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Dual Billiards, Fagnano Orbits, and Regular

Polygons.

Serge Troubetzkoy

In this article we consider the dual version of two results on polygonal bil-
liards. We begin by describing these original results. The first result is about
the dynamics of the so-called pedal map related to billiards in a triangle P . The
three altitudes of P intersect the opposite sides (or their extensions) in three
points called the feet. These three points form the vertices of a new triangle
Q called the pedal triangle of the triangle P (Figure 1). It is well known that
for acute triangles the pedal triangle forms a period-three billiard orbit often
referred to as the Fagnano orbit, i.e., the polygon Q is inscribed in P and sat-
isfies the usual law of geometric optics (the angle of incidence equals the angle
of reflection) or equivalently (this is a theorem) the pedal triangle has least
perimeter among all inscribed triangles. The name Fagnano is used since in
1775 J. F. F. Fagnano gave the first proof of the variational characterization.
In a sequence of elegant and entertaining articles, J. Kingston and J. Synge
[5], P. Lax [6], P. Ungar [11], and J. Alexander [1] studied the dynamics of the
pedal map given by iterating this process. The second result, due to DeTemple
and Robertson [3], is that a closed convex polygon P is regular if and only if P
contains a periodic billiard path Q similar to P .

There is a dual notion to billiards, called dual or outer billiards. The game of
dual billiards is played outside the billiard table. Suppose the table is a polygon
P and that z is a point outside P and not on the continuation of any of P ’s

Figure 1: A pedal triangle.
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Figure 2: The polygonal dual billiard map.

sides. A line L is a support line of P if it intersects the boundary ∂P of P and
P lies entirely in one of the two regions into which the line L divides the plane.
There are two support lines to P through z; choose the right one as viewed from
z. If z is not on the continuation of a side of the convex hull of P then this
support line intersects P at a single point which we call the support vertex of z.
Reflect z in its support vertex to obtain z’s image under the dual billiard map
denoted by T (see Figure 2). The map T n is defined for all n at the point z if
none of its images belongs to the continuation of a side of the convex hull of the
polygon. Dual billiards have been extensively studied by S. Tabachnikov (see
[7]–[10] and the reference therein).

Throughout the article we will identify the polygon having vertices zi ∈ C,
i = 1, . . . , n, ordered cyclically with the point z = (z1, . . . , zn) ∈ Cn. In par-
ticular a polygon for us is an oriented object. The notion of polygon includes
self-intersecting polygons (which we call star shaped polygons) and geometri-
cally degenerate n-gons: those with a side of length 0, or an angle of π or 2π at a
vertex. Corresponding to the fact that the Fagnano billiard orbit hits each side
of the triangle, we call an n-periodic dual billiard orbit consisting of n points
consecutively reflected in the vertices z1, z2, . . . , zn a Fagnano dual billiard orbit.
Fagnano orbits for dual billiards were introduce by Tabachnikov in [8], where he
studied a certain variational property analogous to one in the pedal case studied
by Gutkin [4].

Motivated by the notion of pedal triangles, we introduce here dedal n-gons.
An n-gon Q is called a dedal n-gon of the n-gon P if reflecting the vertex wi

of Q in the vertex zi of P yields the vertex wi+1. (Throughout the article
all subscripts will be taken modulo n without explicit mention.) There is no
requirement that the sides of Q touch P only at a vertex. From the definition
it is clear that if a Fagnano orbit of an n-gon P exists then it is a dedal n-gon.
A nondegenerate polygon can have a degenerate dedal polygon and vice-versa.
Examples are shown in Figures 3 and 4. The degeneracy not shown cannot
occur: i.e., it is impossible for two consecutive vertices of P to coincide if Q is
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Figure 3: Nondegenerate dedal pentagons corresponding to degenerate pen-
tagons, with angle π and 2π.
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Figure 4: Degenerate dedal polygons: loss of a vertex, angle π, and angle 2π.

nondegenerate. We will not dwell on this aspect.
In this article we study the dedal n-gon(s) Q of an n-gon P . Our main

results are the following. If n is odd then its dedal n-gon exists and is unique.
For n even we give a necessary and sufficient condition for the existence of
dedal n-gons and describe the space of all dedal n-gons of P . Then we go on
to characterize regular and affinely regular n-gons by similarity to their dedal
n-gons. Finally we give a complete description of the dynamics of the developing
map µ(Q) := P . The proofs of all our results boil down to some linear algebra
of the dedal map.

After we wrote this article one of the anonymous referees pointed out that
iteration of the developing map has already been studied by Berlekamp, Gilbert,
and Sinden in 1965 [2]. They answer a question they attribute to G. R. MacLane,
namely, they prove that for almost every polygon Q there exists an M ≥ 1 such
that µM (Q) is convex. Note that the image of a convex polygon is convex;
thus this implies that for almost every Q there exists an M such that µm(Q) is
convex for all m ≥ M .
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Suppose Q(w1, . . . , wn) is a dedal polygon of P (z1, . . . , zn). The definition
implies that

zi = (wi + wi+1)/2

(see Figures 3, 4, and 5). The linear transformation µ : Cn → Cn given by
µ(w1, . . . , wn) = (z1, . . . , zn) is called the developing map.

The characteristic polynomial of µ is

(1 − 2x)n − (−1)n.

Its eigenvalues are (1 + qi)/2 for i = 0, 1, . . . , n − 1, where q := exp(2πi/n).
All the eigenvalues differ from zero except for the (n/2)th eigenvalue when n is
even. The ith eigenvector is Xi := (1, qi, q2i, . . . , q(n−1)i). The vectors Xi form
a basis of our space of polygons. If i divides n then Xi is a polygon with n/i
sides. Nonetheless for the sake of clarity (avoiding stating special cases) we will
think of this as an n-gon which is traced i times; for example if n = 6 then
X2 = (1, q2, q4, q6, q8, q10) = (1, q2, q4, 1, q2, q4) traces the triangle (1, q2, q4)
twice. An exception to this rule is the case n even and i = n/2. In this case
Xn/2 is a segment which we do not consider as a polygon.

The following proposition clarifies the existence of dedal polygons.

Proposition 1 a) Suppose that n ≥ 3 is odd. Then for any n-gon P there is a
unique dedal n-gon Q.
b) If n ≥ 3 is even then dedal n-gons exist if and only if the vertices of P
satisfy z1 − z2 + z3 − · · · − zn = 0. If this equation is satisfied then there is a
unique dedal n-gon Q0 in the space X⊥

n/2 := {z ∈ Cn : z · Xn/2 = 0}. The set

D := {Q0 + sXn/2 : s ∈ C} consists of the dedal n-gons of P . In particular for
each i ∈ {1, . . . , n} every point w ∈ C is the ith vertex of a unique dedal n-gon
Qi(w).

We remark that the condition z1−z2+z3−· · ·−zn = 0 means that the center of
mass of the even vertices coincides with the center of mass of the odd vertices.
Proof of Proposition 1. If n ≥ 3 is odd then the map µ is invertible with

wi = zi − zi+1 + zi+2 − · · · + zi−1,

and thus the dedal polygon exists and is unique.
On the other hand, if n ≥ 3 is even then the map µ is not invertible. The

kernel is one (complex) dimensional and is generated by the vector Xn/2 :=
(1,−1, 1,−1, . . . , 1,−1). Dedal polygons exist if and only if z = (z1, z2, . . . , zn)
is in the range of µ, i.e., the space spanned by the Xi for i 6= n/2. The range
and kernel of µ are orthogonal since if i 6= n/2 then

Xi ·Xn/2 = (1+ q2i + q4i + · · ·+ q(n−2)i)− (qi + q3i + · · ·+ q(n−1)i) = 0− 0 = 0.

Thus z is in the range of µ if and only if it satisfies z ·Xn/2 = 0, or equivalently

z1 − z2 + z3 − · · · − zn = 0. (1)
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Figure 5: A pentagon without a Fagnano orbit. The unique dedal pentagon is
pictured.

Alternatively, to see this note that

z1 + z3 + · · · + zn−1 = 1
2 ((w1 + w2) + (w3 + w4) + · · · + (wn−1 + wn))

= 1
2 ((w2 + w3) + (w4 + w5) + · · · + (wn + w1)) = z2 + z4 + · · · + zn.

The uniqueness of Q0 follows since the map µ is invertible on the space X⊥
n/2.

The statement about the set D follows immediately since Xn/2 is the kernel
of µ. Let Q0 := (w0

1 , . . . , w0
n). For each i, any point w ∈ C can be uniquely

expressed as w0
i + s for some s ∈ C. �

Suppose that a polygon Q without self intersection is a dedal polygon of P . If
Q is convex then it is clearly a Fagnano orbit of P since by convexity the polygon
P must be contained in Q. On the other hand if Q is not convex then it cannot be
a Fagnano orbit since P cannot be contained in Q. In particular Fagnano orbits
always exist for triangles, but not for polygons with more sides. An example
of a pentagon without a Fagnano orbit is given in Figure 5. Although not
every polygon has a Fagnano orbit, it does have a periodic orbit that is nearly
as simple. Namely, consider the second iteration T 2 of the dual billiard map.
Connecting the consecutive points of a periodic orbit of T 2 yields a polygon.
Cutler has shown that the map T 2 has a periodic orbit which lies outside any
compact neighborhood of P and the polygon constructed from the orbit makes
a single turn about P [9]. The existence of a periodic orbit for the usual billiard
in an arbitrary polygon remains open.

The set of polygons with center of mass at the origin is

C := {(w1, . . . , wn) ∈ C
n : w1 + · · · + wn = 0}.

The eigenvector X0 = (1, 1, . . . , 1) represents a polygon which degenerates to
a point. The set C is the orthogonal complement of X0, i.e., C = {w =
(w1, . . . , wn) ∈ Cn : w · X0 = 0}. We will express polygons in the eigenba-

sis, i.e., we write P =
∑n−1

i=0 aiXi; the coefficients ai are complex numbers.
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(a) (b) (c)

Figure 6: Up to orientation there are three regular 7-gons.

Since the map µ preserves the center of mass, throughout the rest of the article
we assume that the center of mass is at the origin, i.e., a0 = 0.

X1 and Xn−1 are the usual regular n-gon in counterclockwise and clockwise
orientation (Figure 6a). If i and n are relatively prime and i 6∈ {1, n−1} then Xi

is star shaped and we also call it regular (Figures 6b and c). Finally if i divides
n and i 6= n/2 then Xi is naturally a regular n/i-gon which, as mentioned above,
we will think of as (a multiple cover of) a regular n-gon.

Two (unoriented) polygons are called similar if all corresponding angles are
equal and all distances are increased (or decreased) in the same ratio. Since
we study oriented ordered polygons we additionally want the marking of the
vertices of P and Q to correspond, in which case we will call P and Q ⋆-similar.
Thus two polygons P =

∑n−1
i=1 biXi and Q =

∑n−1
i=1 aiXi are ⋆-similar if there

exists a nonzero complex constant ℓ such that bi = ℓ ai for all i. We will
also write this as P = ℓ Q. Note that if P and Q are ⋆-similar then they are
similar. On the other hand if P and Q are similar then P is ⋆-similar to a cyclic
permutation Q(k) := (wk, wk+1, wk+2, . . . , wk−1) of Q or a cyclic permutation
Q̄(k) := (wk, wk−1, wk−2, . . . , wk+1) of Q with the opposite orientation.

In analogy to DeTemple and Robertson’s result we have:

Theorem 2 Fix n ≥ 3. An n-gon P is regular if and only if it has a dedal
polygon Q which is ⋆-similar to P .

Note that if n is odd then Q is the unique dedal polygon of P , while if n is even
then Q is the unique dedal polygon Q0 ∈ X⊥

n/2.
Proof. Suppose P is regular, i.e., there is a nonzero complex constant ℓ such
that P = ℓ Xj, where j 6= n/2 if n is even. If n is odd then let Q be the
unique dedal polygon of P . If n is even then since P is regular it satisfies (1).
Thus P has dedal polygons and we choose Q = Q0 ∈ X⊥

n/2. In both cases let

Q =
∑

aiXi. Since P = µ(Q) =
∑ 1+qi

2 aiXi, we have ai = 0 for i 6= j, i.e.,
Q = ajXj . Thus Q is ⋆-similar to P = ℓ Xj.

Conversely suppose that Q =
∑

aiXi is a dedal polygon of P =
∑

biXi and
that P and Q are ⋆-similar, i.e., there is a nonzero complex constant ℓ such that

ai = ℓ bi. Since P = µ(Q) we have 1+qi

2 ai = bi for i = 1, . . . , n. Combining this
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with the ⋆-similarity yields 1+qi

2 = 1/ℓ (a constant) for each i such that ai 6= 0.
It follows qi = qj if ai 6= 0 and aj 6= 0. Since qi 6= qj for i 6= j it follows that
only a single aj is nonnull. Therefore Q = ajXj and thus P = ℓ−1 ajXj , and
both are regular. Note that if n is even then i 6= n/2, since if i = n/2 then
(1 + qi)/2 = 0 and thus bi = ai = 0. �

Of course we would like to have the analog of Theorem 2 with the usual
notion of similarity. We call an n-gon affinely regular if there exists a j (j 6=
n/2 when n is even) such that P is in the subspace Aj generated by Xj and
Xn−j. This is equivalent to P being the image of a regular n-gon by an affine
transformation, which explains the name.

Theorem 3 a) Suppose n ≥ 3 is odd. An n-gon P is affinely regular if and
only if it has a dedal polygon Q which is similar to P .
b) If n ≥ 4 is even then an n-gon P appears in the following list of affinely
regular polygons if and only if it has a dedal polygon Q which is similar to P .

i) Regular n-gons

ii) Any P ∈ Aj such that there exists k ∈ {1, , . . . , n} \ {n/2} such
that n divides j(2k − 1)

iii) Any P = bjXj + bn−jXn−j ∈ Aj such that there exists k ∈
{1, . . . , n} with bj/bn−j = ±qj(k+3/2)

All triangles are affinely regular. Berlekamp et al. noticed that every triangle
is similar to its dedal triangle [2]. One would like to know if there are other
special properties of the polygons in the list.
Proof. Suppose Q(1) = Q =

∑n−1
i=1 aiXi. Then it is a simple exercise in linear

algebra to verify that Q(k) =
∑

aiq
i(k−1)Xi and that Q̄(k) =

∑

an−iq
i(k+1)Xi.

Thus the similarity of P to Q is equivalent to the existence of a k ∈ {1, . . . , n}
and a nonzero complex constant ℓ such that bi = ℓ aiq

i(k−1) for i = 1, . . . , n− 1
or bi = ℓ an−iq

i(k+1) for i = 1, . . . , n − 1.
The structure of the proof is as follows. We group the even and odd cases

together and start by proving that the various classes of affinely regular polygons
are similar to their dedal polygons. Then we turn to the converse.

Suppose that n is odd and P = bjXj + bn−jXn−j is affinely regular. Let
Q = Q(1) =

∑

aiXi be the unique dedal polygon of P . Since P = µ(Q) =
∑ 1+qi

2 aiXi, we have ai = 0 for i 6∈ {j, n− j}. We claim that there is a nonzero

complex constant ℓ such that P = ℓ Q((n+3)/2). To see this note that

1 + qj = qj(1 + q−j) = qj(n+1)(1 + q−j) = qj(n+1)/2qj(n+1)/2(1 + q−j)

or
1 + qj

2qj(n+1)/2
=

1 + q−j

2q−j(n+1)/2
.

Thus P = ℓ Q((n+3)/2) for ℓ := (1 + qj)/(2qj(n+1)/2).
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The case n is even and P of class (ii) is similar. Consider the dedal polygon
Q = Q0 ∈ X⊥

n/2. Again P = µ(Q) implies that ai = 0 if i 6∈ {j, n − j}. We

claim that there is a nonzero complex constant ℓ such that P = ℓ Q(k+1). Since
n divides j(2k − 1) we have

1 + qj = qj(1 + q−j) = qj+j(2k−1)(1 + q−j) = qkjqkj(1 + q−j)

or
1 + qj

2qkj
=

1 + q−j

2q−kj
.

Thus P = ℓ Q(k+1) for ℓ := (1 + qj)/(2qkj).
The case n even and P regular has already been treated in Theorem 2;

therefore it remains to treat case (iii) of n even. We suppose P is of this form
and want to show that P is similar to Q̄(k), i.e., that there is a nonzero complex
constant ℓ such that bi = ℓ an−iq

i(k+1) for all i. As before P = µ(Q) implies

that ai = 0 if i 6∈ {j, n − j}. Combining the two relations, bi = 1+qi

2 ai and

bj/bn−j = ±qj(k+3/2) yields

bj = ±qj(k+3/2)bn−j = ±qj(k+3/2) 1 + q−j

2
an−j = ±qj(k+1) qj/2 + q−j/2

2
an−j

and

bn−j = ±q−j(k+3/2)bj = ±q−j(k+3/2) 1 + qj

2
aj = ±q−j(k+1) qj/2 + q−j/2

2
aj .

Choosing ℓ := ±(qj/2 + q−j/2)/2 ∈ R yields P = ℓ Q̄(k).
We turn now to the converse. We will first prove that for n even or odd if

Q =
∑

aiXi is similar to P =
∑

biXi then P is affinely regular.
We first treat that case when P = ℓ Q(k+1) for some k and ℓ ∈ C \ {0}, i.e.,

bi = ℓ aiq
ik. Since P = µ(Q) we have 1+qi

2 ai = bi for i = 1, . . . , n − 1. Note

that if n is even then (1 + qn/2)/2 = 0, and thus bn/2 = 1+qn/2

2 an/2 = 0 and

an/2 = ℓ−1q−nk/2bn/2 is zero as well. For each i such that ai 6= 0, combining

the two relations between ai and bi yields q−ik 1+qi

2 = ℓ. If only a single aj is
nonnull, then Q is regular, and since P is similar to Q it is regular as well. Now
suppose that ai and aj are nonnull. Then the previous equation implies that

(1 + qi)/(1 + qj) = qk(i−j). (2)

Taking absolute values yields |(1 + qi)| = |(1 + qj)|, which implies i = ±j. Thus
P is affinely regular.

If n is even we need to conclude more. Note that (1 + q−j)/(1 + qj) = q−j .
Thus taking i = −j in (2) implies 1 = qj(1−2k). Thus j(2k − 1) is a multiple of
n, i.e., we are in case (ii) of the list.

Finally suppose that P = µ(Q) and Q are similar but have the opposite ori-
entation, i.e., P = ℓ Q̄(k) for some ℓ ∈ C\{0}, or equivalently bi = ℓ an−iq

i(k+1).
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Combing this with 1+qi

2 ai = bi yields 1+qi

2 ai = ℓ an−iq
i(k+1). If n is even and

i = n/2 then this equation implies that an/2 = 0. For all other cases it implies
that ai and an−i are simultaneous zero or nonzero. For any i such that they are
nonzero there are two such equations, and they imply

ai

an−i
=

2 ℓ qi(k+1)

1 + qi
=

1 + q−i

2 ℓ q−i(k+1)
. (3)

This in turn yields

4 ℓ2 = (1 + qi) · (1 + qn−i) = 2 + qi + qn−i := f(i). (4)

It is easy to see that f(i) = f(j) if and only if j = i or j = n − i. Since the
left-hand side of Equation (4) does not depend on i, there is exactly one pair
(aj , an−j) of nonzero coefficients, i.e., Q is affinely regular. Since P is similar
to Q it is also affinely regular.

Finally suppose that n is even. Equations (3) and (4) imply that for each j
there exists k ∈ {1, 2 . . . , n} such that

bj

bn−j
= ±

√

f(j)qj(k+1)

1 + q−j
= ±

√

1 + qj

1 + q−j
qj(k+1) = ±qj(k+3/2),

i.e., we are in case (iii) of the list. �

Lemma 4 If Q is affinely regular then µn(Q) is ⋆-similar to Q.

Proof. Suppose Q = ajXj + an−jXn−j . Then

µn(Q) =
(1 + qj

2

)n

ajXj +
(1 + qn−j

2

)n

an−jXn−j.

But

(1 + qn−j)n =

n
∑

k=0

(

n

k

)

q(n−j)k =

n
∑

k=0

(

n

n − k

)

q−jk (5)

=
n

∑

i=0

(

n

i

)

q−j(n−i) =
n

∑

i=0

(

n

i

)

qji = (1 + qj)n.

Thus µn(Q) = ℓ Q with ℓ = (1+qj

2 )n. �

In analogy to the billiard results stated in the introduction we now study the
dynamics of µ. On the space C the dynamics are not very interesting: µm(Q) →
(0, . . . , 0) as m → ∞ for all Q ∈ C. To get a somewhat more interesting behavior
notice that ⋆-similarity is an equivalence relation. Let [Q] := {ℓQ : ℓ ∈ C\{0}}
denote the equivalence class of Q. By identifying ⋆-similar polygons we obtain
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the quotient space Ĉ := {[Q] : Q ∈ C}. If Q1 and Q2 are ⋆-similar then so are

µ(Q1) and µ(Q2), and thus the map µ defines a map µ̂ of Ĉ to itself.
We remark that the equivalence class [Q] of a polygon Q =

∑

aiXi can be
represented by the vector (a1, . . . , an−1) ∈ Cn−1 \ {(0, . . . , 0)} with the identi-
fication (a1, . . . , an−1) ≡ (ℓa1, . . . , ℓan−1) with ℓ ∈ C \ {0}. Thus the quotient

space Ĉ is naturally identified with the complex projective space CP
n−2.

Let S be the unit sphere in C, i.e., the set of all Q =
∑

aiXi ∈ C such that
∑

|ai|2 = 1. Each equivalence class [Q] intersects the unit sphere S in a circle,
i.e., [Q] ∩ S = {ℓQ : |ℓ| = 1/

∑

|ai|2}. We define dist([P ], [Q]) = inf{d(P0, Q0) :
P0 ∈ [P ] ∩ S, Q0 ∈ [Q] ∩ S}, where d((a1, . . . , an−1), (b1, . . . , bn−1)) = (

∑

|ai −
bi|2)1/2 is the Euclidean distance on S. It is a simple exercise to verify that this

defines a metric on Ĉ.
A µ̂-invariant set A ⊂ Ĉ is an exponential attractor with basin B for µ̂ if

there exists c, γ > 0 such that dist(µ̂m([Q]), A) ≤ c exp(−γm) for all m ≥ 0 and

all [Q] ∈ B. If B = Ĉ then we say that A is a global exponential attractor.
For each j ∈ {1, . . . , ⌈n/2⌉ − 1} let Bj ⊂ C be the subspace generated by

{Xj, Xj+1, . . . , Xn−j}. Let B⌈n/2⌉ := ∅, and Aff := ∪
⌈n/2⌉−1
j=1 Aj . For any subset

D ⊂ C let D̂ := {[P ] : P ∈ D}. We will only use this notation for sets D which
are maximal in the sense that if D̂ = Ê then E ⊂ D.

Theorem 5 For each j ∈ {1, . . . , ⌈n/2⌉ − 1} the set Âj is an exponential at-

tractor with basin B̂j \ ˆBj+1 and thus Âff is a global exponential attractor for

µ̂. The map µ̂ is n-periodic (i.e., µ̂n = Id) on each Âj, and thus on Âff.

Proof. Suppose Q ∈ Bj\Bj+1. Equation (5) implies that the polygon µm(Q) =
∑n−1

i=1 (1+qi

2 )maiXi =
∑n−j

i=j (1+qi

2 )maiXi is ⋆-similar to

(

2

1 + qj

)m

µm(Q) = ajXj+

n−j−1
∑

i=j+1

(

1 + qi

1 + qj

)m

aiXi+

(

1 + qn−j

1 + qj

)m

an−jXn−j .

Since |(1+qi)/(1+qj)| < 1 the terms in the middle sum are exponentially small.
Thus µ̂m([Q]) is exponentially close to the equivalence class [Pm] ∈ Âj of the

polygon Pm := ajXj +
[

(1 + qn−j)/(1 + qj)
]m

an−jXn−j . The fact that Âff is

a global attractor follows from this since Ĉ is the union of the B̂j . Lemma 4

immediately implies that µ̂ is periodic on each Âj . �

Acknowledgments. Many thanks to Sergei Tabachnikov and the two anony-
mous referees for helpful remarks.
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