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We present two algorithms to compute a regular di erential system for some ranking, given an equivalent regular di erential system for another ranking. Both make use of K ahler di erentials. One of them is a lifting for di erential algebra of the FGLM algorithm and relies on normal forms computations of di erential polynomials and of K ahler di erentials modulo di erential relations. Both are implemented in MAPLE V. A straightforward adaptation of FGLM for systems of linear PDE is presented too. Examples are treated.

Introduction

Regular1 di erential systems permit to represent the radicals of di erential polynomial ideals as Gr obner bases or triangular sets permit to represent usual polynomial ideals. As for Gr obner bases, regular di erential systems depend on admissible orderings, called rankings. The Rosenfeld{Gr obner algorithm [START_REF] Cois | Etude et implantation de quelques algorithmes en alg ebre di erentielle[END_REF][START_REF] Fran Cois Boulier | Representation for the radical of a nitely generated di erential ideal[END_REF] which computes regular di erential systems given any nite system of polynomial ODE or PDE and any ranking R is implemented in the diffalg package of the MAPLE VR5 standard library.

In this paper, we are concerned by the problem: given a di erential system A = 0; S 6 = 0 regular w.r.t. some ranking R, de ning some regular di erential ideal r and given some ranking R 6 = R, compute a di erential system à = 0; S 6 = 0 regular w.r.t. R and equivalent to A = 0; S 6 = 0 i.e. de ning the same regular di erential ideal r.

A straightforward solution consists of course of running the Rosenfeld{Gr obner algorithm over A = 0; S 6 = 0 for the new ranking R but this is not e cient. The algorithms described in this paper use the fact that a representation of r by a regular di erential system is already available in order to compute à = 0; S 6 = 0.

The paper is motivated by the following fact. Let be a di erential system that we want to study by representing it by regular di erential ideals. The rankings which provide the most interesting informations (most of the time, elimination rankings) usually make the computation utterly memory and time expensive while there usually exists rankings which require nearly no computation (most of the time, orderly rankings).

The situation is indeed very similar to that of Gr obner bases (but perhaps still more striking): the Buchberger's algorithm is often very e cient for total degree orderings and often very ine cient for elimination orderings. In the particular case of a zero dimensional ideal a of a polynomial ring R = K X], the algorithm FGLM 11] solves the problem we consider: computing a Gr obner of a for an admissible ordering, knowing a Gr obner basis of a for some di erent ordering. FGLM relies on the following principles.

1. A polynomial 1 t 1 + + s t s (where the 's are coe cients in K and the t's are terms over X) lies in a if and only if the terms t 1 ; : : : ; t s are linearly dependent over K in the factor ring R=a. 2. Detecting a linear dependency between t 1 ; : : : ; t s in R=a amounts to detect a linear dependency between the normal forms of t 1 ; : : : ; t s , assimilating these latter to vectors of elements of K. 3. The known Gr obner basis permits to compute normal forms. The FGLM algorithm then enumerates the terms t 1 ; : : : ; t s by increasing order w.r.t. the new ordering. The relations found are the polynomials of the new Gr obner basis. The hypothesis dima = 0 implies there are only nitely many irreducible terms w.r.t. any Gr obner basis of a and ensures the termination of FGLM.

The algorithms we present for di erential algebra are not as e cient as FGLM (apart perhaps the algorithm for systems of linear PDE which is a special case and very close to FGLM) but solve anyway the problem under consideration. They proceed in three steps:

1. rst compute only the set of leaders v 1 ; : : : ; v t of Ã. More precisely, one computes t sets of derivatives W 1 ; : : : ; W t such that v i is the greatest derivative of W i (for each i) w.r.t. the new ranking R and such that r \ K W i ] 6 = (0). See sections 4 and 5 ; 2. knowing W i , compute a nonzero polynomial f i 2 r \ K W i ] for each i (section 6) ; 3. use f 1 ; : : : ; f t in order to speed up the computation of à = 0; S 6 = 0 using Rosenfeld{ Gr obner. The second step, determining f i knowing W i , is performed by applying exactly the same principles as FGLM. To carry it out, we had to de ne a normal form of a di erential polynomial modulo a regular di erential ideal r (algorithm NF). The known regular di erential system permits to compute normal forms.

The rst step relies on the computation of K ahler di erentials [START_REF] Johnson | K ahler di erentials and di erential algebra[END_REF][START_REF] Helaman | Analysis of PSLQ, An Integer Relation Finding Algorithm[END_REF] which \linearize the problem". To perform it, we give two algorithms (we assume for a while that r is a prime ideal of a di erential polynomial ring R and denote G the di erential eld of fractions of R=r).

The rst algorithm (called K ahler) readily applies a key theorem (theorem 5) on K ahler di erentials, using a coding trick, and calling Rosenfeld{Gr obner.

The second one (algorithm dfglm) can be viewed as a lifting of FGLM for regular di erential systems but it only applies for di erential systems the solutions of which depend on nitely many arbitrary constants. It is however more e cient than K ahler. It applies the following principles:

1. there exists a nonzero di erential polynomial in r\K w 1 ; : : : ; w s ] (where w 1 ; : : : ; w s are derivatives) if and only if the K ahler di erentials of w 1 ; : : : ; w s are linearly dependent over G in G=K (theorem 4) ;

2. detecting a linear dependency over G between these di erentials amounts to detect a linear dependency between their normal forms, assimilating these latter to vectors of elements of G (theorem 8) ;

3. the known regular di erential system A = 0; S 6 = 0 permits to compute normal forms of K ahler di erentials in G=K (algorithm DNF). The dfglm algorithm then enumerates all the derivatives of the di erential indeterminates by increasing order w.r.t. the new ranking. The hypothesis that the solutions of r only depend on nitely many arbitrary constants plays the same role as the zero dimension hypothesis in FGLM and ensures the termination of dfglm.

In general the di erential ideal r is not prime but its total ring of fractions is isomorphic to a direct product of di erential elds which all admit a same transcendence basis over K (proposition 1) and we explain how to handle the general case.

A pedagogic example is completely discussed. Applying our methods over Euler's equations for a perfect uid, we prove the pressure satis es an autonomous fth order PDE (section 7). Fact which does not seem to be known.

A secondary result of the paper is the algorithm fglm for linear PDE which only applies for systems of linear PDE (section 8). It is given a linear di erential system A = 0 (there are no inequations when the system is linear) regular w.r.t. a ranking R the solutions of which depend on nitely many arbitrary constants and a new ranking R 6 = R. It does compute the desired di erential system à = 0 regular w.r.t. R (not only its set of leaders). It is very close to the original FGLM. It may be useful for solving a system of linear PDE A by seeking ODE in the di erential ideal A] and running a linear ODE solver e.g. 7]. This idea was already developed by 20] with a di erent method. We apply our algorithm over a famous example of E. Cartan.

We do not address complexity issues.

Di erential algebra

We only provide a short presentation. The reference books are 21] and 15]. We also refer to the MAPLE VR5 diffalg package and thus to the articles 4, 5] which present it. An example is provided in section 1.1.

A derivation over a ring R is a map : R ! R which satis es, for every a; b 2 R . If a i > b i for each 1 i m then = = a 1 ?b 1 1 am?bm m . A di erential ideal a of R is an ideal of R stable under derivation i.e. such that a 2 a ) a 2 a:

Let A be a nonempty subset of R. We denote (A) the ideal generated by A. We denote A] and p A] the di erential ideal and the radical of the di erential ideal generated by A which are respectively the smallest di erential ideal and the smallest radical di erential ideal which contain A. If a is an ideal of R and S = fs 1 ; : : : ; s t g, we denote a : S 1 the saturation of a by S which is the ideal a : S 1 = fp 2 R j 9a 1 ; : : : ; a t 2 N; such that s a 1 1 s at t p 2 ag: Let U = fu 1 ; : : : ; u n g be a set of di erential indeterminates. Derivation operators apply over di erential indeterminates giving derivatives u. We denote U the set of all the derivatives. Let K be a di erential eld. The di erential ring of the di erential polynomials built over the alphabet U with coe cients in K is denoted R = KfUg.

A ranking is a total ordering over the set of the derivatives 15, page 75] satisfying the following axioms 1. v > v for each derivative v and derivation , 2. v > w ) v > w for all derivatives v; w and each derivation .

One distinguishes orderly rankings, which satisfy: ord > ord ) u > v for all u; v 2 U from elimination rankings which satisfy: u > v ) u > v for all u; v 2 U and ; 2 : Fix a ranking. The greatest indeterminate v occuring in a di erential polynomial p is called the leader of p. The leading coe cient of p w.r.t. v is called the initial of p. The di erential polynomial @p=@v is called the separant of p. Assume p = 2 K. Let v be the leader of p and d = deg(p; v). A di erential polynomial q is said to be partially reduced w.r.t. a di erential polynomial p = 2 K if no proper derivative of v occurs in q. It is said to be reduced w.r.t. p if it is partially reduced w.r.t. p and deg(q; v) < d.

A set A of di erential polynomials is said to be di erentially triangular if it is triangular and if its elements are pairwise partially reduced. It is said to be autoreduced if its elements are pairwise reduced.

If A is a set of di erential polynomials and v is a derivative then A v = f p j ld p vg.

Thus R v denotes the set of all the di erential polynomials having leader less than or equal to v.

A pair fp 1 ; p 2 g of di erential polynomials is said to be a critical pair if the leaders of p 1 and p 2 are derivatives of some same di erential indeterminate u (say ld p 1 = 1 u and ld p 2 = be formed with any two elements of A. Let fp 1 ; p 2 g be a critical pair. Denote 12 the least common multiple between 1 and 2 and assume 12 where s 1 ; s 2 denote the separants of p 1 and p 2 . Let A = 0; S 6 = 0 be a system of di erential polynomial equations and inequations. The critical pair fp 1 ; p 2 g is said to be solved by A = 0; S 6 = 0 if there exists a derivative v < 12 u such that (p 1 ; p 2 ) 2 (A v ) : (S \ R v ) 1 : De nition 1 (regular di erential systems) A di erential system A = 0; S 6 = 0 of a di erential polynomial ring R is said to be a regular di erential system (for a ranking R) if C1 A is di erentially triangular, C2 S contains the separants of the elements of A and is partially reduced w.r.t. A, C3 all the pairs fp; p 0 g 2 pairs(A) are solved by A = 0; S 6 = 0 (coherence property).

If A = 0; S 6 = 0 is a regular di erential system then the ideal A] : S 1 (resp. (A) : S 1 ) is called the regular di erential ideal (resp. regular algebraic ideal) de ned by the system.

The Rosenfeld{Gr obner algorithm 3, 4, 5] is implemented in the MAPLE VR5 diffalg package. Given any nite family of di erential polynomials and any ranking, it represents the radical of the di erential ideal ] generated by as an intersection of regular di erential ideals presented by regular di erential systems. p ] = A 1 ] : S 1 1 \ \ A t ] : S 1 t :

If A = 0; S 6 = 0 is a regular di erential system, we call derivatives under the stairs of A the elements of U which are not derivatives of any leader of element of A. See section 1.1 for an explanation of this terminology. Denote N this set and L the set of the leaders of the elements of A. Then K L; N] is the ring of the di erential polynomials partially reduced w.r.t. A.

Regular systems enjoy the following properties. See 5].

Theorem 1 Let A = 0; S 6 = 0 be a regular di erential system of R = KfUg. Let L denote the set of leaders of A and N the set of the derivatives under the stairs of A. Then the regular algebraic ideal (A) : S 1 is radical (Lazard's lemma) ; if b denotes a prime ideal minimal over (A) : S 1 then the set N furnishes a transcendence basis of the eld of fractions of R=b over K (Lazard's lemma) ;

we have A] : S 1 \ K L; N] = (A) : S 1 (Rosenfeld's lemma) ;

the regular di erential ideal A] : S 1 is radical (lifting of Lazard's lemma) ; there is a bijection between the prime di erential ideals p 1 ; : : : ; p t which are minimal over A] : S 1 and the prime ideals b 1 ; : : : ; b t which are minimal over (A) : S 1 given by p i \ K L; N] = b i (lifting of Lazard's lemma) ; the system A = 0; S 6 = 0 admits a purely algebraic solution, viewed as a polynomial system of K L; N], if and only if it admits a di erential solution ;

every purely algebraic solution of the system A = 0; S 6 = 0, viewed as a polynomial system of K L; N], can be extended in a unique way as a di erential solution.

Proposition 1 seems to be new.

Proposition 1 Let A = 0; S 6 = 0 be a regular di erential system of R and p 1 ; : : : ; p t be the di erential prime components of A] : S 1 . Let K i be the di erential eld of fractions of R=p i . Then the total ring of fractions of R= A] : S 1 is isomorphic to the direct product of di erential elds G = K 1 K t .

Proof Let 1 i 6 = j t be two indices. By the Chinese Remainder Theorem 10, Exercise 2.6, page 79] it is su cient to prove that the sum p i +p j = (1) in G. Since A]:S 1 is radical by the lifting of Lazard's lemma, this amounts to prove that there exists f i 2 p i and f j 2 p j such that f i + f j belongs to none of the p.

Let X denote the nite set of derivatives occuring in A S. Let b i = p i \ K X]. By the lifting of Lazard's lemma again b 1 ; : : : ; b t are the minimal primes of (A) : S 1 in K X]. By Lazard's lemma, all these ideals have the same dimension d. We claim b i + b j is not contained in the union of the b. On one hand, if it were, it would be contained in one of them by the prime avoidance lemma and would have dimension2 d. On another hand, b i + b j is a proper divisor of b i and b j since both are minimal over (A) : S 1 . Thus dimb i + b j < d.

Thus there exists f i 2 b i and f j 2 b j such that f i + f j belongs to none of the b. The polynomial f i + f j 2 K X] thus it belongs to none of the p by the lifting of Lazard's lemma. Since f i 2 p i and f j 2 p j , the proposition is proved.

An example

We will follow the next example throughout this paper. It is a system of three di erential polynomial equations.

< :

u 2 x ? 4u = 0; u xy v y ? u + 1 = 0; v xx ? u x = 0: There are two derivations @=@x and @=@y and two di erential indeterminates u; v (meaning we are looking for two functions v(x; y) and u(x; y) of two independent variables). We denote u x = @u=@x and u xy = @ 2 u=@x@y. v xx ? u x ; 4v y u + u x u y ? u x u y u; u 2 x ? 4u; u 2 y ? 2u and S = fs 2 ; s 3 ; s 4 g where s 2 = 4u, s 3 = 2u x and s 4 = 2u y is the set of the nonconstant separants of the elements of A. The set of leaders of the elements of A w.r.t. R is L = fv xx ; v y ; u x ; u y g. The following diagrams show the sets of derivatives of the di erential indeterminates u and v. The leaders are presented by black circles. The areas which contain their derivatives are striped. The set of derivatives lying in the nonstriped areas is the set N of the derivatives under the stairs. The set N = fv x ; v; ug is nite here but does not need in general to be so. When nite, its cardinal is an invariant of the ideal 3 and gives the number of arbitrary constants the solutions of the system depend on. Here are the solutions of , computed using the diffalg package, the arbitrary constants being denoted c 0 ; c 1 and c 2 . u(x; y) = c 0 + c 3 x + c 4 y + x 2 + 2 c 4 c 3 xy + 1 2 y 2 ; v(x; y) = c 1 + c 2 x ? c4 c 3 ? c 4 c 3 c 0

4 c 0 y + c 3 2 x 2 + c 4 xy + c 0 c 3 y 2 + 1 3 x 3 + c 4 c 3 x 2 y + 1 2 xy 2 + c 4 6 c 3 y 3 :
The other constants c 3 and c 4 are algebraic over c 0 , c 1 and c 2 . They satisfy: c 2 3 = 4 c 0 ; c 2 Finally, let's say that we would like to compute a di erential system à = 0; S 6 = 0 regular w.r.t. the following elimination ranking R and such that A] : S 1 = Ã] : S1 .

> u x > u y > u > > v xx > v xy > v yy > v x > v y > v:
Running Rosenfeld{Gr obner directly over and R makes the memory of the computer explode.

Gr obner bases

Gr obner bases are presented in 9, 2]. Let R = K X] be a polynomial ring. A term over X is a power product of elements of X. If B is a Gr obner basis then ???! B denotes the reduction by the basis B, using the classical reduction algorithm of the Gr obner basis theory, which rewrites a term as a polynomial.

Let S = fs 1 ; : : : ; s t g. To each s k we associate an indeterminate s k over R and denote S = fs 1 ; : : : ; s t g. A Gr obner basis of S ?1 (A) is obtained by computing a Gr obner basis of (A fss ? 1 j s 2 Sg). Modulo the relation ss ? 1, each s = 1=s. See 10, Exercise 2.2, page 79].

2 Normal form of a di erential polynomial Let A = 0; S 6 = 0 be a regular di erential system. Denote L the set of its leaders and N the derivatives under the stairs. Given any di erential polynomial f 2 R, the following algorithm (Ritt's algorithm of partial reduction) computes a triple h; h; r] such that h is a power product of s's and h is the corresponding product of s's and r 2 K L; N] is a di erential polynomial satisfying h f = r (mod A]); f = h r (mod S ?1 A]):

By prem(f; g; u) we denote a function which computes the pseudo{remainder of the polynomial f by the polynomial g, viewed as univariate polynomials in the indeterminate u. partial rem(f; A) begin h := 1; h := 1; r := f while r = 2 K L; N] do let w be the highest derivative w.r.t. the ranking which appears in r and is also a proper derivative of the leader v of some p 2 A let 2 be such that v = w and s denote the separant of p h := h s deg(r;w) ; h := h s deg(r;w) ; r := prem(r; p; w) od return h; h; r] end Lemma 1 Let f f 0 (mod A]:S1 ) be two polynomials and denote h; h; r] = partial rem(f; A) and h 0 ; h 0 ; r 0 ] = partial rem(f 0 ; A). Then hr h 0 r 0 (mod S ?1 (A)).

Proof Using the speci cations of the reduction algorithm we have rh 0 r 0 h (mod A]:S 1 ) whence, using Rosenfeld's lemma, rh 0 r 0 h (mod (A) : S 1 ). Multiply both sides by hh 0 , simplify by hh = h 0 h 0 = 1 and use the fact that S ?1 ((A) : S 1 ) = S ?1 (A).

Notice that, if h; h; r] = partial rem(f; A), then the fraction r=h is not necessarily a canonical representative of f. Consider again the example of section 1.1 and take f = 2v yy .

Then r=h = 4u=u x . Take f 0 = u x . Then r 0 =h 0 = u x =1. Observe we have r=h 6 = r 0 =h 0 though 2v yy u x (mod A] : S 1 ) for u 2 x ? 4u 2 A] : S 1 . NF(f; A) begin h; h; r] := partial rem(f; A) let B be a Gr obner basis of S ?1 (A) let f be such that h r ???! B f return f end Theorem 2 The polynomial NF(f; A) belongs to K L; N; S] and we have f NF(f; A) (mod S ?1 A]):

It is a canonical representative of the residue class of f in S ?1 R=S ?1 A].

Proof The rst claim comes from the speci cations of the reduction algorithm partial rem and of the Gr obner basis reduction algorithm 2, proposition 5.27]. Let's assume now that f f 0 (mod A] : S 1 ). Let h; h; r] = partial rem(f; A) and h 0 ; h 0 ; r 0 ] = partial rem(f 0 ; A). By lemma 1 we have rh r 0 h 0 (mod (B)). Since a polynomial which is irreducible by a Gr obner basis B is a canonical representative of its residue class modulo (B) 2, proposition 5.38 (vi)], the canonicity claim is proved.

Using our implementation of the NF algorithm, we nd NF(2v yy ; A) = u x = NF(u x ; A). This example shows also that theorem 3 below would not hold at all if NF did not compute canonical representatives ! This theorem is important: it basically says that determining if there exists a linear dependency between di erential polynomials p 1 ; : : : ; p t in a factor ring R= A] : S 1 amounts to determine if there exists a linear dependency between their normal forms, regarding them as vectors of elements of K. Theorem 3 Let p 1 ; : : : ; p t 2 R be di erential polynomials. There exists 1 ; : : : ; t 2 K such that 1 p 1 + + t p t 2 A] : S 1 if and only if 1 NF(p 1 ; A) + + t NF(p t ; A) = 0. Proof On one hand p 2 A] : S 1 if and only if NF(p; A) = 0 (theorem 2); on another one 3 K ahler di erentials See 10, chapter 16] for a presentation of K ahler di erentials in the purely algebraic case and 13] for K ahler di erentials in di erential algebra.

De nition 2 Let K be a eld. If G is an algebra over K then the module of K ahler di erentials of G over K, denoted G=K is the module over G generated by the set fd(b) j b 2 Gg The following theorem is purely algebraic.

Theorem 4 If K is a eld of characteristic zero and G is a eld extension of K then the elements 1 ; : : : ; r of G are algebraically independent over K if and only if d( 1 ); : : : ; d( r ) are linearly independent over G.

Proof 10, theorem 16.14, page 400] or 13, lemma, page 94]. Theorem 5 Let K be a di erential eld. If G is a nitely generated di erential eld extension of K, say G = Kh 1 ; : : : ; r i, then G=K is generated by d( 1 ); : : : ; d( r ) as a di erential vector space over G. v xx ? u x ; 4v y u + u x u y ? u x u y u; u 2 x ? 4u; u 2 y ? 2u:

We are looking for a di erential system à = 0; S 6 = 0 equivalent to A = 0; S 6 = 0 for the elimination ranking

> u x > u y > u > > v xx > v xy > v yy > v x > v y > v:
The K ahler di erentials in R=K of the elements of A are

d(A) 8 > > < > > :
d(v xx ) ? d(u x ); 4ud(v y ) + (u x ? u y u)d(u x ) + (u x ? u x u)d(u y ) + (4v y ? u x u y )d(u); 2u x d(u x ) ? 4d(u); 2u y d(u y ) ? 2d(u):

Let's assume that the di erential ideal A] : S 1 is prime and denote G the di erential eld of fractions of R= A] : S 1 . We apply theorem 5 to compute the set of leaders of Ã. To make the set d(A) generates G=K as a di erential vector space over G, we may just 1. de ne two new di erential indeterminates du and dv ; 2. code the di erentials d( u) and d( v) which occur in d(A) as derivatives du and dv of the new di erential indeterminates ; 3. enlarge the so transformed system d(A) with the equations A = 0 and the inequations4 S 6 = 0 in order to have the coe cients of the di erentials taken in G (i.e. mod A]:S 1 ) ;

8 > > > > > > > > > > < > > > > > > > > > > :
dv xx ? du x ; 4udv y + (u x ? u y u)du x + (u x ? u x u)du y + (4v y ? u x u y )du; 2u x du x ? 4du; 2u y du y ? 2du; v xx ? u x ; 4v y u + u x u y ? u x u y u; u 2 x ? 4u; u 2 y ? 2u: 4. run Rosenfeld{Gr obner over the enlarged system for the suitable ranking:

(a) the derivatives of du and dv are ranked according to R ;

(b) every derivative of du or dv is ranked higher than any derivative of u or v ;

(c) the derivatives of u and v are ranked according to R (so that Rosenfeld{Gr obner does not waste time modifying the equations of A). The Rosenfeld{Gr obner algorithm quickly computes a regular di erential system. We do not give the equations in R which are the ones of A. The other ones are du = u y u x 2u dv y ; dv xx = u y u dv y ; dv xy = u x 2u dv y ; dv yy = u y 2u dv y : We can immediately deduce from this computation that the leaders of à are u; v xx ; v xy ; v yy and, using theorem 4, that for each set W 1 = fu; v y g, W 2 = fv xx ; v y g, W 3 = fv xy ; v y g and W 4 = fv yy ; v y g we have A] : S 1 \ K W i ] 6 = (0).

The following diagram shows the derivatives of u and v. The leaders of the elements of à are presented by black circles. The areas which contain their derivatives are striped. We may then verify that the number of derivatives lying under the stairs for the ranking R is the same as for R. What if A] : S 1 is not prime ? We may consider (proposition 1 and theorem 6) that we perform the computations separately modulo the di erential prime components of A] : S 1 . We give in section 6.1 a method to verify the correctness of the result. [START_REF] Fran Cois Boulier | Representation for the radical of a nitely generated di erential ideal[END_REF] The algorithm dfglm 5.1 Normal form of a K ahler di erential Consider again the example of section 1.1. The system d(A) may be viewed as a rewrite system which rewrites the di erentials of the leaders of the elements of A as linear combinations of d(w) where w 2 N with coe cients in K L; N; S]. Recall s denotes the formal inverse of s.

d(A) 8 > > < > > : d(v xx ) ! d(u x ); d(v y ) ! ?s 2 (u x ? u y u)d(u x ) ? s 2 (u x ? u x u)d(u y ) ? s 2 (4v y ? u x u y )d(u); d(u x ) ! 4s 3 d(u); d(u y ) ! 2s 4 d(u):
We denote ???! d(A) the reduction by the rewrite system d(A). For instance, 3d(v xx ) + d(v) ???! d(A) 3d(u x ) + d(v):

Let's generalize and consider any regular di erential system A = 0; S 6 = 0 of R. Denote L the set of leaders of A and N the set of derivatives lying under the stairs. Consider the following algorithm. Proof The speci cations of the reduction algorithm imply that d is a linear combination of d(w) where w 2 L N with coe cients in K L; N; S]. Since d(A) rewrites the d(w) where w 2 L in terms of the d(w 0 ) where w 0 2 N, the rst claim is proved.

The second claim comes from the facts that if p 2 S ?1 A] then d(p) = 0 in G=K , that f = hr (mod S ?1 A]) and that A S ?1 A].

Proposition 4 Let A = 0; S 6 = 0 be a regular di erential system of R and G the total ring of fractions of R= A] : S 1 . For every 1 ; : : : ; t 2 G and w 1 ; : : : ; w t 2 N, if 1 d(w 1 ) + + t d(w t ) = 0 in G=K (1)

then 1 = = t = 0.
Proof Let p 1 ; : : : ; p n be the di erential prime components of A] : S 1 . Denote G i the eld of fractions of R=p i . By proposition 1 and theorem 6 G=K ' G 1 =K Gn=K . If a nontrivial relation (1) held in G=K then such a nontrivial relation would hold in some G i =K too and by theorem 4 the set N would be algebraically dependent modulo p i . This contradiction to theorem 1 proves the proposition. Theorem 7 Let A = 0; S 6 = 0 be a regular di erential system. Denote G = S ?1 R=S ?1 A].

The di erential DNF(

f; A) is a canonical representative of d(f) in G=K .
Proof Assume d(f) = d(f 0 ) in G=K . We have DNF(f; A) = DNF(f 0 ; A) in G=K by proposition 3. Both these di erentials are linear combinations of d(w) where w 2 N. Proposition 4 implies their coe cients are pairwise equal (as elements of G). Since these coe cients are denoted by canonical representatives (proposition 2) the di erentials DNF(f; A) and DNF(f 0 ; A) are syntactically equal. Theorem 8 Assume A] : S 1 is prime. Let fv 1 ; : : : ; v t g be a set of derivatives. Then K v 1 ; : : : ; v t ] \ A] : S 1 6 = (0) if and only if there exist 1 ; : : : ; t 2 K L; N; S] such that 1 DNF(v 1 ; A) + + t DNF(v t ; A) ???! B 0 where B is a Gr obner basis of the ideal S ?1 (A) (the reduction applying on the coe cients of the di erential).

Proof Denote G the fraction eld of R= A]:S 1 . By de nition, K v 1 ; : : : ; v t ]\ A]:S 1 6 = (0) if and only if the images in G of the derivatives v 1 ; : : : ; v t are algebraically dependent over K i.e. (theorem 4) if and only if there exists 1 ; : : : ; t 2 G such that

1 d(v 1 ) + + t d(v t ) = 0 in G=K (2)
Multiplying the coe cients by some nonzero element of G to clear the denominators, replacing them by their normal forms and substituting DNF(v i ; A) to each d(v i ) (using proposition 3) we see relation ( 2) is equivalent to

1 DNF(v 1 ; A) + + t DNF(v t ; A) = 0 in G=K (3) 
where the coe cients belong to K L; N; S]. By proposition 3 the di erential on the left hand side of ( 3) is a linear combination of d(w) where w 2 N. Thus by proposition 4 relation (3) holds if and only if all its coe cients are zero modulo S ?1 A] i.e. (using Rosenfeld's lemma) if and only if they are all reduced to zero by the Gr obner basis B of S ?1 (A).

Assume A] : S 1 is prime. The above theorem permits us to look for the existence of a di erential polynomial in A]:S 1 \K v 1 ; : : : ; v t ] by interpreting DNF(v 1 ; A); : : : ; DNF(v t ; A) as vectors and performing (say) gaussian elimination. A Gr obner basis of S ?1 (A) being su cient to test equality with zero. This is applied in the dfglm algorithm of the next section. The ideal A]:S 1 is prime if and only if (A):S 1 is prime (this is a corollary to Rosenfeld's lemma). So the primality test is algorithmic.

Assume A]:S 1 is not prime. Then the total ring of fractions of R= A]:S 1 is isomorphic to a product of elds K 1 K n (proposition 1). We may run the gaussian elimination algorithm over the product and consider we are computing in parallel over each component. If a linear combination of DNF(v i ; A) is reduced to zero then it is zero over all the components; if nonzero, then it is nonzero over at least one of the components. More satisfactory, each time we need to invert some element in G, we could test if it is invertible or not (this is algorithmic by 5, corollary 4.1, point 3] but rather expensive). If it is not then a splitting of the ideal A] : S 1 is discovered and computations can go on by considering separately the two cases. This is the same idea as the one applied in commutative algebra in 16, 17, 1].

It is also sometimes possible to perform computations as if G were a eld and verify the correctness of the result afterwards (section 6.1).

An analogue of the FGLM algorithm

The following algorithm applies theorem 8 in the case of a regular di erential system A = 0; S 6 = 0 such that the set N of derivatives under the stairs is nite and the ideal A] : S 1 is prime. In that case, G=K is a nite vector space over the eld of fractions of R= A] : S 1 .

The algorithm is directly inspired from the FGLM algorithm 11]. Assume A = 0; S 6 = 0 is a regular di erential system for some ranking R. Given another ranking R, we are looking for a regular di erential system à = 0; S 6 = 0 such that A] : S 1 = Ã] : S1 . The algorithm dfglm below returns the list of the leaders of Ã.

to see is a list of derivatives to consider. This list is ordered increasingly w.r.t. R. new leaders is the list of the leaders of the elements of Ã. new irr is the list of the derivatives which are not derivatives of any element of Ã. the function call update(v; to see) inserts the derivatives of v w.r.t. all the derivations 1 ; : : : ; m in the list to see. Duplicates are removed. The list is sorted increasingly w.r.t. R. dfglm(A = 0; S 6 = 0; R) begin to see := the list of the di erential indeterminates u 1 ; : : : ; u n sorted increasingly w.r. Why should dfglm be better than K ahler ? We do not have any proof of that conjecture but a strong hint: the completion process performed by Rosenfeld{Gr obner over systems of linear PDE is close to the completion process performed by the Buchberger's algorithm (it is the same when the linear PDE depend on only one di erential indeterminate and have constant coe cients) while the behaviour of dfglm is close to the one of FGLM. And it is known that computing a Gr obner basis by change of orderings using FGLM is much faster than calling the Buchberger's algorithm.

An example

We detail the computation over the system given in section 1.1. We assume the di erential ideal A] : S1 is prime. We have s 2 = 1=(4u) and s 3 = 1=(2u x ) and s 4 = 1=(2u y ). The di erentials DNF(v; A) are linear combinations of d(u), d(v) and d(v x ). We take for R the elimination ranking > u x > u y > u > > v xx > v xy > v yy > v x > v y > v: 1. Initially to see = v; u]. The lists new irr and new leaders are empty. 2. The derivative v is picked from to see and stored in new irr. We have DNF(v; A) = d(v).

After update we get to see = v y ; v x ; u]. A] :S 1 \ K W] 6 = (0). We are looking for a nonzero polynomial. For this, we enumerate all the terms t 1 ; : : : over W by increasing total degree. At every step j we consider t 1 ; : : : ; t j and we apply theorem 3 to search 1 ; : : : ; j 2 K such that 1 t 1 + + j t j 2 A] : S 1 or to determine no such coe cients exist. Continuing the example of section 1.1 and applying this method, we obtain the system  8 > > < > > : 6.1 Verifying the correctness of the result Now, we may verify A] : S 1 = Ã] : S1 by verifying 5, corollary 4.1] on one hand that A Ã] : S1 and no element of S divides zero modulo Ã] : S1 , on another hand that à A] : S 1 and that no element of S divides zero modulo A] : S 1 . This nal veri cation proves that the computations we performed assuming A] : S 1 was prime were correct. 7 Euler's equations for an incompressible uid Written as a system of polynomial di erential equations, Euler's equations for an incompressible uid in two dimensions are (example taken from 19]) 8 < :

v 1 t + v 1 v 1 x + v 2 v 1 y + p x = 0; v 2 t + v 1 v 2 x + v 2 v 2 y + p y = 0; v 1
x + v 2 y = 0: The di erential indeterminates are v 1 ; v 2 ; p where v 1 and v 2 are the two coordinates of the speed and p is the pressure. The derivations are @=@x; @=@y and @=@t. The base eld is the eld K = Q of the rational numbers.

For some orderly ranking, the Rosenfeld{Gr obner algorithm applied over returns a unique regular di erential system A = 0 (the leaders appear on the left hand side of the equations) A 8 > > < > > :

p xx = ?2v 2 x v 1 y ? 2(v 2 y ) 2 ? p yy ; v 1 t = ?v 2 v 1 y ? p x + v 2 y v 1 ; v 1 x = ?v 2 y ; v 2 t = ?v 1 v 2
x ? v 2 v 2 y ? p y :

The system A is orthonomic (i.e. all leaders appear linearly and the initials are 1). This proves the di erential ideal ] = A] is prime 15, lemma 2, page 167]. A derivative of each di erential indeterminate appears as a leader of some element of A. The idea was: enumerating the derivatives of the pressure p by increasing order and apply theorem 8 to determine the existence of a relation in the di erential ideal. Observe we are not in the hypotheses of the dfglm algorithm for the solutions of do not depend on nitely many arbitrary constants (i.e. N is in nite). We can however use this algorithm by halting computations as soon as a leader is found. We make sure to nd one because the di erential dimension is zero. However, the coe cients of the normal forms of the K ahler di erentials were huge and made the memory of the computer explode. So we applied the fact that A is orthonomic which implies that the factor ring K L; N]=(A) is a free algebra: the sum and the product of two normal forms is still a normal form. For this reason, we could evaluate the normal forms as integer numbers to simplify computations. This is because of this use of evaluation that we say we only nearly proved our claim.

We tried afterwards to seek a di erential polynomial in ] \ K X] using theorem 3 but could not succeed (even evaluating normal forms to oating point numbers and using PSLQ 12]) because of the large number of monomials to consider.

A linear example of Cartan

The situation is simpler in the case of a system of linear PDE (there is no need of K ahler di erentials). We illustrate it over the following system of six linear PDE. ? 1 2 (x 2 ) 2 V 1

x 2 + V5 x 2 = 0; ?x 2 x 3 V 1 x 3 + x 2 V4 

x 3 ? V 3 + V 4 x 1 ? x 3 V 1

x 1 + x 3 V 4

x 4 ? (x 3 ) 2 V 1

x 4 + 1 2 (x 2 ) 2 V 4

x 5 ? 1 2 (x 2 ) 2 x 3 V 1 x 5 = 0; ?(x 2 ) 2 V 1

x 3 + x 2 V 3

x 3 ? V 2 + V 3 x 1 ? x 2 V 1

x 1 + x 3 V 3

x 4 ? x 3 x 2 V 1

x 4 + 1 2 (x 2 ) 2 V 3

x 5 ? 1 2 (x 2 ) 3 V 1 x 5 = 0; ? 1 2 (x 2 ) 3 V 1 x 3 + x 2 V 5

x 3 ? V 2 x 2 + V 5

x 1 ? 1 2 (x 2 ) 2 V 1 x 1 + x 3 V 5

x 4

? 1 2 x 3 (x 2 ) 2 V 1 x 4 + 1 2 (x 2 ) 2 V 5

x The symmetries of are then given by vector elds V = (V 1 ; : : : ; V5 ) with ve components such that the Lie derivative of each element of w.r.t. V is equal to zero modulo . Computing modulo we rewrite d(x 3 ); d(x 4 ); d(x 5 ) in terms of d(x 1 ) and d(x 2 ). We thus get a system of four linear equations in d(x 1 ) and d(x 2 ) (one of them is identically zero) with linear PDE in the V i and their derivatives for coe cients. The symmetries are thus given by the common zeros of these coe cients. This is the system , computed with the determine function of liesymm.

Conclusion

We believe this paper contributes to prove that being able to compute normal forms is important since it allows to perform easily linear algebra in factor structures. In particular, the algorithms presented in this paper rely on the computation of the normal form of a fraction p=s in S ?1 R=S ?1 (A) where A = 0; S 6 = 0 is a triangular system. This computation is possible using Gr obner bases methods but there does not seem to be any known method based on triangular sets and pseudo{reduction 5 . This is a pain for we implemented since 1998 versions (joint work with Fran cois Lemaire) of Rosenfeld{Gr obner in MAPLE and C++ using di erent versions of the lextriangular triangularization algorithm 16, 17] instead of Gr obner bases and we would like to completely avoid these latter.

The author would like to thank M. Petitot for indicating him theorem 4, for the algorithm K ahler and for the analysis of Cartan's example.

  (a + b) = a + b; (a b) = ( a)b + a( b): A di erential ring is a ring endowed with nitely many derivations which commute pairwise. The commutative monoid generated by the derivations is denoted . Its elements are the derivation operators = a 1 1 am m where the a i are nonnegative integer numbers. The sum of the exponents a i , called the order of the operator , is denoted ord . The identity operator is the unique operator with order 0. The other ones are called proper. If = b

  + b 0 ) = d(b) + d(b 0 ) for all b; b 0 2 G d(b b 0 ) = b d(b 0 ) + b 0 d(b) for all b; b 0 2 G d(a) = 0 for all a 2 K: From the de nition, follows the fact that d(a=b) = (d(a) b ? a d(b))=b 2 for every a=b 2 G. Proposition 2 If K is a di erential eld and G is a di erential algebra over K then G=K has a canonical structure of di erential module over G such that d(b) = d( b) for all b 2 G and derivation over G. Proof 13, proposition, page 93].

Proof 13 , 10 4

 1310 lemma, page 94]. Theorem 6 If G 1 ; : : : ; G r are algebras over K and G = G 1 The algorithm K ahler Let's consider again the system of R = KfUg given in section 1.1.

  DNF(f; A) begin let B be a Gr obner basis of S ?1 (A) h; h; r] := partial rem(f; A) d := (d(r)h ? rd(h))h 2 let d be such that d ???! d(A) ???! B d return d end Proposition 3 Denote G = S ?1 R=S ?1 A]. The di erential DNF(f; A) is a linear combination of d(w) where w 2 N with coe cients in K L; N; S]. It is equivalent to d(f) in G=K .

  The derivatives ocuring in are u x ; u; v y ; u xy ; v xx .Let's x the following ranking R. This is the ranking w.r.t. which computations are nearly immediate.> v xx > v xy > v yy > u xx > u xy > u yy > v x > v y > u x > u y > v > u:The leaders of the elements of w.r.t. R are u x ; u xy ; v xx . Running the Rosenfeld{Gr obner algorithm over and R, we get only one regular di erential ideal

			p ] = A] : S 1
	where	A	8 > > < > > :

  3. The derivative v y is picked from to see. Its di erential Thus v y is stored in new irr. After update we get to see = v x ; v yy ; v xy ; u]. 4. The derivative v x is picked from to see. Its di erential DNF(v x ; A) = d(v x ) is not linearly dependent on DNF(v; A) and DNF(v y ; A). Thus v x is stored in new irr. After update we get to see = v yy ; v xy ; v xx ; u]. 5. The derivative v yy is picked from to see. Its di erential Thus v yy is stored in new leaders. 6. The derivative v xy is picked from to see. Its di erential DNF(v xy ; A) = 2s 4 d(u) satis es a linear relation with DNF(v y ; A). Thus v xy is stored in new leaders. 7. The derivative v xx is picked from to see. DNF(v xx ; A) = s 4 (u x u y ? 4v y )d(u) satis es a linear relation with DNF(v y ; A). Thus v xx is stored in new leaders. 8. The derivative u is picked from to see. Its di erential DNF(u; A) = d(u) satis es a linear relation with DNF(v y ; A) thus is stored in new leaders. 9. The list to see is empty. The list u; v xx ; v xy ; v yy ] of the leaders of à is returned. The dfglm algorithm can easily be transformed to provide with each new leader v a set of This algorithm follows either K ahler or dfglm. Let W be a set of derivatives such that

	6 Searching a polynomial knowing the alphabet
	DNF(v y ; A) = u x u y ? 4v y 4	d(u)
	is not linearly dependent on DNF(v; A) = d(v). DNF(v yy ; A) = s 4 (u x u y ? 4v y ) 2	d(u)
	satis es a linear relation with DNF(v y ; A). derivatives v 0 1 ; : : : ; v 0 t such that A] : S 1 \ K v; v 0	

  Since the ranking is orderly, the ideal has di erential dimension zero 15, theorem 6, page 115]. This proves that ] \ Kfpg 6 = (0). Observe it is not di cult to compute a nonzero di erential polynomial in ] \ Kfv 1 g or in ] \ Kfv 2 g (see 19] for a sixth order polynomial and 3, page 94] for a fth order one). It is however a challenge to compute some nonzero di erential polynomial belonging to ] \ Kfpg ! Using theorem 8 we could solve a rst step of this problem by (nearly) proving that ] \ K X] 6 = (0) where X is the following alphabet of 39 derivatives: X = fp ttxxx ; p ttxxy ; p ttxyy ; p ttyyy ; p txxxx ; p txxxy ; p txxyy ; p txyyy ; p tyyyy ; p xxxxx ; p xxxxy ; p xxxyy ; p xxyyy ; p xyyyy ; p yyyyy ; p ttxx ; p ttyy ; p txxx ; p txxy ; p txyy ; p tyyy ; p xxxx ; p xxxy ; p xxyy ; p xyyy ; p yyyy ; p txx ; p txy ; p tyy ; p xxx ; p xxy ; p xyy ; p yyy ; p xx ; p xy ; p yy ; p x ; p y g

  5 ? 1 Ã := ; new irr := ; while to see 6 = the empty list do v := rst(to see) to see := tail(to see) if v is not a derivative of any element of new leaders then if there exists some w 2 K (w 2 new irr) s.t. NF(v; A) = P

	new leaders := new leaders fvg à := à fv ? P w wg else new irr := new irr fvg	w NF(w; A) then
	to see := update(v; to see)	

od à end

We precise some of the terms used in this introduction in the next section.

u). If A is a set of di erential polynomials then pairs(A) denotes all the pairs that can

We use the fact that if p p 0 are two prime ideals then dimp dimp 0 ; if moreover dimp = dimp 0 then p = p 0 . See for instance 15, proposition 4, page 20].

= 2 c 0 ; c 0 6 = 0:[START_REF] Becker | Gr obner Bases: a computational approach to commutative algebra[END_REF] It is the degree of algebraic transcendency of the eld of fractions of R=p over K, where p is any di erential prime component of A] : S 1 .

NF(p 1 ; A) + + t NF(p t ; A) is equal to its normal form.

The inequations are important, to avoid useless splittings.

; : : : ; v 0 t ] 6 = ;. Over the above example, the algorithm would return fu; v y g; fv xx ; v y g; fv xy ; v y g; fv yy ; v y g]: This is the same answer as the one given by K ahler !

(x 2 ) 4 V 1 x

= 0; ?x 3 V 1 x 2 + V[START_REF] Cois | Etude et implantation de quelques algorithmes en alg ebre di erentielle[END_REF] x 2 = 0; ?x 2 V 1x 2 + V 3 x 2 = 0:Applying the Rosenfeld{Gr obner algorithm over for some orderly ranking R, we nd a regular di erential system A = 0 made of linear PDE with coe cients in Q(x 1 ; : : : ; x 5 ) the solutions of which depend on 14 arbitrary constants. There are no inequations since the elements of A are linear. Here is the ranking R if j j > j j then V i > V j for any i; j, if j j = j j and > w.r.t. the lex. order x 1 > > x 5 then V i > V j for any i; j, if i < j then V i > V j . We do not give A which is a bit too large, just its set of leaders:V 5 x 4 x 5 x 5 ; V 5 x 5 x 5 x 5 ; V 3 x 4 x 4 ; V 4 x 4 x 4 ; V 5 x 4 x 4 ; V 3 x 4 x 5 ; V 4 x 4 x 5 ; V 2 x 5 x 5 ; V 3 x 5 x 5 ; V 4 x 5 x 5 ; V 1 x 1 ; V 2 x 1 ; V[START_REF] Becker | Gr obner Bases: a computational approach to commutative algebra[END_REF] x 1 ; V 4 x 1 ; V 5 x 1 ; V 1 x 2 ; V 2 x 2 ; V 3 x 2 ; V 4 x 2 ; V 5 x 2 ; V 1 x 3 ; V 2 x 3 ; V 3 x 3 ; V 4 x 3 ; V 5 x 3 ; V 1 x 4 ; V 2

Running fglm for linear PDE over A = 0 and R we have got in a few seconds the desired system à = 0. Here is the set of leaders of Ã:V 1 x 1 ; V 1 x 2 ; V 1 x 3 ; V 1 x 4 ; V 1 x 5 ; V 2 ; V 3 ; V 4 x 1 x 1 ; V 4 x 1 x 4 ; V 4 x 4 x 4 ; V 4x 2 ; V 4 x 3 ; V 4 x 5 ; V 5x 3 x 3 x 3 ; V 5 x 3 x 3 x 5 ; V 5 x 3 x 5 x 5 ; V 5 x 4 x 5 x 5 ; V 5 x 5 x 5 x 5 ; V 5 x 1 x 1 ; V 5 x 1 x 2 ; V 5 x 1 x 3 ; V 5 x 1 x 4 ; V[START_REF] Fran Cois Boulier | Representation for the radical of a nitely generated di erential ideal[END_REF] x 1 x 5 ; V 5 x 2 x 2 ; V 5 x 2 x 3 ; V 5 x 2 x 4 ; V 5 x 2 x 5 ; V 5

After this paper was written, this problem was solved by Fran cois Lemaire and the author in

6].

x 4 ; V 1 x 5 : We are looking now for a di erential system à = 0 regular w.r.t. the following ranking R and such that A] = Ã]. The ranking R is the elimination ranking V 1 > > V 5 where the derivatives of each V i are ranked w.r.t. the orderly ranking: if j j > j j then V i > V i , if j j = j j then V i > V i if > for w.r.t. lexical ordering x 1 > > x 5 .

Applying the Rosenfeld{Gr obner algorithm over and R takes a lot of time. We interrupted the computation after a few minutes. Now, for linear PDE, we can design a variant of the FGLM algorithm which does compute the desired di erential system à = 0 (and not only its set of leaders !) regular w.r.t. R in a few seconds, starting from the di erential system regular w.r.t. R. Indeed, this variant of FGLM is very close to FGLM. 8.1 A note on this system

The system arises during the determination of the Lie symmetries of the dynamical system below, rst studied by E. Cartan 8]. See 18] for the mathematical theory. The system has ve state variables x i and two commands u 1 (t); u 2 (t) which are arbitrary functions.

x 1 t = u 1 ; x 2 t = u 2 ; x 3 t = u 1 x 1 ; x 4 t = u 1 x 2 ; x 5 t = 1 2 u 1 (x 2 ) 2 : We are interested in the vector elds which generate the Lie symmetries of which leave t invariant. Such symmetries are local di eomorphisms which transform the ve variables x i and map any admissible trajectory of to another one. We transform as a Pfa an system: d(x 1 ) = u 1 d(t); d(x 2 ) = u 2 d(t); d(x 3 ) = u 1 x 1 d(t); d(x 4 ) = u 1 x 2 d(t); d(x 5 ) = 1 2 u 1 (x 2 ) 2 d(t): Eliminating d(t) and the commands, we get three forms of Pfa in ve variables. d(x 3 ) = x 2 d(x 1 ); d(x 4 ) = x 3 d(x 1 ); d(x 5 ) = 1 2 (x 2 ) 2 d(x 1 ): We enlarge them with one 2{form (below), computed using the close function of the liesymm package of MAPLE. Let's call the so closed system. d(x 1 ) ^d(x 2 ) = 0: