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Abstract

In this paper, we investigate the approximation of the solution to the Vlasov equation
coupled with the Fokker-Planck-Landau collision operator using a phase space grid. On the
one hand, the algorithm is based on the conservation of the flux of particles and the distribution
function is reconstructed allowing to control spurious oscillations and preserving positivity and
energy. On the other hand, the method preserves the main properties of the collision operators
in order to reach the correct stationary state. Several numerical results are presented in one
dimension in space and three dimensions in velocity.
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1 Introduction

The evolution of a collisional plasma constituted of different species of particles is commonly
described by the Landau or Fokker-Planck-Landau (FPL) equation at the kinetic level (see [10,
13, 15, 16, 35]). It describes binary collisions between charged particles with long-range Coulomb
interactions. The evolution of particles « is given by the distribution function f,(¢,z,v), which
depends on time ¢, position z € © C R® and velocity v € R®. This distribution function is solution
to the scaled Fokker-Planck-Landau equation

%"‘ﬂ.vxfwfz.vvfa=uZQa,5(fa,fﬁ), (1.1)
B

where fg is the distribution function for particles 3, E = E(t, z) is the self-consistent electric field
given by the Poisson equation

V2 Bt) = 3 [ o), B(t.) = ~V.s(t.0) (1.2)

where ¢ = @(t, ) represents the electric potential. Finally, v is a nonnegative constant related to
the collision frequency, Qa,5(fa, fg) describes a-F collisions and reads

Qa.p(fa> fp) = Vo - (/R (v —v) (Vofa(0)f5(v') = Vo f5(v') fa(v)) dv') ; (1.3)

3

where ®(v) is the 3 x 3 matrix

B(v) = ﬁsw) (1.4)
and
S) = |vf’lz —v®wv. (1.5)

Classically, the collision operator (1.3) is obtained as a remedy to the loss of finiteness of Boltz-
mann collision operator for long-range Coulomb interactions. In Coulomb collisions, small angle
collisions play a more important role than collisions resulting in large velocity changes. The original
derivation of the equation based on this idea is due to Landau [24]. Several mathematical deriva-
tions of the equation have been performed; we mention here the works of Arsen’ev and Buryak [1],
Degond and Lucquin-Desreux [14], Desvillettes [17] and Rosenbluth, MacDonald and Judd [33].
For a recent review of the main mathematical aspects related to the equation, we refer the reader
to Villani [35] and the references therein.

In contrast with the Boltzmann equation where Monte Carlo methods play a major role in
numerical simulations, the application of these methods to long-range forces is challenging and
has not yet been completely successful. Most of the particle methods for Coulomb interaction,
although extensively used, have been derived more on a physical intuition basis and not directly
from the Landau equation. A detailed discussion about this is beyond the aims of the present
paper and we refer the reader to [29] for a more complete treatment.

Many different deterministic numerical schemes have been considered to Fokker-Planck type
equations [2, 5, 6, 7, 15, 18, 25, 30, 32]. Due to the computational complexity of the equation
(essentially caused by the large number of variables and the three-fold collision integral), many
papers have been devoted to treat simpler space homogeneous situations (the distribution function
fo does not depend on z) in the isotropic case [6] or for cylindrically symmetric problems in [26].
The construction of conservative and entropic schemes for the space homogeneous case has been
proposed by Degond and Lucquin-Desreux in [14] and by Buet and Cordier [5, 6]. These schemes
are built in such a way that the main physical properties are conserved at a discrete level. Positivity
of the solution and discrete entropy inequality are also satisfied.



Unfortunately, the direct implementation of such schemes for space non homogeneous compu-
tations is very expensive. Indeed, the computational cost increases roughly in proportion to the
square of the number of parameters used to represent the distribution function in the velocity
space. Thus several fast approximated algorithms to reduce the computational complexity of these
methods, based on multipole expansions [25] or multigrid techniques [7] have been proposed. A
different approach, based on spectral methods, has been recently proposed for the Landau equation
[21, 30]. A detailed comparison of the spectral scheme with the schemes proposed in [7, 25| has
been performed in [8].

Most of these methods have proven their efficiency in the homogeneous case, but few results
are available in the non homogeneous situation (see [30] for some results in 2D velocity). The main
goal of this paper is to develop a scheme in the z depending case and in the whole 3D velocity
space.

The first step consists to construct a good approximation of the Vlasov equation, which is
the left hand side of (1.1). Its numerical resolution is often performed through particle methods
(Particle In Cell) where the plasma is approached by a finite number of macro-particles. The
trajectories of these particles are computed using the characteristic curves given by the Vlasov
equation, whereas the self-consistent electric field is computed on a fixed grid (see [3] for more
details). Even if these methods give satisfying results, it is well known that particle methods are
noisy. Consequently, methods which discretize the Vlasov equation on a phase space grid have been
proposed [19, 20, 34]. These approaches allow to get an accurate approximation of the distribution
function in the phase space, but the non conservation of the energy due to the projection on the
grid and interpolation can be an inconvenient for the long time behavior of the solution, or for the
approximation of stationary states. In this paper, we propose a new scheme using a phase space
grid which overcomes these inconvenients: space and velocity derivatives are approximated by a
centered finite volume method and an adapted approximation of the electric field E allows us to
obtain a numerical scheme that conserves the total energy. As this kind of discretization does not
ensure the positivity of the unknown, we introduce slope correctors. The distribution function is
reconstructed following the second order PFC method (see [19, 21]). When the slope correctors
act (to avoid negative values for f) the total energy is not conserved any more; nevertheless the
variations are very small compared to others methods (semi-Lagrangian method, methods using
the characteristic curves).

Finally, we deal with the approximation of the collision operators Qg given by (1.3). We first
perform some assumptions on the different species of particles to get a simpler collision operator
when « differs from §. Then, we propose a conservative scheme, based on the ideas of [15] to
approximate this new operator, where particles are always interacting by Colombian potentials.
For a-a interactions, the full Fokker-Planck-Landau collision operator is used. The construction
of a conservative and entropic scheme for the general situation has been proposed in [15]. Even
if this scheme gives interesting properties (conservations, decay of the entropy, positivity of the
distribution function), its direct implementation is very expensive in high dimensions. Thus, we
adopt the multigrid method used in [7] to reduce the computational cost.

The rest of the paper is organized as follows. In the next section, we draw up the main prop-
erties of the solution to the Vlasov-Poisson system coupled with Fokker-Planck-Landau collision
operators and formally derive the operator intended to model collisions between different species.
We then present in section 3, a finite volume scheme for the discretization of the Vlasov-Poisson
equation. We next propose an approximation of the simplified collision operator and describe the
discretization of the full Fokker-Planck-Landau operator. Finally, several numerical results are
presented in section 4 to illustrate the efficiency of the method.



2 Description of the kinetic model

2.1 Transport equation

We first briefly recall some classical estimates on the Vlasov-Poisson (1.1)-(1.2) system without
collision (i.e. » = 0): mass and momentum are preserved with time,

d 1
— ot dzdv = teR*.
dt/RsXRSf(,w,v)(U) xdv = 0, €ER

Next, multiplying the Vlasov equation with » = 0 (1.1) by |v|? and performing an integration by
parts, we find the conservation of energy for the (1.1)-(1.2) system

2
4 / fa(t,z,v) ﬁdacdv + 1 / |E(t,z)|?de ) =0, teR".
dt RSXRS 2 2 RS

Finally, the Vlasov-Poisson equation (1.1)-(1.2) conserves the kinetic entropy
) = [ | falt) log(/alt))dado = HO).
R3xR3

2.2 Collision operators

The Fokker-Planck-Landau (FPL) operator is used for the description of binary collisions between
charged particles, for which the interaction potential is the long-range Coulomb interaction. In our
case, it describes electron-electron collisions. We recall the expression and some properties of the
FPL collision operator

Qa,a(faafa) =Vy- (~/113 (I)('U - UI)(vvfa(U)fa(UI) - vv’fa(vl)fa(v))dvl> 5

where ®(v) is the 3 x 3 matrix (1.4) and can be viewed as the orthogonal projector onto the
orthogonal plane to v. The algebraic structure of the FPL operator is similar to the Boltzmann
one, this leads to physical properties such that mass, momentum and energy are conserved

1
| Quallos o) | v | do=o0
R3

and the the entropy H(t) is decreasing,

dH

Po=4 /R | Jat,) 08 fut,0))do < 0.

Finally, the equilibrium state of the FPL operator, i.e. the distribution function f, which satisfies
Qu,o(fa, fa) =0, is given by a Maxwellian

p v — uq|?
Moo, T (V) = Wexp (—Tj) ; (2.1)

where p, is the total mass, u, the mean velocity and T, the temperature given by

Pa = / fa(w)dv, uq = i favdv, T, = !
R3

— A — uy|? dv. 2.2
| o | 0w @2)

The operator Q.3 describes collisions between two different species (for instance ions and
electrons) and can be derived from the two species form of the full Landau operator (1.3). If we



assume that the temperature T is negligeable compared to the temperature T,, of species « (2.2),
we may consider that the distribution function of species 3 is given by a Dirac measure in velocity

fﬁ(t,:l]',v) = pg(t,l‘) 60(” - UB(t,SL')), (2'3)

where the density pg and the mean velocity ug are given or satisfy hydrodynamic equations. The
so-obtained operator then reads (see [13] for a more physical derivation)

Qap(fa) = psVo - (B(v = up)Vufa), (2.4)

where ®(v) is the 3 x 3 matrix given by (1.4).
To emphasize the properties of () g, it is convenient to write its weak formulation: let ¢ be a
smooth test function, then we have

[ Qualt))e(wde = =ps [ (@0 = u5)Vufo) - Vo (2.5

We also introduce the weak log formulation

| Qe ptodo = =ps [ | (80— up)faV o0 £)) - Voo (2.6)
R3 R3

The different properties of Qo s are listed in the following proposition.

Proposition 2.1 The linear collision operator Qq g(fa) given by (2.4) satisfies
(i) the preservation of mass and energy, i.e.

[ @esfido =0, [ Quplfa)lo - usldv =0,
R3 R3

(“) KeT(Qa,B) = {fa(|'u - u5|2)}7

(i73) each convex function ¥ of f, is an entropy for Qq.p

d

% /R3 \I’(fa)dv <0.

Proof. (i) Our starting point is the weak formulation (2.5) to Qqa,8(fa). The conservation of
mass easily follows taking ¢ = 1. The conservation of energy is obtained by choosing ¢ = |v —ug|?
in (2.5)

/ Qup(fa) @) — ug[2dv = 2 pp / Voo - (B(0 = ug)(v — up)) dv = 0,
R3 R3

because the matrix ®(v) is symmetric and v € Ker ®(v).
(ii) When f, only depends on |v — ug|?, the following equality holds

Vo (fallv = ugl*)) = 2 (v = ug) fo(lv — usl).

As we saw above v € Ker (®(v)), consequently the functions f,(|v — ug|?) vanish the collision
operator.

Reciprocally, we consider f, € Ker(Qq,z), which means that Qo g(fo) = 0. Then, we multiply
Qa,8(fa) by fa, integrate over v € R3, and apply the Green formula

/ (v —ug)Vyfa - Vyfadv=0.
R3

Thus, from the nonnegativity of ®(v) we deduce that for almost every v € R?

(I)(U - uﬁ)vvfa . vaa =0. (27)



Thanks to the fact that ®(v) is a nonnegative matrix, (2.7) is equivalent to

Vofa € Ker ®(v — ug). (2.8)
We know that the kernel of ®(v) is generated by v, consequently (2.8) is equivalent to

Vofa = Av)(v —ug). (2.9)

We conclude that f, only depends on |v — ug|? by passing to spherical coordinates in (2.9).
(#44) We introduce the following quantity H(t),

H(t) = / T(L,)(v)dv. (2.10)
R3
Then, by differentiating with respect to the time, we get
dH . 6fa
T0 = [ U
= | Qusll) 0¥ () ) (2.11)

Using (2.5) and the property of nonnegativity of the matrix ®(v), we can easily prove

[ Qs @V ()00 = =ps [ (@0 = us)Vufa) - (.9 () ()
R3 R3

Finally, since ¥ is a convex function of f,

/ Qa6 (fo)W)¥ (fa)(w)dv = —Pﬁ/ (®(v —ug)Vyfa)  Vofal”(fa)(v)dv < 0.
RS3 R3

3 The numerical method

From now, we will only consider one species of particles, then the index a will be dropped and
the distribution function will be denoted by f. We first give a finite volume scheme to the Vlasov-
Poisson equation and then describe a conservative and entropy decreasing method to the collision
operators.

3.1 Approximation to the Vlasov-Poisson system

We introduce in this section a new scheme, based on a finite volume method for the discretization of
the Vlasov-Poisson equation. Thanks to this discretization coupled with an adapted approximation
of the electric field, we will prove that this scheme preserves the total energy. We consider a
cartesian grid in the phase space. For the sake of simplicity, we present the scheme in one dimension
in space and velocity, but it can be easily generalized to any higher dimensions.

We introduce the mesh points (#;41/2)ier and (vjy1/2)jez of the computational domain [Zmin, Tmaz] X
R. We will denote by Az = x;1/2 —%;_1/2 and Av = v; /5 —v;_1/2 the space and velocity steps
and by Cyj = [Zi_1/2,Zit1/2] X [vj_1/2,Vj41/2] the control volume. Finally, " = n At is the time
discretization.

We assume that f; is an average approximation of f on the control volume C; ; at time ¢"

n _ 1 n
= Az Ay /CM f@", z,v)dzdv.



Then, we approximate the average of f at the time ¢"*! by integrating the Vlasov equation on a
control volume and using a backward Euler scheme in time

n n At Vit n n
i,]‘_H = fm- T Az v / v (f ($i+1/2av) - f (%—1/27”)) dv
Vj—1/2
At Tit1/2 . n N
_A.'L'A’U/ E (IL’) (f (SU,Uj+1/2) - f ($)Uj71/2)) dz. (31)
Ti—1/2

We have to approach the fluxes at the interface of the control volume [z;_1 /2, %i11/2) and [vj_1/2,vj41/2)

G e v, VieT
Aoy v Liy1/2,0)av, 1€ 1,
Av i1/ ¢
1 Tit1/2 .
A_x/ E™(z)f"(%,vj41/2)dz, Vj€Z,

Ti—1/2

where E™(z) is an approximation of the electric field deduced from the numerical resolution to the
Poisson equation (1.2).

The main step to get an accurate solution is to reconstruct the distribution function in each
direction. For that purpose, we fix the velocity v € [vj_1/2,v;41/2) and consider the function
fr(z,v) as an approximation of the distribution function f(¢",z,v). Thus, the high order approx-
imation f(z,v) is obtained via a reconstruction by primitive Fj(x,v) (where F}(z,v) stands for
the primitive of f;(x,v) with respect to ). We denote by

1 Tit1/2
fitv) = A_a:/ f@", @, v)dz, for v € [vj_1/2,0j11/2),

i—1/2

hence,
Fr(ziy1/2,v) — Fa(zi_1/2,v) = Az f*(v).

We present a method of reconstruction allowing to obtain a second order scheme, which preserves
the positivity using slope limiters. To this aim, we first build an approximation of the primitive
using the stencil {z;_1 2, Z;41/2, Zit3/2 } when the velocity v is positive and {2;_3 /2, Zi_1/2, Tit1/2 }
when v is negative. Let us assume that v is positive, then we get

(z — $i—1/2)($ - $i+1/2)
N (FL2a (0) = £7(0).
By differentiation, we obtain a second order accurate approximation of the distribution function
on the interval [z;_1/2,%iy1/2)

Fu(z,v) = Frp(Ti—1/2,v) + (@ — @i_12) £ (v) +

o, @22 (g0 0) 7))

This appears as a second order approximation, which can generate spurious oscillations. We then
introduce a slope corrector, ensuring the positivity of the distribution function on the interval

[%‘—1/2, $i+1/2)

fula,) = 2 @,0) = fr() + &

fulew) = o)+t )P () - ), (32
with
17 (v) = min (1, 2f7 () /(fi1(v) = 7)), i (ffa(0) = f(0) > 0. (3.3)
For a negative velocity v, the reconstruction on the interval (2;_1/2, Zit1/2) is
o) = o)+ 0TI (12 ) — g, o), (5.4



with
n; (v) = min (1, =2f7(0)/(fI'(v) = fL1(v))), if (f(v) = fL1(v)) <O. (3.5)

Now, we proceed in the same way to reconstruct fj, in the v direction depending on the sign of
The approximation of the distribution function fi(z,v) given by (3.2)-(3.3) or by (3.4)-(3.5)
satisfies the following properties.

Proposition 3.1 The approzimation of the distribution function fy(x,v) defined by (3.2) or by
(3.4) using the second order reconstruction with the slope correctors (3.8) and (3.5) satisfies

e The conservation of the average

i+1/2 UJ+1/2
(z,v)dzdv = f].
Aa: Av / /v I

i—1/2
o The positivity of fr(x,v).

We finally obtain the following scheme, which represents an approximation of (3.1)

f"+1—f[fj— At (

A
AzAv : (

i/2 W—l/z,j) ~ Apiy \Giitiz = ¢2j_1/2) : (3-6)
with B
¢?+1/2 = Avv; fz'n+1/2,ja ¢?:j+1/2 = Az B} fz’r,bj+1/27

where the distribution function is approximated on the boundary of the control volume as follows

noo_ { L (Pl — f19)/2, if v 20,
H1/2 fz'r-bi—l,j - ni-‘,—l,j(fiT-L}—l,j - fz'rfj)/Za it v; <0,

and .
P (/R T R
i+ z,]-i—l E 3,5+1 (f't,]-i-l - f:?])/27 if Ezn <0

where the slope limiters are given by

ni; = min (1,2f7/(ff ;= f15)) 5 it (ff;—fiy) >0
ni; =min (L =2f%/(ff = f10), i (Ff = fle,) <O

for the space variable, and

ef; =min (L2f2/(fF500 — I7)) » if (f,m i) >0,
Ez_,]—mln(l—Q il (1 — iT:J'*l))’ it (ffy - fio) <0,

for the velocity variable. The following proposition gives some properties of the scheme

Proposition 3.2 Assume the initial datum ( fgj)z',j is nonnegative. If the time step satisfies the
following CFL type condition
At < Cmin(Az, Av), (3.9

where C > 0 is related to the mazimum norm of the electric field and the upper bound of the velocity
domain. Then the scheme defined by (3.6) gives a nonegative approximation.



The proof can be deduced from the Proposition 2.1.
When the slope correctors do not occur in the approximation of the velocity derivative (it is the
case when the distribution function is sufficiently smooth), we obtain a classical centered scheme

! " rn f'y,b'-l—l _f'rf'_l
( hj—1/2 ¢i,j+1/z) = Ep ol b

AzxAv 2Av
Thus, from the following approximation of the electric field
- E*M L Er
Er = i (3.10)
2
the so-obtained scheme can be written as
n At EM + EP
Bt = = s (Vs = ¥s) — 8¢ (B o parry) . )
where D, , is the usual second order centered discrete operator
D..fj= finn ~Jin . (3.12)

2 Av

On the other hand, the electric field at time ¢" is determined through the following approximation
to the Poisson equation
_D;Ezn = pzn —PB Ezn = _Dz¢in7 (313)

where D, is a discrete finite difference operator whereas D} stands for its formal adjoint, which
represents an approximation of —9, (for example, we can consider D, as the usual uncentered
discrete operator). Hence, the following equality holds

(D*p, f) = (¢, Df), for all sequences ¢, f,

where (,) denotes an inner product. Finally, E?“ is a prediction of the electric field at time ¢!
obtained from the discretization to the Poisson equation (3.13) and the continuity equation

P = pi + At DT, (3.14)

where J is an approximation of the current density j(t,z)
=Av Y v;fl, (3.15)
jez

whereas pl' is computed iteratively from the initial density. The approximation of the Vlasov-
Poisson equation (3.11)-(3.13) obtained from this algorithm satisfies

Proposition 3.3 The approzimation of the distribution function defined by the scheme (3.11)-
(3-13) preserves total mass
AzAv) fl=Acdv)  f)
i,j 12}
and total energy

Rl Sl i+ SOy = B2 STl LS @y,

i 7

Proof. The conservation of total mass can be obtained by multiplying (3.11) by one and
summing on i € Z,j € Z. Then, after a discrete integration by parts, we find that mass at time
t"*1 is equal to mass at time ¢".



For the conservation of total energy, we first introduce the following notation for the kinetic
energy

Az Av
Ef == — D vl (3.16)
4njEeZ
Then, if we multiply (3.11) by |v;|?/2 and sum over i, j € Z, we obtain
517?_1 = &g — 5 Z ( i+1/2,7 _¢i—1/2,j) |Uj|2
ijez

At Av Az n
~ 5y 2 (B ER) Do ol
i,JEL

On the one hand, the space flux terms vanish thanks to a discrete integration by parts. On the
other hand, we replace E! by (—D,¢7") thanks to the Poisson equation (3.13) and perform a
discrete integration by parts in velocity and next in space; we obtain

At A
E = Ek+Azdv Y (Dadlt + Dag?) £l DL lvsl,
i,JEZ
= &+ AvAz > (¢ + ¢F) Dif DxJvsl?, (3.17)
i,JEZL

where D7, stands for the adjoint of D, ,. The centered discrete operator is a second order approx-
imation, hence it is the exact gradient at least up to polynomial functions of degree two

Av

*x £N * 2 * LN,
Dav i3 Dc,v'”jl = —Av E :Dw i,5 Vis
jez jez
— * LIPS — _D*Jn
= -D; sz Vi | = —DzJi,
jez

where J!* is the approximation of the current density (3.15). Thus, from the discrete continuity
equation (3.14), we get

A
E = =S D (1 + ) (A = ). (3.18)

i€Z

From the approximation of the Poisson equation (3.13), we finally obtain

M = &+ B0 4 07) (DI - DEEY),
1<y 4
Azx ” "
= -5y (@) - @),
ieZ

We then conclude the total energy conservation
A A
ER 4 S5 DB =+ 5 Y (ED) (3.19)
i€z icZ
o

Remark 3.4 In one space dimension, the Ampére equation can be used instead of the Poisson
equation. In this case, the previous demonstration is simplified. Indeed, in (3.14), J! can be
approzimated thanks to the discretized Ampére equation

Ertt — EP = —AtJP. (3.20)
This approzimation is performed in [23].
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3.2 Approximation to the linear operator

This section is devoted to the discretization of the a-f collision operator. We may restrict ourselves
to the space homogeneous equation and since pg and ug only play the role of parameters, we set

pPB = 1, ug = 0.
Then, we approximate the following equation

O = Quslh), fleo = o), (3.21)

where Qo 5(f) is given by (2.4) and fo stands for an initial datum. Let v; = jAv and j =
(j1,J2,73) € Z* be a uniform mesh in R?® and we denote by f; an approximation of f(v;). We
define D as a finite difference operator that approximates the usual gradient operator V, and by
D* its formal adjoint, which represents an approximation of —V,-. Then, for any test sequence
(©j)jczs> we set (Dypj);czs as a sequence of vectors of R3

Dy; = (D*¢;,D*p;, D3p;) € R?,

where the components D?p;, s € {1,2,3} approximates the partial derivatives (J¢/0vs)(v;).

To preserve the property of decreasing entropy at the discrete level, we use the log weak
formulation (2.6) as in [15]. Using the notations introduced above, the operator Qq,s(f)(v) can be
approximated at v = v; by

1

|vj ?

where S(¥;) is an approximation at ¥; to the matrix S given by (1.5) i.e.

Qa,a(f)(vj)=—D*( @) f; <logf,->), (3.22)

S(#;) = |01 — 0; ® 0.

The weak formulation reads

AP Y Qus(No)p; = —A¥ S —S(5;) f; D(og f;) - D
jez? jez? |UJ|
= —AY Z| @ f3 D(log f3) - (S(2) Depy) - (3.23)
jezs Y

We perform a discrete integration by parts and use the symmetry of S; we finally get the following
proposition

Proposition 3.5 The discretization (3.22) conserves total mass and decreases discrete entropy

= Av® Y fi(t) log(f;(1))

jez?

Moreover, it preserves energy under the condition on v;

D' (|v;|*)/9; = D*(Jv;|*) /55 = D*(lv;[*) /53, (3.24)

S (w1 =2 =3
where 9; = (0}, 77, U}).

Proof. We start from the discrete log weak formation (3.23) of Qq,s, for a discrete operator

D which stands for an approximation of the gradient operator in velocity. Then taking ¢ = 1, it
easily leads to the conservation of mass. In the same way, we take ¢ =log f in (3.22),

A 3 Qualf)(eg)log f5 = ~A® 37 o (S(55) f; Dlog f7)) - Dllog /) (3:29)

jez3 jez3 |01
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which is nonpositive thanks to the semi-positivity of S(7;).
To prove the conservation of energy, we start from (3.23) taking ¢(v) equal to |v|?

AG® Y7 Qo (f)(v)) Juj]” = —A0® Y- ol |3 D(log f;) - (S(@;) Dlv;|*) -
jezd jez? Uj
This quantity vanishes when S(%;) D|v;|? is zero. This 3 x 3 system is satisfied if and only if ; is
chosen as follows
D(jv;|*) /55 = D*(jv;|*) /55 = D*(Jv;1*) /55
Then we conclude on the conservation of the energy. m]

Example 8.1 If we choose D = D i.e. the forward uncentered discrete operator, (3.24) implies
that © must be chosen as follows

1
5 = 5 (UJ’?+UJ’?+63), s €{1,2,3}.

The choice of D = D _ leads to the following ©

fﬁ:l (v +vj_ e.)s s€{1,2,3}.

72
Finally, if D = D, i.e. the centered discrete operator, (3.24) gives for ©
N 1
Uj:5 (vihe, +v5.,), s€{1,2,3},

where e, denotes the unit vector of the canonical basis of R®, s =1, 2, 3.

As mentionned in [5] and [15], the use of the centered discrete difference operator D = D,
leads to conserved quantities which are not physical. On the other hand, the use of the uncentered
discrete operator (D = Dy or D = D_) introduces some unsymmetry in the distribution function
leading to a loss of accuracy. To overcome these difficulties, following the idea of [5] and [7],
we introduce a symmetrization of the discrete operator based on the averaging of the uncentered
discretizations

Qa,s(f)(vj) = —% [D: (iS(ﬁj)f,- D+(10gfj)) + D* (

|oj?

8(;) £ D-Gog 1) |
(3.26)

|v;[®
where

s 1 _ 1
vf 2 (vj +vjye,), and ;7 = =3 (v +vj_..), s=1,2,3, (3.27)

are chosen as in Example 3.1 to conserve the energy (¢0+ with Dy and o~ with D_).

Consequently, thanks to Proposition 3.5, such a discretization conserves mass, energy and
decreases the entropy. Moreover, if the mean velocity of f vanishes, then the momentum of
Qa,5(f) is equal to zero. This property is preserved at the discrete level for the approximation
(3.26) under some symmetry assumptions on the initial datum.

Proposition 3.6 We consider the discrete collision operator (3.26)-(3.27). If the sequence (f;) jczs
is symmetric in all the directions (i.e. fr = f;j, with ks = —js, s =1,2,3), then the discrete col-
lision operator (3.26)-(3.27) conserves the momentum.

Proof. We consider the k-th component of the momentum

AU
A N Qap(H) vy, = — 3 e J|3 ZSH ) £; D (log £;)

jezs jez®

A” Z S (87) f; DL (log f;)- (3.28)

€Z3
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Thanks to (3.27), we can express 177 and ¥; with respect to v;

A B A

The 3 x 3 matrices S(f)]- ) and S(9;) then read

Av? A
S@}) = S(vy) + T”A + 7“3(@,-), (3.29)
and A2 A
S(@7) = S(vj) + T”A - 7“3(@,-), (3.30)
where A and B stand for the following 3 x 3 matrices
2 -1 -1 2(1)]'2 + Ujs) _(Uﬁ + sz) _(Uj1 + vj3)
A= -1 2 -1 ) B(Uj) = _(vj1 + Uj2) 2(”]’1 + Ujs) _(Uj2 + vj3)
-1 -1 2 _(Ujl + ’Uj3) _(Ujé + Ujs) 2(“11 + sz)

Thus, using (3.29) and (3.30), the equality (3.28) becomes

Av? 3
AV Y Qa0 = === 3 3 Brav))f; (DY + DL)(log £;)
jez® jezd =1
Av Z Z Akl 1 (D', + D" )10 £,))
ZSl 1 | ]|
B

Z Z Llts) (Dl - DY )log £7) - (331)
]ezsl 1 |U |

Each term vanishes thanks to arguments of symmetry of f;. Thus, provided that f; is symmetric
with respect to each coordinate, we proved that the approximation (3.26) of Q4,s(f) preserves
momentum. |

We consider an explicit time discretization and assume the distribution function is known at
time ¢”. Then, its value at time t"*! = ” + At denoted by fj, j € J (where J is a bounded
discrete set) is given by the following explicit scheme

fi = fi + At Qap(f)(v;), Vi€, (3.32)
where Qo.5(f)(v;) is defined by (3.26) and following [5], f; (which is in factor in Q4 5(f)(v;)) is

approximated by g; given by
g = { 2 i1 fi/ (Fi1 + £5)
! 2 i1 fi/(fi—1 + 1)
respectively, according to the discrete operator D or D_. We shall determine a condition on
the time step At under which the scheme gives a positive solution for an arbitrary large time.
The following proposition sums up this result which can also be found for a more general Fokker-
Planck-Landau operator in [5].

Proposition 3.7 There exists a time-sequence At,, such that the scheme (3.32) defines a positive
solution at any time (i.e. ), At, = +00).

Proof. Showing that f; does not vanish in finite time is equivalent to prove that

K = sup i
ieg | fita

13



remains bounded. To prove this assertion, we use the following estimate

g

15770 /o <2f;, (3.33)

0<g;=2

and re-write (3.26) as

Qus(Nwy) =~ (Dip; + DEgj),

where p; and g; are given by

pi = 1/|viPS@]) f; Dy (log f),
4 1/|v*S(%;) f; D—(log f;)-

For the sake of simplicity, we restrict ourselves to the discrete operator Dy and note that a similar
technique leads to the same conclusion for D_. Hence, using the definitions of K and of Q.i(f);,
we have

Ipj| < C g; log(K), (3.34)

where C' is a constant depending on the number of grid points, on the initial condition and on the
velocity step Av. Indeed, the estimate (3.34) can be deduced from the following bounds

Sgglls(ﬁj)ll <C 10 Ve, (3.35)
J

where ||.|| denotes a matrix norm. Thanks to (3.33), the following inequality holds

[(D*p);| < Clog(K) SUP 1 < Clog(K) f;- (3.36)
J

We first define At; = 1/Clog(K) and choose At = aAt;, with 0 < a < 1. Then, we obtain

fi _ fi 4 A Qa,s(f)(v))
fiz1 fiz1 + At Qa,p(f)(vj11) fiz1 + At Qap(f)(vjz1)
Thanks to the estimates (3.33), (3.35) and (3.36), we have
fi . fi + C At f;log(K)
fiz1 = fix1 —CAtlog(K) fjz1  fiz1 — C At log(K) fja1

Our choice of time step leads to

fi K(l+a)
o S 0o R

with 8 > 1. Then, we proceed by induction on n € {0,..., N} and get

Aty > nlog(B) + log(Ko),

with Ko = K(0) = maxjes{f]/f}s1} < oo. Therefore, for the time step At, defined by At, =
a/Clog(Ky), the solution is nonnegative and we get the following estimate

o
" Z Clnlog(B) + log(Ko))’

The right hand side of this inequality is a non convergent series and thus

At

n _
=D Atk o oo
k<n

14



3.3 Approximation to the Landau operator

In this section, we shall consider the discretization of the a-a collision operator, i.e. the nonlinear
Fokker-Planck-Landau operator (1.3) in the whole 3D velocity space. As in the previous section,
we restrict ourselves to the space homogeneous case. More precisely, we are concerned with the
numerical approximation of the FPL equation

of

o7 = QU0 (3.37)
where Q(f, f) is given by (1.3). As we described before, it is convenient to write the FPL operator
in its weak form. To that purpose, we first define for any test function ¢(v) sufficiently smooth,

G(v,v") =

- %f(t, ) f(t,0")[Vop(v) = Vorp(©')]T@(v = ') [V, log(f(t,v)) = Vi log(f(t,0"))]-

Then, we write the FPL operator using the weak formulation
| atnweede= [ G, (3.38)
RS R3xR3

We now recall the basic entropy conservative discretization introduced in [15], using the weak form
(3.38) we define Q(f, f); as an approximation of Q(f, f)(v;) such that

D QUi = Y Gluj,vm) A0,

jez? (5,m)€Z®
the value G(vj,vy,) is defined for any test sequence ¢ by

1

G(vja Um) = _5

(@) fn(®)[Dpj — D] " ®(v; — vm)[D(log f(1)); — D(log £ ()], (3.39)
where D is again a finite difference operator approximating the usual gradient operator V, (see
section 3.2).

We denoted by f;(t) the value of the approximated distribution function at velocity v; and time
t. From the weak formulation, the evolution of this discretized function is then governed by the
following system of differential equations

O — o pit0 = 005, je 7, (3.40)

where D* is the formal adjoint of the finite difference operator D, and

pit) = Av® 3" () fm(H)®(v; — vn) (D(log £(); — D(og f(B)m).  (3:41)

mezZ3

The FPL operator is finally approximated by the average of the discrete operators obtained from
the down-wind and up-wind finite difference operators D. From the duality relation (3.39), it is
an easy matter to verify that the discrete model preserves mass, momentum and energy. Fur-
thermore, taking ¢ = log f in (3.39) leads to the entropy inequality at the discrete level. Finally,
an uncentered approximation of the gradient ensures that the only equilibrium states are discrete
Maxwellians. As observed in the previous subsection, the use of centered discrete operator leads
to non conserved quantities. In [7], the authors then re-write this scheme as the sum of a second
order approximation and an artificial viscosity term in Av? which kills spurious conservations.
Nevertheless, a direct implementation of (3.40) remains too expensive. Several algorithms have
been proposed to treat the computational cost issue (see [7] and [8]). Here, the multigrid method
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is employed. For the details of this method applied to the discretization of the FPL operator, we
refer the reader to [7] and [8].

For the time discretization of (3.40), an Euler explicit scheme is used. From [5], the positivity
of the distribution function and the decrease of the entropy are ensured under a condition on the
time step At. This condition is similar to the condition derived in Proposition 3.7, but it is possible
to avoid it by using a semi-implicit method [27].

4 Numerical simulations

4.1 Numerical results of the linear collision operator

We present some numerical results to test the ability of the discretization (3.26)-(3.27) and then
consider the space homogeneous equation (3.21). The initial datum is chosen to be bi-Maxwellian,
i.e. a sum of two Maxwellian functions

fo(@,v) = 5 (Mi1,p,,1(0) + M1 4,1 (v))

1
2
where M, ,, 7 is given by (2.1), and

v = (_170a0)7 U2 = (1,0,0)

This test is performed with v,,,, = 7 and with different numbers of points in velocity NV, = 20, 40
and 60.
We compute an approximation of each component of the temperature Ty, for a € {z,y, 2}

Ta(t) = S0 (0F —u ()" £() A,

where v§ and u®(t) respectively denote the a-th component of v; and of the mean velocity u(t).

We are also interested in the approximation of the kinetic entropy H(t)

Zf] ) log f;(t)

On Figure 1, we represent the time relaxation of the components of the temperatures to their
final value T', which corresponds in this case to the initial temperature since momentum is initially
zero. We observe that the steady state is reached at about time ¢ = 25 for the different approxi-
mations. Since our algorithm preserves exactly mass, momentum and energy, the steady state is
well approximated.

Now, on Figure 2, we represent the evolution of the kinetic entropy for different numbers of
points in velocity. The entropy is well decreasing in time and has first a fast decay behavior and
next slowly converges to the equilibrium. The three different approximations give the same steady
state which corresponds to the kinetic entropy of the Maxwellian associated to the initial mass,
momentum and energy M, g 4/3(v).

4.2 Linear Landau damping

We now consider the full Fokker-Planck-Landau equation (1.1)-(1.2) where the collision operators
are given by (1.3) and (2.4) (with pg = 1 and ug = 0). The initial condition is chosen as a
perturbation of the global equilibrium

Jo(z,v) = @ 1)3/2 exp (—[v[*/2) (1 + Acos(kz)), (z,v) € [0,27/k] x R?, (4.1)
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Figure 1: Components of the temperature as a function of time. The temperature of the Maxwellian
associated to the initial condition is also plotted for comparison.

-14.9 \ ; ‘
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-15.35
-15.4
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Figure 2: Kinetic entropy as a function of time. The entropy of the Mazwellian associated to the
initial condition is also plotted for comparison (dashed line).
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where A is the amplitude of the perturbation and k denotes the wave number. In this subsection,
A is taken small enough (A = 107%) such that we can consider linear regimes.

To capture the Landau damping, the size of the velocity domain must be chosen greater than
the phase velocity vy, which corresponds to the singularity point in the dispersion relation. The
phase velocity is given by vy = w/k, where w is the frequency related to k and approximated by

w? =143k (4.2)

Then, we set V4, = 5.75 where the velocity grid extends from —v,,;44 t0 Vppe,- We use a number
of cells N, = 32 points in each direction of the velocity and N, = 50 in the one dimensional spatial
direction. The boundary conditions for the distribution function are periodic in the physical space
whereas the distribution function is truncated to zero for large velocities.

In this test, we are interested in the evolution of the square root of the electric energy approx-
imated by

1/2
En(t) = (Z AmEf(t)> :

Indeed, according to the Landau theory, the amplitude of £ (t) is expected to be exponentially
decreasing with a frequency w.

On Figure 3, we first represent the evolution of £ (t) in logarithm scale, where the wave number
is fixed to k¥ = 0.3 and different collision frequencies are taken i.e. v = 0, 0.01 and 0.05. We
observe that the amplitude of &(t) is damped exponentially in time as predicted by the Landau
theory. Moreover, the influence of collisions on the electric energy is well reproduced since the
increasing of the collision frequency v induces a stronger damping rate. In conclusion, collisions
play an additional role in the damping of the electric energy and its amplitude seems to be always
exponentially decreasing in time.

Then, we study on Figures 4 and 5 the influence of the wave number k£ on the evolution of the
electric energy and consider k£ = 0.2, 0.3, 0.4 and 0.5. On the one hand, the collision frequency is
set to zero. We observe that &, (t) is always exponentially decreasing, where the damping rate is
increasing when k becomes larger (see Figure 4). On the other hand, we choose v = 0.01 and plot
the evolution of & () on Figure 5. The behavior of the electric energy amplitude is still exponential
and depends on the value of k as in the previous case. Besides, we notice that the damping is more
important than in the collisionless case.

04 . . . 94 . . . 94 . . .
k=03, nu=000 — k=03, nu=0.01 — k=03, nu=0.05 —
y=00133 —— y=00163 —— y=00250 ——
96 96 -6

981 9 981

10 1\g\ 1 0

I 102
102 102

104 S
104 04 ﬁ\
\ . L | \ . . 106 . . . |

Figure 3: Study of the influence of the collisional parameter v. k = 0.3 and v = 0,0.01,0.05.
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Figure 4: Study of the influence of k in the non-collisional case (v =10). k =0.2,0.3,0.4,0.5.
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Figure 5: Study of the influence of k in the collisional case (v = 0.01). k= 0.2,0.3,0.4,0.5.

9.4

06t

98 H.

-10 ¢

-10.2 ¢

-10.4 ¢

-10

105 |\
arf|
115
A2+
125}
A3+
135
14t

-14.5

20

k=0.3, nu=0.01 ——
y=-0.0163 ———

15 20 25 30

(b)

k=0.5, nu=0.bl —
y=-0.1680 -~ ]

10 15 20



Estimates [10, 16] | Estimates [22] | Numerical
k=02 —7.107° —6.107° 0
k=0.3 —0.020 —0.0132 —0.0133
k=04 —0.096 X -0.071
k=0.5 —0.151 X —0.155

Table 1: Comparison of theoretical and numerical damping coefficients v with v = 0.

These numerical results can be compared to theoretical estimates on the damping rate and
frequency. Indeed, when the amplitude of the perturbation A is small enough, we can linearize
the initial model and solve the dispersion relation to evaluate the damping plasma wave and the
frequency w. In the collisionless case, the theoretical damping coefficient is often estimated by (see
110, 16])

yL = _\/g %exp(—l/(2k2) —3/2). (4.3)

In the collisional case, the theoretical damping reads (see [10, 16])

) 1
Y=L+, withyc = —gl/\/2/7r, (4.4)

where 7y, is given by (4.3). In Tables 1 and 2, we compare the damping rates (4.3), (4.4) for different
electrical waves in both collisional and collisionless cases, with the damping computed from our
numerical method. We also compare in Table 3 the oscillation frequencies obtained numerically
and computed theoretically through (4.2).

Our numerical results correctly agree with (4.2), (4.3) and (4.4) in a qualitative sense. Indeed,
exponential damping behavior is well obtained and the influence of collisions on the damping rate
is also recovered (see Figures 4 and 5). More precisely, when k£ = 0.5 our results are in very
good agreement with the theoretical estimates, but for smaller wave numbers the comparison is
not satisfying. However it is known that for small k, estimates (4.2) and (4.3) are not really
accurate because the expansion of the dispersion relation is not accurate enough. Then, we use
more accurate formulas given in [22], which are more correct for small wave numbers

o _\/g (1%3 - 6k> exp (—1/(2k?) — 3/2 — 3k* — 12k*) (4.5)

and the frequency w is
w? =1+3k* +6k* +24%°. (4.6)

In this case, the numerical results for k£ smaller than 0.3 perfectly agree with the relation (4.5). In
the collisional case, it is expected that the damping rate does not depend on k, but only on the
collision frequency v. The damping rates are reported in Table 2 for different wave numbers k£ and
v = 0.01; the damping rates obtained from the numerical method are weakly dependent on the
wave number k (when it is small enough), but do not correspond exactly to the estimated value
(4.4).

Finally, the numerical values of the frequency w correctly agree with formula (4.2) and when
k is small with (4.6). The behavior of w with respect to k is also consistent with the theoretical
values.

4.3 Nonlinear Landau damping

In this subsection, we also consider the Fokker-Planck-Landau equation (1.1)-(1.2) where the col-
lision operators are given by (1.3) and (2.4) (with pg = 1 and ug = 0). The initial condition is
chosen as in the previous subsection, but the perturbation A is now larger. Hence, we do not
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Estimates [10, 16] | Estimates [22] | Numerical
k=02 —0.003 —0.003 —0.004
k=0.3 —0.023 —0.0167 —0.0163
k=04 —0.0987 X —0.0825
k=0.5 —0.154 X —0.168

Table 2: Comparison of theoretical and numerical damping coefficients v with v = 0.01.

Estimates [10, 16] | Estimates [22] | Numerical
k=02 1.0583 1.0635 1.0694
k=03 1.1269 1.1559 1.1615
k=04 1.2165 X 1.2822
k=0.5 1.3228 X 1.3962

Table 3: Comparison of theoretical and numerical frequency w.

consider linear regimes and the Landau theory cannot be applied. Then, we cannot compare our
results to theoretical estimates but some authors already studied this test in both collisional [21]
and collisionless cases [28, 36].

To describe nonlinear effects, we have to consider a velocity set of size vy = 7 in each
direction. We use a number of cells IV, = 32 in velocity space whereas we consider N, = 50 points
in physical space. On Figures 6 and 7, we represent the evolution of the discrete electric energy in
logarithm scale, with two different values of A.

On Figure 6, A is taken equal to 0.1 whereas the excited mode k is equal to 0.3. We consider the
collisionless case (v = 0) and a collisional regime with v = 0.01. As in the previous subsection, the
electric energy is damped exponentially and when the collision frequency increases, the damping
of the electric energy is stronger. Moreover, we notice that the damping is much stronger than in
the linear context in both cases. It seems that the Landau theory is robust with respect to the
initial perturbation since in this case the initial datum is strongly perturbed and the decay of the
amplitude of the electric energy remains exponential in time.

On Figure 7, the perturbation is more important (4 = 0.2) whereas k is still equal to 0.3.
Then, we compare the evolution of the electric energy for three different values v = 0,0.01 and
0.05. In the collisionless regime, the results are in good agreement with the simulations presented
in the literature: the electric energy is first exponentially decreasing and is next oscillating around
a constant. At variance, in presence of collisions (v # 0), these oscillations are soften. Moreover,
when the parameter v is growing up (v = 0.05), the amplitude of the electric field decreases in time,
as observed in [21]. Let us pointed out that at the beginning of the simulation a damped exponential
behavior is observed as in the linear case, but the damping coefficient is more important. We also
plot the isovalues of the distribution function

F(t,x,vgc) = 2 f(t,JU,Uw,’Uy,Uz)d'Uy dv,
at time ¢t = 0, 2.5, 5 and 7.5. Without collisions, some particles are trapped around the phase
velocity vy = w/k ~ 3.84 generating a bump, which propagates in the phase space [21]. However,
when the collision frequency is increasing the electric energy is damped and few particles are
trapped (see Figure 8).

Besides, when the global equilibrium is strongly perturbed, slope correctors act to ensure the
positivity of f and then the total energy is not exactly preserved, as discussed in section 3.1. Then,
we study the variations of the total energy on Figure 9 for A = 0.2. As expected, we observe that
the total energy is not conserved. Nevertheless, we notice that the variations are relatively small
(less than 3%). Moreover, these variations are small compared to the variations of the total energy
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given by others numerical methods (semi-Lagrangian schemes).

Figure 6: Study of the influence of the collisional parameter
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Figure 7: Study of the influence of the collisional parameter v in the non linear case A = 0.2,
k=0.3 with (a) v=20, (b) v =0.01 and (c¢) v = 0.05.

5 Conclusion

We have developped a new numerical scheme for realistic and collisional plasmas in one dimension
in the physical space and in three dimensions in velocity space. The method takes into account
two different species of particles (e.g. electrons and ions). On the one hand, a new discretization of
the Vlasov-Poisson equation has been proposed. For this approximation, we proved conservation
of mass and total energy. On the other hand, a discretization of the electron-ion collision operator
is derived respecting the main properties of the continuous operator (conservation of mass, mo-
mentum, energy and decrease of the entropy). In the context of the Landau damping, our results
are in a very good agreement with the theoretical results available in the literature. Furthermore,
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Figure 8: Isovalues (from 0.015 to 0.050) of the projection of the distribution function on the z-v,
plane with A =0.2, k =0.3 and (a) v=0, (b) v =0.01.
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Figure 9: Evolution of the total energy in both collisional and collisionless case, in the non linear
case A =10.2. k=0.3 with v =0,0.01 and 0.05.

for strong perturbations we observe the effect of collisions on the damping of the electric energy
and on the long time behavior of the solution.

Several extensions and applications of this work can be considered. For instance, the ions
density and mean velocity can be governed by kinetic or hydrodynamic equations coupled with
the description of the electrons. Moreover, the effect of a self-consistent and applied magnetic field
can be also investigated.
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