10)

for some σ⋆⋆(x) ∈ L∞(Ω) which satisfies (5.5) and for some given n⋆(x).

Then the viscosity function ψε(x, γ, θ) can be written as a viscosity function
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µε(x, θ) which is independent of γ (see ((5.8))), problem (2.1)–(2.8) is SbH

and one has

n0(x) = n⋆(x), (5.11)

ψ0(x, γ, θ) = µ0(x, θ), (5.12)

where the homogenized heat coefficient c0(x, θ) and the homogenized viscosity

coefficient µ0(x, θ) depend only on the sequences cε(x, θ) and ψε(x, γ, θ), on

the strain-rate sensitivity n⋆(x), on the initial temperature and strain θ0(x)

and γ0(x) and on the function σ⋆(x), which itself depends on the boundary

shearing σa(t) and on the body force g(t, x). The homogenized coefficients

c0(x, θ) and µ0(x, θ) are given by the formulas summarized in Remark 4.2

for the viscosity coefficients µε(x, θ) defined by formula (5.8).

Remark 5.2 In the context of Proposition 5.1, the homogenized viscosity

coefficient µ0(x, θ) can not in general be expressed as a function ψ0(x, γ, θ)

involving γ

The homogenized viscosity coefficient ψ0 obtained in Proposition 5.1 is of

the form µ0(x, θ), and therefore only depends on θ. It is in general impossible

to express this homogenized coefficient µ0(x, θ) as an equivalent function

ψ0(x, γ, θ) depending on both θ and γ. Indeed, it is in general impossible

to pass to the limit in formula (5.4) (or in one of its equivalent possible

forms) since θε (as well as γε) only weakly converges (at least as far as x

is concerned). Therefore in contrast with the case described in Remark 5.4

below, there is in general no explicit relation between θ0 and γ0 available in

the context of Proposition 5.1.

In formula (5.8), we eliminated γ in function of θ in ψε(x, γ, θ). But

since the function s ∈ R → Cε(x, s) ∈ R is one-to-one, one can equivalently
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rewrite equation (5.4) as

θε(t, x) = (Cε)−1(x, σ⋆⋆(x) (γε(t, x) − γ0(x))). (5.13)

One then defines from the viscosity coefficient ψε(x, γ, θ) a viscosity coeffi-

cient νε(x, γ) which does not depend on θ by eliminating θ in function of γ

by the formula

θ = (Cε)−1(x, σ⋆⋆(x) (γ − γ0(x))), (5.14)

(see (5.13)) and by defining νε(x, γ) by

νε(x, γ) = ψε(x, γ, (Cε)−1(x, σ⋆⋆(x) (γ − γ0(x)))). (5.15)

It is not necessary to assume that (5.5) holds true to obtain (5.15). We

nevertheless prefer to eliminate γ in function of θ, obtaining (5.8), and not θ

in function of γ, obtaining (5.15), because the hypotheses of Proposition 3.1

impose to the heat coefficient to satisfy cε(x, θ) = c⋆(x) (hypothesis (3.2)), a

restriction which has not to be made when the viscosity coefficient is of the

form µε(x, θ).

When the restriction cε(x, θ) = c⋆(x) is enforced, then Cε(x, s) defined

by (5.3) becomes

Cε(x, s) = c⋆(x)(s− θ0(x)), (5.16)

and equation (5.2) reads as

c⋆(x)(θε(t, x) − θ0(x)) = σ⋆⋆(x)(γε(t, x) − γ0(x)). (5.17)

Then (5.14) reads as

θ =
σ⋆⋆(x)

c⋆(x)
(γ − γ0(x)) + θ0(x),

and νε(x, γ) defined by (5.15) becomes

νε(x, γ) = ψε(x, γ,
σ⋆⋆(x)

c⋆(x)
(γ − γ0(x)) + θ0(x)). (5.18)
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The fact that the restriction cε(x, θ) = c⋆(x) has to be made in the case

where the temperature θ is eliminated in function of the strain γ suggests

that in mechanics it is not always suitable to consider the temperature as

a hidden variable, because of the loss of information on the temperature

dependent coefficients cε(x, θ) and c0(x, θ).

The following result is then an immediate consequence of Proposition 3.1.

Proposition 5.3 Assume that hypotheses (2.9)–(2.22) hold true and more-

over that (see (2.27) for the definition of σ⋆)

σ⋆(t, x) = σ⋆⋆(x), (5.19)

nε(x) = n⋆(x), (5.20)

cε(x, θ) = c⋆(x), (5.21)

for some σ⋆⋆(x) ∈ L∞(Ω) and for some given n⋆(x), c⋆(x). Then the viscosity

function ψε(x, γ, θ) can be written as a viscosity function νε(x, γ) which is

independent of θ (see (5.18)), problem (2.1)–(2.8) is SbH and one has

n0(x) = n⋆(x), (5.22)

c0(x, θ) = c⋆(x), (5.23)

ψ0(x, γ, θ) = ν0(x, γ), (5.24)

where the homogenized viscosity coefficient ν0(x, γ) depends only on the se-

quence ψε(x, γ, θ), on the heat coefficient c⋆(x), on the strain-rate sensitivity

n⋆(x), on the initial temperature and strain θ0(x) and γ0(x) and on the func-

tion σ⋆⋆(x), which itself depends on the boundary shearing σa(t) and on the

body force g(t, x). The homogenized coefficient ν0(x, γ) is given by the for-

mula summarized in Remark 3.2 above for the viscosity coefficients νε(x, γ)

defined by formula (5.18).
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Remark 5.4 In the context of Proposition 5.3, the homogenized viscosity

coefficient ν0(x, γ) can equivalently be expressed as a function µ0(x, θ)

In the special case of Proposition 5.3, relation (5.17) is affine in θε and

γε with coefficients which do not depend on ε. Therefore we can pass to the

limit in (5.17). This gives

c⋆(x)(θ0(t, x) − θ0(x)) = σ⋆⋆(x)(γ0(t, x) − γ0(x)),

which yields, when σ⋆⋆ satisfies (5.5),

γ0(t, x) =
c⋆(x)

σ⋆⋆(x)
(θ0(t, x) − θ0(x)) + γ0(x). (5.25)

Eliminating γ in function of θ by the formula

γ =
c⋆(x)

σ⋆⋆(x)
(θ − θ0(x)) + γ0(x), (5.26)

one can then express the homogenized coefficient ν0(x, γ) as a function µ0(x, θ)

by setting

µ0(x, θ) = ν0(x,
c⋆(x)

σ⋆⋆(x)
(θ − θ0(x)) + γ0(x)).

In the case where the formula given in Remark 3.2 for ν0(x, γ) is ex-

plicit, one can also partially replace γ by the affine function of θ defined by

(5.26) in the explicit formula for ν0(x, γ), obtaining an homogenized viscosity

coefficient ψ0(x, γ, θ). Nevertheless this process is in some sense artificial.

Remark 5.5 The case where σ⋆ depends on the time

In order to reduce the general problem to the special case where the

viscosity coefficient ψε(x, γ, θ) is of the form µε(x, θ) (or of the form νε(x, γ)),

we have assumed that σ⋆ does not depend on t (hypothesis (5.1)). If we do
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not make this hypothesis, but assume that σ⋆ now depends on t and is smooth

(say σ⋆ ∈ C1(Q)), equation (2.3), combined with (2.2) and (2.33), reads as

cε(x, θε)
∂θε

∂t
= σ⋆(t, x)

∂γε

∂t
=
∂(σ⋆(t, x) γε)

∂t
−
∂σ⋆

∂t
(t, x) γε in Q,

which combined with the initial conditions (2.5) and (2.6) and with the def-

inition (5.3) of Cε yields

Cε(x, θε(t, x)) = σ⋆(t, x) γε(t, x) − σ⋆(0, x) γ0(x) −

∫ t

0

∂σ⋆

∂t
(t′, x) γε(t′, x) dt′,

which is equivalent to

θε(t, x)) = (Cε)−1(x, σ⋆(t, x) γε(t, x) − σ⋆(0, x) γ0(x)−

−

∫ t

0

∂σ⋆

∂t
(t′, x) γε(t′, x) dt′).

(5.27)

Formula (5.27) allows one to eliminate θ in function of γ in the viscosity

coefficient ψε(x, γ, θ) by defining a viscosity coefficient ϕε by

ϕε(x, [γ](t, x)) =

= ψε(x, γ(t, x), (Cε)−1(x, σ⋆(t, x) γ(t, x) − σ⋆(0, x) γ0(x)−

−

∫ t

0

∂σ⋆

∂t
(t′, x) γ(t′, x) dt′)).

(5.28)

Observe however that formula (5.28) does not define the function ϕε from

the pointwise value γ(t, x) of γ at the point (t, x) but from all the values of

γ(t′, x) for t′ in the interval 0 < t′ < t, or more exactly from the values γ(t, x)

and

∫ t

0

∂σ⋆

∂t
(t′, x) γ(t′, x) dt′ ; this is the reason why we wrote ϕε(x, [γ](t, x))

and not ϕε(x, γ(t, x)) in the definition (5.28).

There is therefore a striking difference between the case where σ⋆ does

not depend on t (in this case one can write ψε(x, γ, θ) as a coefficient µε(x, θ)
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defined by (5.8) or a coefficient νε(x, γ) defined by (5.15)), and the case where

σ⋆ depends on t (in this case, a memory effect appears in the coefficient

ηε(x, [γ](t, x)) defined by (5.28)).

Remark 5.6 The case of a multiphase general thermoviscoplastic heteroge-

neous material made of periodic homogeneous layers when σ⋆ is steady

In this Remark we consider the special case of Proposition 5.1 where the

heterogeneous thermoviscoplastic material is made of periodic thin layers (of

thickness of order ε) of homogeneous phases.

In other words, we consider here the case where (part of the notation in

this Remark is the same as the notation in Remarks 3.3 and 4.3)

n⋆(x) = n⋆⋆, (5.29)

cε(x, θ) =
∑

i

χi

(x

ε

)

ci(θ), (5.30)

ψε(x, γ, θ) =
∑

i

χi

(x

ε

)

ψi(γ, θ), (5.31)

where n⋆⋆ is given in R+, where the index i runs between 1 and I (I ≥ 2

denotes the number of phases), where ci : R → R and ψi : R → R are

heat and viscosity coefficients which do not depend on x (and therefore de-

scribe homogeneous phases) and which satisfy respectively (2.11)–(2.12) and

(2.14)–(2.16), where

0 = a0 < a1 < ... < ai−1 < aI = 1 (5.32)

are given numbers and where χi is the characteristic function of the interval

(ai−1, ai) extended by periodicity to R, i.e.

χi(x) =







1 if k + ai−1 < x < k + ai for some k ∈ Z,

0 otherwise.
(5.33)
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We set

pi = ai − ai−1. (5.34)

The number pi describes the volume fraction of the phase i in the material

and satisfies

pi > 0 ∀i,
∑

i

pi = 1.

Observe that

χi

(x

ε

)

⇀ pi in L∞(Ω) weak-star. (5.35)

We finally assume that

γ0(x) = γ⋆⋆ in Ω, (5.36)

θ0(x) = θ⋆⋆ in Ω, (5.37)

where γ⋆⋆ and θ⋆⋆ are given in R.

In this setting the function Cε defined by (5.3) is given by

Cε(x, s) =
∑

i

χi(
x

ε
)Ci(s), (5.38)

where Ci : R → R is the function defined by

Ci(s) =

∫ s

θ⋆⋆

ci(s
′)ds′, (5.39)

and the viscosity coefficient µε(x, s) defined by (5.8) is given by

µε(x, s) =
∑

i

χi(
x

ε
)µi(x, s), (5.40)

where µi : Ω ×R → R is the function defined by

µi(x, s) = ψi(
Ci(s)

σ⋆⋆(x)
+ γ⋆⋆, s). (5.41)
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Hypotheses (2.9)–(2.22) are then satisfied, and the present setting is a

particular case of Proposition 4.1. In this setting, the function Ẑε defined by

(4.7) is given by

Ẑε(x, s) =
∑

i

χi

(x

ε

)

Ňi(x, s), (5.42)

where Ňi : Ω × R → R is the function defined by

Ňi(x, s) =

∫ s

θ⋆⋆

ci(s
′) (µi(x, s

′))
1

n⋆⋆ ds′. (5.43)

Therefore the reciprocal function (Ẑε)−1(x, r) is defined by

(Ẑε)−1(x, r) =
∑

i

χi

(x

ε

)

(Ňi)
−1(x, r), (5.44)

where the function r ∈ R → (Ňi)
−1(x, r) ∈ R is the reciprocal function of

the function s ∈ R → Ňi(x, s) ∈ R for x fixed.

In view of (5.35) the function (Ẑ0)−1(x, r) = Ŷ 0(x, r) (which is defined

by (4.17) and (4.22)) is given by

Ŷ 0(x, r) =
∑

i

pi (Ňi)
−1(x, r). (5.45)

Similarly, the function ζε(x, r) defined by (4.14) is given here by

ζε(x, r) =
∑

i

χi

(x

ε

)

(µi((Ňi)−1(x, r)))
1

n⋆⋆

. (5.46)

From (4.18), (4.22), (4.24), (5.35) and (5.46) we deduce that

1

(µ0(Ŷ 0(x, r)))
1

n⋆⋆

=
∑

i

pi

(µi((Ňi)−1(x, r)))
1

n⋆⋆

. (5.47)

Finally, we use formula (4.32) to compute the homogenized heat coeffi-

cient c0(x, s), which, combined with (5.45) and (5.46) yields

c0(Ŷ 0(x, r)) =

∑

i

pi

(µi((Ňi)−1(x, r))
1

n⋆⋆

∑

i

pi
∂(Ňi)

−1

∂r
(x, r)

. (5.48)
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In the special setting of this Remark, which is concerned with periodic

heterogeneous thermoviscoplastic materials made of thin layers of homoge-

neous phases when σ⋆ does not depend on t, equations (5.47) and (5.48)

combined with (5.39), (5.41), (5.43) and (5.45) provide explicit formulas for

the homogenized viscosity coefficient µ0(x, θ) and for the homogenized heat

coefficient c0(x, θ). Remark that, in general, the homogenized viscosity co-

efficient µ0(x, θ) cannot be expressed by an equivalent function ψ0(x, γ, θ)

depending on both γ and θ (see Remark 5.2).

Remark 5.7 The case of power laws for a multiphase thermoviscoplastic

heterogeneous material made of periodic layers: a numerical example

Let us complete the previous Remark by an explicit example.

In the setting of Remark 5.6, consider the case where the thermovisco-

pastic material is made of periodic layers of I phases with volume fractions

pi, which are characterized by heat coefficients ci(θ) and by viscosity co-

efficients ψi(γ, θ) which satisfy hypotheses (2.11)–(2.12) and (2.14)–(2.16)

respectively, and which are given by power laws in the intervals A′ ≤ γ ≤ B′

and A ≤ θ ≤ B, i.e. which satisfy

ci(θ) = Ki θ
ξi , ∀θ with A ≤ θ ≤ B, (5.49)

ψi(γ, θ) = Gi γ
mi θλi , ∀(γ, θ) with A′ ≤ γ ≤ B′, A ≤ θ ≤ B, (5.50)

where Ki and Gi are given in R+, where ξi, mi and λi are given in R and

where A, B, A′ and B′ are given with 0 < A < B < +∞, 0 < A′ <

< B′ < +∞. Note that heat and viscosity coefficients defined by power

laws on the whole of R or even of R+ would satisfy neither hypotheses

(2.11)–(2.12) nor hypotheses (2.14)–(2.16); this is the reason why we assume

that the heat and viscosity coefficients ci(θ) and ψi(γ, θ) of the phases are
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given by power laws only in the intervals A′ ≤ γ ≤ B′, A ≤ θ ≤ B. On

the other hand, since we can have A = δ, B = 1/δ, A′ = δ′, B′ = 1/δ′ with

δ > 0 small and δ′ > 0 small, the heat and viscosity coefficients of the phases

can be defined as power laws on a very large part of R+ and (R+)2. Note

that in (5.49) and (5.50) the power laws could be replaced by exponential or

logarithmic laws.

In this case the constitutive law (2.4) reads as

σ =
∑

i

χi

(x

ε

)

Gi γ
mi θλi

∣

∣

∣

∣

∂v

∂x

∣

∣

∣

∣

n⋆⋆
−1
∂v

∂x
,

when A′ ≤ γ ≤ B′ and A ≤ θ ≤ B.

We will assume that the steady stress σ⋆⋆, the powers ξi, the initial strain

and temperature γ⋆⋆ and θ⋆⋆ and the numbers A, B, A′ and B′ satisfy

σ⋆⋆(x) = σ⋆⋆, σ⋆⋆ ∈ R+ (5.51)

(1 + ξi) > 0, γ⋆⋆ > 0, θ⋆⋆ > 0, (5.52)

A = θ⋆⋆, (5.53)

A′ ≤
Ki

σ⋆⋆(1 + ξi)

(

A1+ξi − (θ⋆⋆)1+ξi
)

+ γ⋆⋆, ∀i, (5.54)

B′ ≥
Ki

σ⋆⋆(1 + ξi)

(

B1+ξi − (θ⋆⋆)1+ξi
)

+ γ⋆⋆, ∀i. (5.55)

In this example, under the above hypotheses, the function Ci(s) defined

by (5.39) is given by

Ci(s) =
Ki

1 + ξi
(s1+ξi − (θ⋆⋆)1+ξi),

the function µi(x, s) defined by (5.41) is given by

µi(x, s) = Gi (
Ki

σ⋆⋆(1 + ξi)
(s1+ξi − (θ⋆⋆)1+ξi) + γ⋆⋆)mi sλi ,
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while the function Ňi(x, s) defined by (5.43) is given by

Ňi(x, s) = KiG
1

n⋆⋆

i

∫ s

θ⋆⋆

(s′)
ξin⋆⋆+λi

n⋆⋆ (
Ki

σ⋆⋆(1 + ξi)
((s′)1+ξi − (θ⋆⋆)1+ξi) + γ⋆⋆)

mi
n⋆⋆ ds′,

for every s with A ≤ s ≤ B. In general the reciprocal function (Ň)−1(x, r)

can not be computed explicitly, but we will obtain it numerically. Such will

be also the case of the homogenized heat and viscosity coefficients c0(x, s)

and µ0(x, s).

More specifically, we consider a thermoviscoplastic material made of two

metallic phases having densities

ρ1 = 7800 Kg/m3, ρ2 = 7900 Kg/m3,

moduli

G1 = 430 MPa, G2 = 450 MPa,

specific heat coefficients

η1 = 500 J/Kg0K, η2 = 550 J/Kg0K,

fraction of plastic work converted into heating

β1 = 0.9, β2 = 0.9.

Therefore ξi = ξ2 = 0 and the heat coefficients take the values

K1 = 4.333333 MN/m2K, K2 = 4.827778 MN/m2K.

The phases are assumed to exhibit thermal softening with powers

λ1 = −0.48, λ2 = −0.51,

strain hardening with powers

m1 = 0.09, m2 = 0.12,
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and common strain-rate sensitivity

n⋆⋆ = 0.016.

Figures 3–8 present numerical results due to George Chatzigeorgiou,

whose collaboration is gratefully acknowledged.

Figures 3 and 4 present the values of the functions (Ň1)
−1 and (Ň2)

−1 of

the two phases for the values 200 MPa, 400 MPa and 800 MPa of the stress

σ⋆⋆. The two figures only differ by the range considered for r. In Figure 3, r

takes its values between 0 and 3e + 088 = 3.1088, while in Figure 4, r takes

its values between 0 and 1e + 084 = 1084 (the values of the variable in the

horizontal axis have to be read according to the rule ke + ℓ = k 10ℓ). For

large values of r, the three curves of (Ň1)
−1 and (Ň2)

−1 seem to coincide

independently of the values of σ⋆⋆ (see Figure 3). In contrast, in Figure 4,

namely at the onset of the deformation, the influence of the value of σ⋆⋆ is

clear at every stage of the deformation process and is much more important

for the material with the larger thermal softening, which exhibits earlier shear

banding (“blow-up” of temperature).

Figures 5 and 6 present the values of the viscosity coefficients µ1 and µ2

of the two phases and of the homogenized viscosity coefficient µ0 for the same

values 200 MPa, 400 MPa and 800 MPa of σ⋆⋆. Here again, the three curves

of µ1, µ2 and µ0 seem to coincide independently of the values of σ⋆⋆ for r

large (see Figure 5), but they clearly differ at the onset of the deformation

(see Figure 6). The weaker material exhibits a clear softening. We see again

the same “attraction” by the worst material, in a ratio 3/1.

Finally Figures 7 and 8 present the constant heat coefficients c1 and c2

of the two phases and the values of the homogenized heat coefficients for the

same values 200 MPa, 400 MPa and 800 MPa of σ⋆⋆. Here again the three
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curves of c0 seem to coincide indenpendtly of the values of σ⋆⋆ for r large

(see Figure 7), but they clearly differ at the onset of the deformation (see

Figure 8). The aforementioned “attraction” by the material with the larger

thermal softening (weaker material) is now much more important, in a ratio

4.5/1.

In conclusion, the above heterogeneous bimetallic material made of two

homogeneous phases with volume fractions
1

2
gives an homogenized behavior

which is just a little better than the weaker of the two phases, almost like a

chain whose strength is equal to the strength of the weaker link. The contri-

bution of the stronger material seems to be less important, probably because

of the fact that, in the one dimensional setting considered in this paper, one

can not “surround” the weak material by the strong one, in contrast with

what can be done in a two or three dimensional setting.
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Figure 1: The hardenings ν1 and ν2 of the phases and the homogenized
hardening ν0 for different values of the initial strain γ⋆⋆ (the curves seem to
coincide for the four values of γ⋆⋆)
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Figure 2: The hardenings ν1 and ν2 of the phases and the homogenized
hardening ν0 for different values of the initial strain γ⋆⋆ at the onset of the
deformation (the curves differ for the four values of γ⋆⋆)
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Figure 3: The functions (Ň1)
−1 and (Ň2)

−1 of the phases for different values
of the steady stress σ⋆⋆ (the curves seem to coincide for the three values of
σ⋆⋆)
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Figure 4: The function (Ň1)
−1 and (Ň2)

−1 of the phases for different values
of the steady stress σ⋆⋆ at the onset of the deformation (the curves differ for
the three values of σ⋆⋆)
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Figure 5: The softenings µ1 and µ2 of the phases and the homogenized
softening µ0 for different values of the steady stress σ⋆⋆ (the curves seem
to coincide for the three values of σ⋆⋆)
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Figure 6: The softenings µ1 and µ2 of the phases and the homogenized
softening µ0 for different values of the steady stress σ⋆⋆ at the onset of the
deformation (the curves differ for the three values of σ⋆⋆)
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Figure 7: The (constant) heat coefficients c1 and c2 of the phases and the
homogenized heat coefficient c0 for different values of the steady stress σ⋆⋆

(the curves seem to coincide for the three values of σ⋆⋆)
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Figure 8: The (constant) heat coefficients c1 and c2 of the phases and the
homogenized heat coefficient c0 for different values of the steady stress σ⋆⋆

at the onset of the deformation (the curves differ for the three values of σ⋆⋆)
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