
HAL Id: hal-00139790
https://hal.science/hal-00139790v1

Preprint submitted on 3 Apr 2007 (v1), last revised 28 Mar 2008 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dual billiards, Fagnano orbits and regular polygons
Serge Troubetzkoy

To cite this version:

Serge Troubetzkoy. Dual billiards, Fagnano orbits and regular polygons. 2007. �hal-00139790v1�

https://hal.science/hal-00139790v1
https://hal.archives-ouvertes.fr


ha
l-

00
13

97
90

, v
er

si
on

 1
 -

 3
 A

pr
 2

00
7

DUAL BILLIARDS, FAGNANO ORBITS AND

REGULAR POLYGONS.

SERGE TROUBETZKOY

Abstract. We study the notion of Fagnano orbits for dual polyg-
onal billiards. We used them to characterize regular polygons and
we study the iteration of the developing map.

In this article we consider the dual notion of two results on polygonal
billiards. We begin by describing these original results. DeTemple and
Robertson [2] have shown that a closed convex polygons P is regular
if and only if P contains a periodic billiard path Q similar to P . The
second result is about the dynamics of the so called pedal map related
to billiards in a triangle P . The three altitudes of P intersect the
opposite sides (or their extensions) in three points called the feet. These
three points form the vertices of a new triangle Q called the pedal
triangle P (1) of the triangle P (0) (Figure 1). It is well known that for
acute triangles the pedal triangle form a period three billiard orbit often
referred to as the Fagnano orbit, i.e., the polygon Q is inscribed in P
and satisfies the usual law of geometric optics: “the angle of incidence
equals the angle of reflection” or equivalently (this is a theorem) that
the pedal triangle has least perimeter among all inscribed triangles.
The name Fagnano is used since in 1775 J.F.F. Fagnano gave the first
proof the variational characterization. In a sequence of elegant and
entertaining articles, J. Kingston and J. Synge [4], P. Lax [5], P. Ungar
[9] and J. Alexander [1] studied the dynamics of the pedal map given
by iterating this process.

There is a dual notion to billiards, called dual or outer billiards. The
game of dual billiards is played outside the billiard table. Suppose the
table is a polygon P and that x is a points outside P and not on the

Figure 1. A pedal triangle.
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2 Dual billiards
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Figure 2. The polygonal dual billiard map.

continuation of any of P ’s sides. There are two support lines to P
through x, choose the right one as viewed from x, and reflect x in the
support vertex of P to obtain x’s image under the dual billiard map
(see Figure 2). The point x has an infinite orbit if none of its images
belongs to the continuation of a side of the polygon. Here we allow self
intersecting polygons which we will refer to as star shaped polygons.

Dual billiards have been extensive studied by S. Tabachnikov (see
[6],[7],[8] and the reference therein). Corresponding to the fact that
the Fagnano orbit hits each side of the triangle call a periodic dual
billiard orbit of period n for an n-gon Fagnano if the orbit reflects from
the vertices in a cyclic manner. Fagnano orbit for dual billiards were
introduce by Tabachnikov in [7]. In this article he studied a certain
variational property analogous to one in the pedal case studied by
Gutkin [3].

Motivated by the notion of pedal triangles we introduce here dedal
n-gons. An n-gon Q is called a dedal n-gon of the n-gon P if reflecting
the vertex wi of Q in the vertex zi of P yields the vertex wi+1. There
is no requirement that the sides of Q touch P only at a vertex. From
the definition it is clear that if the Fagnano orbit of an n-gon P exists
then it is automatically a dedal n-gon.

Suppose Q(w1, . . . , wn) is the dedal polygon of P (z1, . . . , zn). The
developing map µ : Q → P is defined by the equation

(1) zi = (wi + wi+1)/2

(see Figures 3, 5 and 6). Note that throughout this article the sub-
scripts will be taken modulo n without explicit mention. The charac-
teristic polynomial of µ is

(1 − 2x)n − (−1)n.

Its eigenvalues are (1+qi)/2 for i = 0, 1, . . . , n−1 where q := exp(2πi/n).
All the eigenvalues differ from zero except for the n/2nd eigenvalue for
n even. The ith eigenvector is Xi := (1, qi, q2i, . . . , q(n−1)i). If i divides
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Figure 3. A pentagon without a Fagnano orbit, the
unique dedal pentagon is pictured.

n then Xi is a polygon with n/i sides. None the less for the sake of
clarity (avoiding stating special cases) we will think of this as an n-gon
which is traced i times. An exception to this rule is the case n even
and i = n/2. In this case Xn/2 is a segment which we do not consider
as a polygon.

The following proposition clarifies the existence question of dedal
polygons.

Proposition 1. a) Suppose that n ≥ 3 is odd. Then for any n-gon P
there is a unique dedal n-gon Q.
b) If n ≥ 3 is even dedal n-gons exist if and only if the vertices of
P satisfy z1 − z2 + z3 − · · · − zn = 0. If this equation is satisfied
then there is a unique dedal n-gon Q0 in the space X⊥

n/2. The space

D := {Q0 + sXn/2 : s ∈ C} consists of the dedal n-gons of P . In
particular for each i ∈ {1, . . . , n} every point w ∈ C is the ith vertex
of a unique dedal n-gon Qi(w).

Proof of Proposition 1. If n ≥ 3 is odd then the map µ is invertible
with

(2) wi = zi − zi+1 + zi+2 − · · ·+ zi−1,

and thus the dedal polygon exists and is unique.
On the other hand if n ≥ 3 is even then the map µ is not invertible.

The eigenspace of the zero eigenvalue is one-complex dimensional and
is generated by the vector Xn/2 := (1,−1, 1,−1, . . . , 1,−1). Thus dedal
polygons exist if and only if the vector ~z = (z1, z2, . . . , zn) is orthogonal
to the vector Xn/2, i.e., it satisfies Xn/2 · ~z = 0, or equivalently

(3) z1 − z2 + z3 − · · · − zn = 0.

The uniqueness of Q0 follows since the map µ is invertible on the space
X⊥

n/2. The statement on the set D follows immediately since Xn/2 is

the kernel of µ. Let Q0 := (w0
1, . . . , w

0
n). For each i any point w ∈ C
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Figure 4. Up to orientation there are three regular 7-gons.

can be uniquely expressed as w0
i + s for some s ∈ C. �

Note that the dedal polygon Q of a convex polygon P is a Fagnano
orbit if and only if Q is convex. In particular Fagnano orbits always
exist for triangles, but not for polygons with more sides. An example
of a pentagon without a Fagnano orbit is given in Figure 3.

X1 and Xn−1 are the usual regular n-gon in counter clockwise and
clockwise orientation (Figure 4a). If i and n are relatively prime and
i 6∈ {1, n−1} then Xi is star shaped and we also call it regular (Figures
4b and c). Finally if i divides n and i 6= n/2 then Xi is naturally a
regular n/i-gon which we will think of as (a multiple cover of) a regular
n-gon. A simple calculation (see [7]) shows that the vectors Xi form a
basis of our space of polygons. In analog to DeTemple and Robertson’s
result we have

Theorem 2. Fix n ≥ 3. An n-gon P is regular if and only if it has a
dedal polygon Q which is similar to P .

We remark that if n is odd then Q is the unique dedal polygon of
P while if n is even then Q is the unique dedal polygon Q0 ∈ X⊥

n/2.

Proof. Suppose P is regular, i.e., P = const Xj where j 6= n/2 if n is
even. If n is odd let Q be the unique dedal polygon of P . If n is even
then since P is regular it satisfies (3) and thus we can choose Q = Q0.

In both cases let Q =
∑

aiXi. Since P = µ(Q) =
∑ 1+qi

2
aiXi we have

ai = 0 for i 6= j and thus Q = aj Xj is similar to P .
Conversely suppose that Q =

∑

aiXi is a dedal polygon of P =
∑

biXi and that P and Q are similar, i.e., ai = const bi. Note that side
Q exists either n is odd or that n is even and P satisfies (3).

Since P = µ(Q) we have 1+qi

2
ai = bi for i = 1, . . . , n. Thus for each

i such that ai 6= 0 we have 1+qi

2
= const and it follows qi = qj if ai and

aj 6= 0. Since qi 6= qj if i 6= j it follows that only a single aj is non-null
and thus P = bjXj and Q = aiXj are regular. Note that if n is even
then i 6= n/2 since in this case (1+ qi)/2 = 0 and thus bi = ai = 0, i.e.,
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Figure 5. Degenerate dedal polygons: loss of a vertex,
angle π, angle 2π.

P and Q are not 2-gons. �

The map µ is well defined for any point (w1, . . . , wn) ∈ Cn. Since the
dual billiard is affine invariant we can assume that the center of mass
of the polygons is at the origin: i.e., that w1 + w2 + · · ·+ wn = 0. This
reduces the complex dimension by 1. The map µ preserves the center
of mass. The eigenvector X0 = (1, 1, . . . , 1) corresponds to polygons
which degenerate to a point. The reduced space is orthogonal to this
eigenvector since we have fixed the center of mass to be the origin. We
have already mentioned that the polygons Xj are multiple covers when
j divides n. n-gons can degenerate in other ways. If wi = wi+1 for
some i then Q has (n − 1) sides, however for the sake of consistency
we will think of it as an n-gon with the ith side of length 0. The
other degeneracies are polygons with adjacent edges with angle π or
2π. We will call all of these degenerate objects n-gons, the notion
of dual billiard and dedal n-gon make sense in this setting. These
degeneracies hold for a complex codimension 1 subspace.

The dedal polygon of a non-degenerate n-gon can be degenerate in
all the ways described above. A dedal polygon will have a side of length
0 if wi = zi for some i and thus wi = wi+1. An example of a pentagon
whose dedal polygon degenerates to a quadrilateral in this way is shown
in Figure 5a. Another way to degenerate is that two adjacent edges
have angle π or 2π. This happens if a vertex of the dedal polygon lies
on the continuation of a side of the polygon. Example are shown in
Figures 5b and c.

The polygon µ(Q) can also degenerate for a non-degenerate dedal n-
gon Q. This happens if two mid-points of three consecutive sides of Q
are colinear with angle π (Figure 6a) or 2π (Figure 6b). It is impossible
for two consecutive vertices of µ(Q) to coincide if Q is non-degenerate.
The space of n-gons Q with degenerate µ(Q) is a complex co-dimension
1 subspace.

Consider the space ∆ of n-gons up to similarity.
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Figure 6. Non-degenerate dedal pentagon correspond-
ing to a degenerate pentagons, a) angle π and b) 2π.

As notice by Tabachnikov, [7], since |λ1| = |λn−1| > |λi| for i =
2, . . . , n − 2 the subspace generated by the eigenvectors X1 and Xn−1,
i.e., the affinely regular n-gons, is an attractor for the developing map.
Its basin of attraction is all polygons except for those which lie in the
subspace spanned by Xi with i = 2, . . . , n − 2.

Theorem 3. For any affinely regular n-gon, the developing map is 2n
periodic.

Proof. Suppose that Q is affinely regular, i.e., Q = aX1 + bX2. Then

µ2n(Q) = (1+q
2

)2naX1 + (1+qn−1

2
)2nbX2. Now (1 + q)n =

∑n
k=0

(

n
k

)

qk. If

n is odd then (1 + q)n =
∑

n−1

2

k=)

(

n
k

)

(qk + q−k) while if n is even then

(1 + q)n =
∑

n

2
−1

k=)

(

n
k

)

(qk + q−k) +
(

n
n

2

)

q
n

2 .

In both cases the sums of the roots of unity in the parentheses are
real and the first half are positive the second half are negative. Since
the coefficients are strictly increasing the sum is a negative real number
and thus ((1 + q)/|1 + q|)n = −1 and ((1 + q)/|1+ q|)2n = 1. The same
holds for qn−1. Thus µ2n(Q) and Q are similar. �

If n ≥ 3 is odd we call the inverse map f := µ−1 the dedal map.
Since |λn−1

2

| = |λn+1

2

| < |λi| for the other i the subspace generated by

the eigenvectors Xn−1

2

and Xn+1

2

, i.e., the affinely regular n-stars, is

an attractor for the dedal map. Its basin of attraction is all polygons
except for those which lie in the subspace spanned by Xi with i 6=
n−1

2
, n+1

2
.

Theorem 4. If n is odd then the dedal map is 2n periodic on the space
of affinely regular n-stars.

The proof of this theorem is essentially the same of that of Theorem

3 with q replaced by q
n−1

2 .
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We remark that the n-gons not in the basin of attraction (for both
the developing map and the dedal map) have themselves an 2 dimen-
sional attractor, the set of n-gons with the next largest modulus of the
eigenvalue, on which again the motion is 2n periodic. This set has a
co-dimension 4 basin of attraction, and this decomposition can be it-
erated to yield co-dimension 6, 8, . . . basins of attraction. This process
stops at the repeller of the one map which is the attractor of the other.

Acknowledgments. Many thanks to Sergei Tabachnikov for helpful
remarks.
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