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DUAL BILLIARDS, FAGNANO ORBITS AND

REGULAR POLYGONS.

SERGE TROUBETZKOY

Abstract. We study the notion of Fagnano orbits for dual polyg-
onal billiards. We used them to characterize regular polygons and
we study the iteration of the developing map.

In this article we consider the dual notion of two results on polygonal
billiards. We begin by describing these original results. DeTemple and
Robertson [3] have shown that a closed convex polygons P is regular
if and only if P contains a periodic billiard path Q similar to P . The
second result is about the dynamics of the so called pedal map related
to billiards in a triangle P . The three altitudes of P intersect the
opposite sides (or their extensions) in three points called the feet. These
three points form the vertices of a new triangle Q called the pedal
triangle P (1) of the triangle P (0) (Figure 1). It is well known that
for acute triangles the pedal triangle forms a period three billiard orbit
often referred to as the Fagnano orbit, i.e., the polygon Q is inscribed in
P and satisfies the usual law of geometric optics: “the angle of incidence
equals the angle of reflection” or equivalently (this is a theorem) that
the pedal triangle has least perimeter among all inscribed triangles.
The name Fagnano is used since in 1775 J.F.F. Fagnano gave the first
proof the variational characterization. In a sequence of elegant and
entertaining articles, J. Kingston and J. Synge [5], P. Lax [6], P. Ungar
[11] and J. Alexander [1] studied the dynamics of the pedal map given
by iterating this process.

There is a dual notion to billiards, called dual or outer billiards. The
game of dual billiards is played outside the billiard table. Suppose the
table is a polygon P and that z is a point outside P and not on the

Figure 1. A pedal triangle.
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2 Dual billiards
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Figure 2. The polygonal dual billiard map.

continuation of any of P ’s sides. A line L is a support line of P if it
intersects the boundary ∂P of P and P lies entirely in one of the two
regions into which the line L divides the plane. There are two support
lines to P through z, choose the right one as viewed from z. If z is not
on the continuation of a side of P then this support line intersects P
at a single point which we call the support vertex of P . Reflect z in the
support vertex of P to obtain z’s image under the dual billiard map
denoted by T (see Figure 2). The point z has an infinite orbit if none
of its images belongs to the continuation of a side of the polygon.

Dual billiards have been extensive studied by S. Tabachnikov (see
[7],[8],[10] and the reference therein). Corresponding to the fact that
the Fagnano orbit hits each side of the triangle call a periodic dual
billiard orbit of period n for an n-gon Fagnano if the orbit reflects from
the vertices in a cyclic manner. Fagnano orbits for dual billiards were
introduce by Tabachnikov in [8] where he studied a certain variational
property analogous to one in the pedal case studied by Gutkin [4].

Motivated by the notion of pedal triangles we introduce here dedal
n-gons. Throughout the article we will identify the polygon having
vertices zi ∈ C, i = 1, . . . , n ordered cyclically with the n-tuple z =
(z1, . . . , zn) ∈ Cn. In particular a polygon for us is an oriented object.
The notion of polygon includes self intersecting polygons (which we
call star shaped polygons) and geometrically degenerate n-gons: sides
of length 0, or an angle of π or 2π at a vertex.

An n-gon Q is called a dedal n-gon of the n-gon P if reflecting the
vertex wi of Q in the vertex zi of P yields the vertex wi+1. There is
no requirement that the sides of Q touch P only at a vertex. From the
definition it is clear that if the Fagnano orbit of an n-gon P exists then
it is a dedal n-gon. A non-degenerate polygon can have a degenerate
dedal polygon and vice-versa. Examples are shown in Figures 3 and 4.
The degeneracy not shown can not occur: i.e. it is impossible for two
consecutive vertices of P to coincide if Q is non-degenerate. We will
not dwell on this aspect.
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Figure 3. Non-degenerate dedal pentagon correspond-
ing to a degenerate pentagons, a) angle π and b) 2π.
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Figure 4. Degenerate dedal polygons: loss of a vertex,
angle π, angle 2π.

In this article we study the dedal n-gon Q of an n-gon P . Our main
results are the following. If n is odd then its dedal n-gon exists and is
unique. For n odd we give a necessary and sufficient condition for the
existence of dedal n-gons and describe the space of all dedal n-gons of
P . Then we go on to characterize regular and affinely regular n-gons
by similarity to their dedal n-gons. Finally we show that the iteration
of the dedal map µ : Q → P is 2n periodic. The proofs of all our
results boil down to some linear algebra of the dedal map.

After writing this article one of the anonymous referees pointed out
that iteration of the dedal map has already been studied by Berlekamp,
Gilbert and Sinden in 1965 [2]. They answer a question they attribute
to G.R. MacLane, namely they prove that for a.e. polygon Q there
exists an M ≥ 1 such that µM(Q) is convex. Note that the image of a
convex polygon is convex, thus this implies that for a.e. Q there exists
an M such that µm(Q) is convex for all m ≥ M .
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Suppose Q(w1, . . . , wn) is the dedal polygon of P (z1, . . . , zn). The
definition implies that

(1) zi = (wi + wi+1)/2 (subscripts read modulo n)

(see Figures 3, 4 and 5). Throughout this article the subscripts will be
taken modulo n without explicit mention. The linear transformation
µ : Cn → Cn given by µ(w1, . . . , wn) = (z1, . . . , zn) is called the devel-
oping map.

The characteristic polynomial of µ is

(1 − 2x)n − (−1)n.

Its eigenvalues are (1+qi)/2 for i = 0, 1, . . . , n−1 where q := exp(2πi/n).
All the eigenvalues differ from zero except for the n/2nd eigenvalue
when n is even. The ith eigenvector is Xi := (1, qi, q2i, . . . , q(n−1)i). A
simple calculation (see [2],[8]) shows that the vectors Xi form a basis
of our space of polygons. If i divides n then Xi is a polygon with n/i
sides. None the less for the sake of clarity (avoiding stating special
cases) we will think of this as an n-gon which is traced i times, for
example if n = 6 then X2 = (1, q2, q4, q6, q8, q10) = (1, q2, q4, 1, q2, q4)
traces the triangle (1, q2, q4) twice. An exception to this rule is the case
n even and i = n/2. In this case Xn/2 is a segment which we do not
consider as a polygon.

The following proposition clarifies the existence of dedal polygons.

Proposition 1. a) Suppose that n ≥ 3 is odd. Then for any n-gon P
there is a unique dedal n-gon Q.
b) If n ≥ 3 is even dedal n-gons exist if and only if the vertices of P
satisfy z1−z2+z3−· · ·−zn = 0. If this equation is satisfied then there is
a unique dedal n-gon Q0 in the space X⊥

n/2 := {~z ∈ Cn : ~z ·Xn/2 = 0}.

The space D := {Q0 + sXn/2 : s ∈ C} consists of the dedal n-gons of
P . In particular for each i ∈ {1, . . . , n} every point w ∈ C is the ith
vertex of a unique dedal n-gon Qi(w).

We remark that the condition z1−z2 +z3−· · ·−zn = 0 means that the
center of mass of the even vertices coincides with the center of mass of
the odd vertices.
Proof of Proposition 1. If n ≥ 3 is odd then the map µ is invertible
with

(2) wi = zi − zi+1 + zi+2 − · · ·+ zi−1,

and thus the dedal polygon exists and is unique.
On the other hand if n ≥ 3 is even then the map µ is not invertible.

The kernel is one-complex dimensional and is generated by the vector
Xn/2 := (1,−1, 1,−1, . . . , 1,−1). Thus dedal polygons exist if and only
if the vector ~z = (z1, z2, . . . , zn) is orthogonal to the vector Xn/2, i.e.,
it satisfies Xn/2 · ~z = 0, or equivalently

(3) z1 − z2 + z3 − · · · − zn = 0.
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Figure 5. A pentagon without a Fagnano orbit, the
unique dedal pentagon is pictured.

Alternatively to see this note that

z1 + z3 + · · ·+ zn−1 = 1
2
((w1 + w2) + (w3 + w4) + · · ·+ (wn−1 + wn))

= 1
2
((w2 + w3) + (w4 + w5) + · · · (wn + w1)) = z2 + z4 + · · · zn.

The uniqueness of Q0 follows since the map µ is invertible on the space
X⊥

n/2. The statement on the set D follows immediately since Xn/2 is

the kernel of µ. Let Q0 := (w0
1, . . . , w

0
n). For each i any point w ∈ C

can be uniquely expressed as w0
i + s for some s ∈ C. �

Note that the dedal polygon Q of a convex polygon P is a Fagnano
orbit if and only if Q is convex. In particular Fagnano orbits always
exist for triangles, but not for polygons with more sides. An example
of a pentagon without a Fagnano orbit is given in Figure 5. Although
not every polygon has a Fagnano periodic orbit, it does have a periodic
orbit that is nearly as simple: it is a simple periodic orbit of the second
iteration of the dual billiard map [9].

The map µ preserves the center of mass, thus we can assume that the
center of mass is at the origin: i.e., that w1 + w2 + · · ·+ wn = 0. This
reduces the complex dimension by 1. The eigenvector X0 = (1, 1, . . . , 1)
corresponds to polygons which degenerate to a point. The reduced
space is orthogonal to this eigenvector.

X1 and Xn−1 are the usual regular n-gon in counter clockwise and
clockwise orientation (Figure 6a). If i and n are relatively prime and
i 6∈ {1, n−1} then Xi is star shaped and we also call it regular (Figures
6b and c). Finally if i divides n and i 6= n/2 then Xi is naturally
a regular n/i-gon which, as mentioned above, we will think of as (a
multiple cover of) a regular n-gon.

Two (unoriented) polygons are called similar if all corresponding
angles are equal and all distances are increased (or decreased) in the
same ratio. Since we study oriented ordered polygons we will call two
polygons P =

∑

biXi and Q =
∑

aiXi eigen-similar if there exists a



6 Dual billiards

Figure 6. Up to orientation there are three regular 7-gons.

non-zero complex constant such that bi = const ai for all i. Note that
if P and Q are eigen-similar then they are similar. On the other hand
if P and Q are similar then P is eigen-similar to a cyclic permutation
Q(k) := (wk, wk+1, wk+2, . . . , wk−1) of Q or a cyclic permutation Q̄(k) :=
(wk, wk−1, wk−2, . . . , wk+1) of Q with the opposite orientation.

In analog to DeTemple and Robertson’s result we have

Theorem 2. Fix n ≥ 3. An n-gon P is regular if and only if it has a
dedal polygon Q which is eigen-similar to P .

Note that if n is odd then Q is the unique dedal polygon of P while
if n is even then Q is the unique dedal polygon Q0 ∈ X⊥

n/2.

Proof. Suppose P is regular, i.e., P = const Xj where j 6= n/2 if n
is even. If n is odd let Q be the unique dedal polygon of P . If n is
even then since P is regular it satisfies (3) and thus has dedal polygons
and we choose Q = Q0 ∈ X⊥

n/2. In both cases let Q =
∑

aiXi. Since

P = µ(Q) =
∑ 1+qi

2
aiXi we have ai = 0 for i 6= j and thus Q = ajXj

is eigen-similar to P .
Conversely suppose that Q =

∑

aiXi is a dedal polygon of P =
∑

biXi and that P and Q are eigen-similar, i.e., ai = const bi. Since

P = µ(Q) we have 1+qi

2
ai = bi for i = 1, . . . , n. Combining this with

the eigen-similarity yields 1+qi

2
= const for each i such that ai 6= 0. It

follows qi = qj if ai and aj 6= 0. Since qi 6= qj if i 6= j it follows that
only a single aj is non-null and thus P = bjXj and Q = ajXj are regu-
lar. Note that if n is even then i 6= n/2 since in this case (1+ qi)/2 = 0
and thus bi = ai = 0. �

Of course we would like to have the analog of Theorem 2 with the
regular notion of similarity. For each j (except j = n/2 when n is even)
the subspace generated by Xj and Xn−j is the space of affine-regular
n-gons (if j = 1 in the usual sense, if j and n are relatively prime
then affine-regular n-stars, and if j divides n then a multiply covered
affine-regular n-gon).
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Theorem 3. a) Suppose n ≥ 3 is odd. An n-gon P is affinely regular
if and only if it has a dedal polygon Q which is similar to P .
b) If n ≥ 4 is even then an n-gon P appears in the following list of
affinely regular polygons if and only if it has a dedal polygon Q which
is similar to P .
List: i) regular n-gons, ii) affinely regular n-gons P = bjXj +bn−jXn−j

such that there exits k ∈ {1, 2, . . . , n
2
− 1, n

2
+ 1, . . . , n} such that n

divides j(2k − 1), iii) affinely regular n-gons P = bjXj + bn−jXn−j

such that there exists k ∈ {1, . . . , n} with
bj

bn−j
= ±qj(k+3/2).

All triangles are affinely regular. Berlekamp et. al. noticed that every
triangle is similar to its dedal triangle [2]. Of course one would like to
know if there are other special properties of the polygons in the list.
Proof. Consider the representation (a1, . . . , an−1) of the polygon Q(1) =
Q. It is a simple exercise in linear algebra to compute the other rep-
resentations, the representation of Q(k) is (a1q

k, a2q
2k, . . . , an−1q

(n−1)k)
and that of Q̄(k) is (an−1q

(k+1), an−2q
2(k+1), . . . , a1q

(n−1)(k+1)). That P is
similar to Q is equivalent to the existence of a k ∈ {1, . . . , n−1} and a
nonzero complex constant such that P = const Q(k) or P = constQ̄(k).
The first equation means that bi = const aiq

ik for i = 1, . . . , n − 1 and
the second that bi = const an−iq

i(k+1) for i = 1, . . . , n − 1.
The structure of the proof is as follows. We group the even and odd

cases and start by proving that the various classes of affinely regular
polygons are similar to their dedal polygons. Then we turn to the
converse.

Suppose that n is odd and P = bjXj + bn−jXn−j is affinely regular.
Let Q = Q(1) =

∑

aiXi be the unique dedal polygon of P . Since

P = µ(Q) =
∑ 1+qi

2
aiXi we have ai = 0 for i 6∈ {j, n − j}. We claim

that P = const Q((n+1)/2). To see this note that

1 + qj = qj(1 + q−j) = qj(n+1)(1 + q−j) = qj(n+1)/2qj(n+1)/2(1 + q−j)

or
1 + qj

2qj(n+1)/2
=

1 + q−j

2q−j(n+1)/2
.

Thus, choosing c := 1+qj

2qj(n+1)/2 yields P = cQ(n+1)/2.

The case n is even and P of class (ii) is similar. Consider the dedal
polygon Q = Q0 ∈ Xn/2. Again P = µ(Q) implies that ai = 0 if

i 6∈ {j, n − j}. We claim that P = constQ(k). To see this note that

1 + qj = qj(1 + q−j) = qj+j(2k−1)(1 + q−j) = qkjqkj(1 + q−j)

or
1 + qj

2qkj
=

1 + q−j

2q−kj
.

Thus, choosing c := 1+qj

2qkj yields P = cQ(k).
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The case n even and P regular has already been treated in Theorem
2 thus it rest to treat the case (iii) of n even. We suppose P is of
this form and want to show that P is similar to Q̄(k), i.e., that bi =
constan−iq

i(k+1) for i ∈ {j, n − j}. As before P = µ(Q) implies that

ai = 0 if i 6∈ {j, n − j}. Combining the two relations, bi = 1+qi

2
ai and

bj

bn−j
= ±qj(k+3/2), yields

bj = ±qj(k+3/2)bn−j = ±qj(k+3/2) 1 + q−j

2
an−j = ±qj(k+1) q

j/2 + q−j/2

2
an−j

and

bn−j = ±q−j(k+3/2)bj = ±q−j(k+3/2) 1 + qj

2
aj = ±q−j(k+1) q

j/2 + q−j/2

2
aj .

Choosing c := ±(qj/2 + q−j/2)/2 ∈ R yields P = cQ̄(k).
We turn to the converse. We will first prove that for n even or odd

if Q =
∑

aiXi is similar to P =
∑

biXi then P is affinely regular.
We first treat that case when P = const Q(k) for some k, i.e., bi =

const aiq
ik. Since P = µ(Q) we have 1+qi

2
ai = bi for i = 1, . . . , n − 1.

Note that if n is even then (1+qn/2)/2 = 0 and thus bn/2 = 1+qn/2

2
an/2 =

0 and an/2 = const bn/2 is zero as well. For each i such that ai 6= 0,

combining the two relations between ai and bi yields, q−ik 1+qi

2
= const.

If only a single aj is non null, then Q is regular and thus by Theorem 2
P is regular as well. Suppose ai and aj are non null, then the previous
equation implies that

(4) (1 + qi)/(1 + qj) = qk(i−j).

Taking absolute values yields|(1+qi)| = |(1+qj)|, which implies i = ±j.
Thus P is affinely regular.

In the case n is even we need to conclude more. Note that (1 +
q−j)/(1 + qj) = q−j. Thus taking i = −j in (4) implies 1 = qj(1−2k).
Thus j(2k − 1) is a multiple of n, i.e., we are in case (ii) of the list.

Finally suppose that P = µ(Q) and Q are similar but have the
opposite orientation, i.e., P = const Q̄(k) or equivalently

(5) bi = const an−iq
i(k+1).

with n even or odd.
This implies that 1+q−i

2
bi = const bn−iq

i(k+1). If n is even and i = n/2
then this equation implies that bn/2 = 0. For all other cases it implies
that bi and bn−i are simultaneous zero or non-zero. For any i such that
they are non-zero we have

(6)
bi

bn−i
=

2 const qi(k+1)

1 + q−i
=

1 + qi

2 const q−i(k+1)
.

This implies that

(7) 4 const2 = (1 + qi) · (1 + qn−i) = 2 + qi + qn−i := f(i).
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It is easy to see that f(i) = f(j) if and only if j = i or j = n− i. Since
the left hand side of this equation does not depend on i there there is
exactly one pair (bj , bn−j) of non-zero coefficients or equivalently P is
affinely regular.

Suppose now that n is even. Equations (6) and (7) imply that for
each j there exists k ∈ {1, 2 . . . , n} such that

bj

bn−j
= ±

√

f(j)qj(k+1)

1 + q−j
= ±

√

1 + qj

1 + q−j
qj(k+1) = ±qj(k+3/2).

�

As noticed by Tabachnikov, [8], since |λ1| = |λn−1| > |λi| for i =
2, . . . , n − 2 the subspace generated by the eigenvectors X1 and Xn−1,
i.e., the affinely regular n-gons, is an attractor for the developing map.
Its basin of attraction is all polygons except for those which lie in the
subspace spanned by Xi with i = 2, . . . , n − 2.

Theorem 4. For any affinely regular n-gon, the developing map is 2n
periodic.

Proof. Suppose that Q is affinely regular, i.e., Q = aX1 + bX2. Then

µ2n(Q) = (1+q
2

)2naX1 + (1+qn−1

2
)2nbX2. Now (1 + q)n =

∑n
k=0

(

n
k

)

qk. If

n is odd then (1 + q)n =
∑

n−1
2

k=)

(

n
k

)

(qk + q−k) while if n is even then

(1 + q)n =
∑

n
2
−1

k=)

(

n
k

)

(qk + q−k) +
(

n
n
2

)

q
n
2 .

In both cases the sums of the roots of unity in the parentheses are
real and the first half are positive the second half are negative. Since
the coefficients are strictly increasing the sum is a negative real number
and thus ((1 + q)/|1 + q|)n = −1 and ((1 + q)/|1+ q|)2n = 1. The same
holds for qn−1. Thus µ2n(Q) and Q are similar. �

If n ≥ 3 is odd we call the inverse map f := µ−1 the dedal map.
Since |λn−1

2
| = |λn+1

2
| < |λi| for the other i the subspace generated by

the eigenvectors Xn−1
2

and Xn+1
2

, i.e., the affinely regular n-stars, is

an attractor for the dedal map. Its basin of attraction is all polygons
except for those which lie in the subspace spanned by Xi with i 6=
n−1

2
, n+1

2
.

Theorem 5. If n is odd then the dedal map is 2n periodic on the space
of affinely regular n-stars.

The proof of this theorem is essentially the same of that of Theorem

4 with q replaced by q
n−1

2 .
We remark that the n-gons not in the basin of attraction (for both

the developing map and the dedal map) have themselves an 2 dimen-
sional attractor, the set of n-gons with the next largest modulus of the
eigenvalue, on which again the motion is 2n periodic. This set has a
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co-dimension 4 basin of attraction, and this decomposition can be it-
erated to yield co-dimension 6, 8, . . . basins of attraction. This process
stops at the repeller of the one map which is the attractor of the other.

Acknowledgments. Many thanks to Sergei Tabachnikov and two
anonymous referees for helpful remarks.
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