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Abstract

Our purpose is to derive a hybrid model for particle systems which combines a kinetic

description of the fast particles with a fluid description of the thermal ones. In the present

work, fast particles will be described through a collisional kinetic equation of Boltzmann-

BGK type while thermal particles will be modeled by means of a system of Euler type

equations. Then, we construct a numerical scheme for this model. This scheme satisfies

exact conservation properties. We validate the approach by presenting various numerical

tests.

Key words: BGK equation, Euler equations, entropy minimization principle, kinetic-
hydrodynamic coupling, numerical schemes.

1 Introduction:

In rarefied gas dynamics, for strongly non-equilibrium situations, fluid models are inappro-
priate and one must resort to a kinetic description such as that provided by the Boltzmann
equation. But the cost of the numerical resolution of this model is very prohibitive in terms
of both CPU time and memory storage. We refer the reader to [4], [26], [2], ... In the present
work, we propose a hybrid kinetic/fluid model describing the evolution of slow (or thermal)
particles by means of a fluid model, and restricting the use of the kinetic model to the modeling
of fast (or suprathermal) particles.

Fluid dynamical descriptions are based on the assumption that the mean free path of a
particle is very small compared to the typical macroscopic length. In this case, the distribution
function of the particles approaches a local equilibrium represented by a maxwellian, the param-
eters of which are the fluid variables (density, mean velocity and temperature). The evolution
of the fluid variables is governed by the Euler or Navier-Stokes equations. More precisely, if τ is



the Knudsen number (ratio of the particle mean free path to the typical macroscopic scale), an
expansion of the solution of the Boltzmann equation in power of τ can be performed (Hilbert
or Chapman-Enskog expansion [9], [8]). At the leading order in τ , the distribution function is
approximated by a maxwellian whose parameters obey the Euler equations. If the next order
is retained, the fluid parameters solve the compressible Navier-Stokes equations, where the dif-
fusion terms (viscosity and heat conductivity) are of the order of τ . When τ is small without
being very small, the Navier-Stokes equations offer a quite good compromise between physical
accuracy and numerical efficiency. However, when τ becomes larger, the Navier-Stokes equa-
tions break down, as well as any model attempting to take into account higher order powers in
τ (like e.g. the Burnett equations).

Our model is aimed at transition regimes, where τ = O(1), when the Navier-Stokes equations
surely break down. In such a situation, one must resort to the resolution of the full kinetic
equation.

Solving a kinetic equation requires the discretization of large number of variables (3 di-
mensions in position, 3 dimensions in velocity plus the time). Moreover, a kinetic equation
very often involves stiff terms in the collision operator and its computational cost is often quite
expensive. To overcome these problems, probably the most efficient method is the Monte-Carlo
method ([4], [26], [18], ...). Some deterministic methods ([15], [29], [7], [22], ...) have been
recently developped with some success. Nevertheless, the search for models which would give
a good approximation of the physics at a reasonable computer cost is still not complete. Our
work is a contribution in this direction. It partly relies on Levermore’s entropy minimization
approach (see [21]), which was used to develop higher order moment hierachies, in the spirit of
earlier work by Grad ([16], [17]) or Müller and Ruggeri (see [25]). Related approches can be
also be found in [14] where half moment expansions are used.

In this paper, we present a hybrid kinetic/fluid model based on a domain decomposition
method in the velocity variable. In order to simplify the presentation, we consider a Bathnagar-
Gross-Krook (BGK) model (instead of the full Boltzmann operator) as a starting point (see
[3]). The unknown distribution function f = f(t, x, v) depends on time t ≥ 0, on space x ∈ R

d,
and on velocity v ∈ R

d, d = 1, 2, 3, and solves

∂f

∂t
+ v · ∇xf =

1

τ
(M[f ] − f). (1.1)

M[f ] is the maxwellian with the same moments as f , i.e.

M[f ](v) =
n

(2πT )
d

2

exp

[

−|v − u|2
2T

]

(1.2)

where n, u, T (the density, mean velocity and temperature) satisfy:

n =

∫

Rd

f(v)dv,

nu =

∫

Rd

vf(v)dv,

dnT =

∫

Rd

|v − u|2f(v)dv.

(1.3)



In other words, M[f ] is defined as the only maxwellian whose parameters n, u, T are such that:

∫

Rd

f(v)





1
v
|v|2



 dv =

∫

Rd

M[f ](v)





1
v
|v|2



 dv. (1.4)

Finally, τ > 0 represents a scaled relaxation time. Equation (1.1) is written in scaled variables,
the time and space scales being related to the problem under consideration (e.g. the domain
size). Equation (1.1) is supplemented with an initial condition f(t=0) = f0.

Our model relies on the assumption that the particles can be clearly grouped into two
categories. The first category consists of thermal particles, whose distribution function is close
to a maxwellian. The second category is that of suprathermal or energetic particles. They
are supposed to represent a small proportion of the total number of particles. On the other
hand, their distribution function can be anything. Of course, there are situations where such
an assumption is clearly untrue (for instance, the case of two interpenetrating particle beams
for which the distribution function is the sum of two maxwellians of nearly equal weights),
but our belief is this assumption is satisfied in many cases of practical interest. We shall give
some examples later on. Following this assumption, we choose a domain B1 in velocity space
(most often a ball centered in u and with radius R√

T , where u and T are a velocity and a
temperature to be conveniently chosen, and R is a fixed number). We suppose that the particle
distribution function can be approximated by a maxwellian inside B1. Therefore, we make the
Ansatz that the solution of (1.1) can be approximated by:

f =

{

M1, v ∈ B1

f2, v ∈ B2 = R
d \B1,

(1.5)

where M1 is a maxwellian. In practice, u and T are space and time dependent functions. They
are chosen to be the mean velocity and the temperature of f .

Let (n1, u1, T1) be the parameters of M1. On should note that u1 6= u and T1 6= T in general.
We must derive a set of fluid equations for (n1, u1, T1) from the BGK model (1.1), as well as
a kinetic equation for f2. The way we achieve this task is by taking the moment equations
of (1.1) on the domain B1. We obtain conservation equations for the mass, momentum and
energy of the thermal particles i.e. those contained in B1. As usual, these equations are not
closed. To close the system, we use Levermore’s entropy minimization strategy [21] and take
the distribution function in B1 to be the maxwellian M1, which minimizes the entropy of the
thermal particles, subject to the constraints of given mass, momentum and energy in B1. The
so-obtained system differs from the standard Euler equations in the expression of the fluxes
on the one hand (because these fluxes are integrated over B1 only) and in the coupling with
the BGK equation which describes the evolution of the distribution function f2. This coupling
is due first to the collision operator (collisions may “send” particles from B1 to B2 and vice
versa), but also, to the fact that u and T are depending on (t, x). Therefore, the variations
of the fluid domain in space and time induce fluxes of particles from B1 to B2 and vice versa.
These fluxes appear as source and sink terms depending on f2 in the Euler equations, and as
boundary conditions depending on M1 at the boundary of B2 for f2.

We must point out how important it is for a numerical discretization to respect a perfect flux
balance between the two sets of equations (the Euler equations on B1 and the BGK equation



on B2). Otherwise, there might exist local sources or sinks of mass, momentum and energy
which is obviously unphysical.

We shall present a numerical strategy which respects this balance perfectly. It relies first
on a full time, space and velocity discretization of the BGK equation by a conservative finite
volume scheme. Then, the analogue of the decomposition (1.5) is performed in the discrete
distribution function; the discrete moment equations are obtained for the thermal particles and
a discrete entropy minimization principle is used to close the equations.

In this paper, we try to demonstrate the validity of the hybrid approach against the full
kinetic equation. Therefore, we do not try to optimize the numerical efficiency and at this
stage, our hybrid model is still more costly than (or at least as costly as) a direct finite volume
simulation of the BGK equation. The reason is that the computation of the numerical fluxes for
the Euler equations is done by discrete integration of the maxwellian on the mesh discretization
of the phase space. Therefore, the storage requirements and computational complexity of the
method is the same as for the resolution of the full BGK equation by a deterministic method.

Cost reduction will be obtained by two means: a faster computation of the numerical
fluxes, possibly involving some pre-storage on the one hand, and a Lagrangian (particle type)
discretization of the distribution function on B2. These concepts will be developped in future
work.

We now outline some similar approaches in the literature. First this approach was devel-
opped for diffusion equations in [10], and for hydrodynamics equations in [11]. It bears some
similarities with the so-called δf method ([6], [27]). However, the δf approach relies on writ-
ing the distribution function as f = M + δf with M a maxwellian whose parameters are
solutions of the standard Euler equations and δf satisfies a perturbation equation involving
some approximations. Therefore, everywhere in velocity space, there is a superposition of a
thermal distribution function M and a non-thermal part δf . The idea of using moments over
sub-regions of velocity space is also present in [14]. Most hybrid kinetic/fluid approaches used
so far are based on a domain-decomposition in position space: a fluid model is used except
in specific regions where the flow is identified as being far from equilibrium, and where a ki-
netic model is used ([5], [24], [23], ...). Then, suitable interface conditions are set up at the
kinetic/fluid interface. Sometimes, an overlap of the kinetic and fluid regions is performed.

Levermore’s moment hierarchy of models [21] is sometimes used as an alternative to ki-
netic models. This approach has been pioneered by Grad (see [16]) and has been thoroughly
investigated in the physics literature by Müller and Ruggeri (see [25]). It has been applied to
rarefied gas dynamics by [19], [22], [24], semiconductor physics (see [1]), etc, ... The entropy
minimization approach, which founds Levermore’s approach as well as the present work has
also found applications to deterministic numerical methods for the BGK equation, like e.g. in
[22].

The paper is organized as follows: in section 2, the hybrid model is derived following the
ideas outlined above. In section 3, its fully conservative numerical discretization is proposed.
For the sake of simplicity, we restrict to a one-dimensional model on both space and velocity. In
section 4, results of numerical simulations are presented. A few technical points are developped
in appendix A, B and C.



2 Derivation of the hybrid model:

Our starting point is the Boltzmann-BGK equation (1.1)(1.2). Let us introduce some no-
tations:

Definition 2.1. For all function g : R
d −→ R, we define for i = 1, 2 :

gi(v) =

{

g(v) if v ∈ Bi

0 otherwise,

where B1 is defined by B1 =
{

v ∈ R
d s.t. |v − u| ≤ R√

T
}

and B2 = R
d \B1.

Remark 2.2 Later on, u and T will be chosen as the mean velocity and temperature of the
distribution function f over R

d.

Our goal is to approximate (1.1)(1.2) by a fluid/kinetic model. Associated to the solution
f to (1.1)(1.2), the distribution function f2 is the unknown of the kinetic part of the hybrid
model. On the other hand, the fluid part must be a closed system of (d+2) equations satisfied
by the moments of f1 on B1; they are given by U1 = (n1, P1, 2W1)

T such that:

∫

B1

f1(v)





1
v
|v|2



 dv =





n1

P1

2W1



 = U1, (2.1)

with n1 the density, P1 the momentum and W1 the total energy of f1 on B1. Integrating
(1.1) on B1 against the vector of conserved quantities m(v) = (1, v, |v|2)T with respect to the
velocity variable v ∈ B1 leads to a non-closed system of equations for U1. This is the well-
known “moment closure problem” in kinetic theory. To close these equations, we shall use
Levermore’s strategy, based on the entropy minimization principle (see [21]). However, the
present situation is different from that investigated by Levermore, in that the velocity set of
integration is bounded, and the approach requires a few minor adjustments.

First, we introduce the entropy functional related to the domain B1:

H1(g) =

∫

B1

g(v) log(g(v))dv, ∀g ≥ 0,

and the corresponding entropy minimization problem,






















Given n1 ≥ 0, P1 ∈ R
d,W1 ≥ 0, find a nonnegative function M1 on B1,

realizing the following minimum:

Min







H1(g), g ≥ 0 s.t.

∫

B1

g(v)





1
v
|v|2



 dv =





n1

P1

2W1











(2.2)

If (2.2) has a solution, then the system of moments U1 derived from (1.1)(1.2) can be closed
by a distribution function that coincides with that solution. This closure strategy, as pointed
out by Levermore [21], ensures the hyperbolicity of the so-obtained system (here, if u and T
are chosen a priori). The following proposition solves the entropy minimization problem (2.2)
(following results in [20]):



Proposition 2.3 The entropy minimization problem (2.2) has a solution if and only if

|P1|2 ≤ 2n1W1, (2.3)

2n1W1 − |P1|2
n2

1

+ |u− P1

n1
|2 ≤ R2T . (2.4)

Moreover, under conditions (2.3), (2.4), the solution is unique and is a maxwellian function:

M1(v) = exp(λ1 ·m(v)) = exp(λ1
0 + λ1

1 · v + λ1
2|v|2), (2.5)

where λ1 = (λ1
0, λ

1
1, λ

1
2)

T ∈ R
d+2 is uniquely determined by the following relation:

∫

B1

exp(λ1 ·m(v))m(v)dv =





n1

P1

2W1



 , with m(v) = (1, v, |v|2)T . (2.6)

For the proof, we refer the reader to appendix A.
The so-obtained distribution M1, of the form (2.5), is used to close our moment system. We

are now able to write the hybrid model. For this purpose, let us first introduce some notations.
The quantities,





ψn1

ψP1

2ψW1



 =

∫

B1

M1(v)vm(v)dv =

∫

B1

M1(v)





v
v ⊗ v
|v|2v



 dv, (2.7)

are the moment fluxes, with m(v) = (1, v, |v|2)T . The term,

−→
F (v) = D

(

v − u

R√
T

)

, with D =
∂

∂t
+ v · ∇x, (2.8)

is a force which results from the space and time variations of B1 as we shall see later on. Now,
if we denote by S(u,R√

T ) the boundary of B1, which, in the case we consider, is a sphere of
center u and radius R√

T , we can introduce the following sets:

S− = {v ∈ S(u,R
√

T ) s.t.
−→
F (v) · −→ν < 0}, (2.9)

S+ = {v ∈ S(u,R
√

T ) s.t.
−→
F (v) · −→ν > 0}, (2.10)

where −→ν is the outward unit normal to S(u,R√
T ). If dS(v) is the Euclidean surface element

on S(u,R√
T ), we can then define the following boundary outgoing and incoming semi-fluxes:





Ln1

LP1

2LW1



 :=

∫

S+

−→
F (v) · −→ν M1(v)m(v)dS(v),





Gn1

GP1

2GW1



 :=

∫

S
−

|−→F (v) · −→ν |f2(v)m(v)dS(v),

(where ”L” is for “loss” and “G” for “gain”: we shall see that they enter as loss and gain terms
in the Euler equations). If we take the moments of (1.1), make the approximation f1 ≃ M1

given by (2.5) and (2.6), and if we couple the so-obtained closed system to the restriction of
(1.1) to B2 (where f1 is again replaced by M1 on B1), then we obtain the following hybrid
model:



Proposition 2.4 With the previous notations, the hybrid fluid/kinetic model of unknowns
(n1, P1,W1, f2) is written:

∂

∂t





n1

P1

W1



 + ∇x ·





ψn1

ψP1

ψW1



 =
1

τ





n(1) − n1

P (1) − P1

W (1) −W1



 −





Ln1

LP1

LW1



 +





Gn1

GP1

GW1



 ,

∂f2

∂t
+ v · ∇xf2 =

1

τ
Q2(f2,M1),

(2.11)

with the following boundary conditions:

f2(v) = M1(v), ∀v ∈ S+.

The moments (n1, P1,W1)
T are given by (2.1). Moreover, the collision term is given by:

Q2(f2,M1) = (M[M1+f2],2(v) − f2(v)), v ∈ B2,

where M[M1+f2] (whose parameters are the density, mean velocity and temperature of M1 +f2)
satisfies:

∫

Rd

M[M1+f2](v)m(v)dv =

∫

Rd

(M1(v) + f2(v))m(v)dv.

Moreover, we denote:




n(1)

P (1)

2W (1)



 =

∫

B1

M[M1+f2](v)m(v)dv,

with m(v) = (1, v, |v|2)T .

Remark 2.5 Under the assumption that u and T are chosen a priori, the fluid part of the
hybrid model is hyperbolic. This is a simple consequence of Levermore’s result (see [21]).

Proof. We integrate (1.1) with respect to v on B1, after multiplication by (1, v, |v|2)T .
We get:

∫

B1

∂f

∂t
(v)





1
v
|v|2



 dv+

∫

B1

v ·∇xf(v)





1
v
|v|2



 dv =
1

τ

∫

B1

(M[f ]−f)(v)





1
v
|v|2



 dv. (2.12)

First, we recall the notation,

Ui =

∫

Bi

fi(v)





1
v
|v|2



 dv =





ni

Pi

2Wi



 , i = 1, 2, (2.13)

for the moments of fi, i = 1, 2, and introduce similar notations for the fluxes,

ϕ(fi) =

∫

Bi

fi(v)v





1
v
|v|2



 dv, i = 1, 2.



Let us consider the left-hand side of (2.12). If we exchange derivatives and integrals, there
appear some boundary terms. To compute them, we use a change of variables that transforms
B1 into the fixed ball B(0, 1) of radius 1 and whose center is 0:

w =
v − u

R√
T
. (2.14)

We then set f1(t, x, v) = g1(t, x, w), and obtain:

∫

B1

(

∂f1

∂t
+ v · ∇xf1

)

m(v)dv

=

∫

B(0,1)

(

∂g1

∂t
+ (R

√

Tw + u) · ∇xg1 +
−→
F1(w) · ∇wg1

)

m̃(w)Jdw

=
∂

∂t

∫

B(0,1)

g1m̃(w)Jdw −
∫

B(0,1)

g1
∂

∂t
(m̃(w)J)dw

+∇x ·
∫

B(0,1)

(R
√

Tw + u)g1m̃(w)Jdw −
∫

B(0,1)

g1∇x · ((R
√

Tw + u)m̃(w)J)dw

−
∫

B(0,1)

g1∇w · (−→F1(w)m̃(w)J)dw +

∫

S(0,1)

−→
F1(w) · −→ν g1m̃(w)JdS(w), (2.15)

where −→ν is the outward unit normal to B(0, 1),

−→
F1(w) = − 1

R√
T
D1

(

R
√

Tw + u
)

, with D1 =
∂

∂t
+ (R

√

Tw + u) · ∇x, (2.16)

is a force term and,

m̃(w) =





1
R√

Tw + u
|R√

Tw + u|2



 .

Finally,
J = (R

√

T )d, d = 1, 2, 3,

is the Jacobian of the change of variables (2.14). Some calculations (which are developped in
Appendix B) show that the sum of the second term, the fourth and the fifth terms of (2.15)
vanishes. So, if we return to the original v variable, we obtain:

∫

B1

(

∂f1

∂t
+ v · ∇xf1

)

m(v)dv =
∂

∂t

∫

B1

f1m(v)dv + ∇x ·
∫

B1

vf1m(v)dv

+

∫

S(u,R
√

T )

−→
F (v) · −→ν f1m(v)dS(v), (2.17)

where
−→
F (v) is the force (2.16) expressed in terms of v,

−→
F (v) = D

(

v − u

R√
T

)

, with D =
∂

∂t
+ v · ∇x.



Now, using (2.12) and (2.17), we obtain the following moment system:

∂U1

∂t
+ ∇x · ϕ(f1) =

1

τ

∫

B1

(

M[f1+f2](v) − f1(v)
)

m(v)dv −
∫

S(u,R
√

T )

−→
F (v) · −→ν f1(v)m(v)dS.

The boundary terms represent the exchange fluxes between the kinetic and the fluid zones. We
decompose these boundary terms into outgoing semi-fluxes:

∫

S+

−→
F (v) · −→ν f1(v)m(v)dS,

and incoming semi-fluxes:
∫

S
−

|−→F (v) · −→ν |f1(v)m(v)dS. (2.18)

This last term (2.18) takes into account particles fluxes from B2 to B1; these fluxes are due to
the variation of the ball B1. Therefore these incoming particles are modeled by f2 and, using
the boundary conditions, (2.18) becomes:

∫

S
−

|−→F (v) · −→ν |f2(v)m(v)dS.

Now, we make the approximation f1(v) ≃ M1(v), ∀v ∈ B1 where M1 is given by (2.5) and
(2.6) (with n1, P1,W1 defined by (2.13)). Then, we obtain the first part of (2.11); the coupling
with the restriction of (1.1) to B2 (where f1 is always approximated by M1) leads to the hybrid
model (2.11).

3 Numerical schemes for the hybrid model:

In this section, we present a numerical scheme for the hybrid model (2.11). The main
difficulty comes from the dependence of B1 =

{

v ∈ R
d s.t. |v − u| ≤ R√

T
}

on both time and
space. As pointed out in the introduction, the variations of B1 in position and time induce
fluxes of particles from B1 to B2 and vice versa. Then the mass, momentum and energy fluxes
into B2 must be exactly balanced by the same fluxes out of B1, otherwise unphysical source or
sink terms will appear. To ensure these conservations at the discrete level, we first start from
a fully discretized version of the BGK equation in position, velocity and time, and perform
the domain decomposition and passage to the fluid quantities on B1, directly on the discrete
equations. The motion of the ball B1, which takes into account the evolution of the mean
velocity u and the temperature T , is performed at the end of each discretization step.

For the sake of simplicity, we restrict to a one-dimensional problem in both position and
velocity space, with a cartesian grid xi = i∆x, vk = k∆v, i, k ∈ Z, while tn = n∆t is the
time discretization, n ∈ N. Like in the continuous case (see section 2), our starting point is the
BGK equation. We first discretize (1.1), (1.2) on the full velocity space, following the strategy
developped in [22]. We approximate f(tn, xi, vk) by fn

i,k such that:

fn+1
i,k = fn

i,k − v+
k

∆t

∆x

[

fn
i,k − fn

i−1,k

]

− v−k
∆t

∆x

[

fn
i+1,k − fn

i,k

]

+
∆t

τ

[

En
i,k − fn

i,k

]

, (3.1)



with v±k = 1
2
(vk ± |vk|) and where (En

i,k)k∈Z realizes the following minimum:

Min

{

∑

k∈Z

gk log(gk)∆v, gk ≥ 0 s.t.
∑

k∈Z

mkgk∆v = Un
i

}

, (3.2)

with the prescribed moments Un
i =

∑

k∈Z
fn

i,kmk∆v and mk = (1, vk, |vk|2). In [22], it is shown
that the operator (En

i,k − fn
i,k) is an approximation of the BGK operator. In particular, thanks

to Theorem 3.1 of [22], (En
i,k)k∈Z has an exponential form provided that the prescribed moments

Un
i are strictly realizable (i.e. Un

i is the moment vector of a strictly positive discrete function).
In this case, the discrete equilibrium is En

i,k = exp(αn
i ·mk), where αn

i ∈ R
3 is the solution of

the discrete moment problem (see Appendix C for more details):

∑

k∈Z

mk exp(αn
i ·mk)∆v = Un

i . (3.3)

We note that (3.1) can be viewed as a first order finite volume method for the BGK equation
(1.1), (1.2).

Now, in order to decompose the velocity domain, we have to define a discretized version
of the ball B1. In the remainder of this paper, we shall choose u and T as the global mean
velocity u(t, x) and temperature T (t, x) respectively. They are approximated at point xi and
at time tn by:

un
i =

P n
i

nn
i

, (3.4)

Tn
i =

2W n
i n

n
i − (P n

i )2

(nn
i )2

, (3.5)

where nn
i , P

n
i and W n

i are the mass, momentum and energy at xi and tn, and are such that:

Un
i =





nn
i

P n
i

2W n
i



 =
∑

k∈Z

fn
i,kmk∆v.

Then, at position xi and time tn, (B1)
n
i can be approximated by the following discrete set:

Kn
i = {k ∈ Z s.t. vk = k∆v satisfies |vk − un

i | ≤ R
√

Tn
i }, (3.6)

where R is an arbitrary parameter.
We introduce the moments of (fn

i,k)k∈Z on the set Kn
i according to:

Un
1,i =

∑

k∈Kn

i

mkf
n
i,k∆v,

and the restriction of (fn
i,k)k∈Z on Z \ Kn

i :

fn
2,i,k =

{

fn
i,k if k ∈ Z \ Kn

i

0 otherwise.



We are going to present an algorithm which, from the knowledge of Kn
i , U

n
1,i, f

n
2,i,k at time

tn, computes Kn+1
i , Un+1

1,i , fn+1
2,i,k at time tn+1, based on the moments of (3.1).

First, the discrete fluxes on Kn
i of an arbitrary discrete distribution function (gk)k∈Z are

denoted by:

φn
1,i,±(g) =

∑

k∈Kn

i

v±k mkgk∆v, (3.7)

and the moments of (En
i,k)k∈Z on Kn

i are written:

Un
(1),i =

∑

k∈Kn

i

mkEn
i,k∆v.

To close our discrete moment systems, we shall approximate fn
i,k on Kn

i by the solution (Mn
1,i,k)k∈Kn

i

of the following minimization problem, with the prescribed moments Un
1,i:

Min







∑

k∈Kn

i

gk log(gk)∆v, gk ≥ 0 s.t.
∑

k∈Kn

i

mkgk∆v = Un
1,i







. (3.8)

Note that (3.8) differs from (3.2) in that the summations are carried over the set Kn
i instead

of Z. This problem is solved in the same way as (3.2). Indeed, if the prescribed moments Un
1,i

are strictly realizable, Mn
1,i,k has the following exponential form Mn

1,i,k = exp(λn
1,i ·mk), where

λn
1,i ∈ R

3 is the solution of the discrete moment problem:

∑

k∈Kn

i

mk exp(λn
1,i ·mk)∆v = Un

1,i. (3.9)

Now, we first take the moments of (3.1) on Kn
i and close the resulting equations by the discrete

entropy minimization problem (3.8). In a next step, we shall “move” the set Kn
i into a new

one, Kn+1
i . First, let us introduce the moments Ũn+1

1,i of fn+1
i,k on the ball Kn

i :

Ũn+1
1,i =

∑

k∈Kn

i

mkf
n+1
i,k ∆v,

as well as the restriction of fn+1
i,k onto the complement Z \ Kn

i :

f̃n+1
2,i,k =

{

fn+1
i,k if k /∈ Kn

i

0 otherwise.

If we take the discrete moments of (3.1) on Kn
i , and close the resulting moment equations by

the solution fn
i,k ≃ Mn

1,i,k, ∀k ∈ Kn
i of the discrete entropy minimization problem (3.8) on the

one hand, and take the restriction of (3.1) on Z \ Kn
i on the other hand, we obtain:

Ũn+1
1,i = Un

1,i −
∆t

∆x

[

φn
1,i,+(Mn

1,i) − φn
1,i,+(Mn

1,i−1 + fn
2,i−1)

]

−∆t

∆x

[

φn
1,i,−(Mn

1,i+1 + fn
2,i+1) − φn

1,i,−(Mn
1,i)

]

+
∆t

τ

[

Un
(1),i − Un

1,i

]

, (3.10)



f̃n+1
2,i,k = fn

2,i,k − v+
k

∆t

∆x

[

fn
2,i,k −

(

Mn
1,i−1,k + fn

2,i−1,k

)]

−v−k
∆t

∆x

[(

Mn
1,i+1,k + fn

2,i+1,k

)

− fn
2,i,k

]

+
∆t

τ

[

En
i,k − fn

2,i,k

]

, (3.11)

Let us remark that Ũn+1
1,i and f̃n+1

2,i,k are intermediate variables that only take account the space
variation of Kn

i through the fluxes.
The next step of the algorithm is to consider the time variation of Kn

i . To that purpose, we
construct (M̃n+1

1,i,k)k∈Kn

i
the discrete distribution solution to (3.8) with the prescribed moments

Ũn+1
1,i . Then we define an approximation of fn+1

i,k , for all k ∈ Z, solution to (3.1) by f̃n+1
i,k such

that:

f̃n+1
i,k =

{ M̃n+1
1,i,k if k ∈ Kn

i

f̃n+1
2,i,k otherwise.

(3.12)

Hence, the discrete moments of f̃n+1
i,k are an approximation of Un+1

i . At this level, un+1
i , T n+1

i

and Kn+1
i can then be defined through (3.4), (3.5) (with n replaced by n + 1). The unknowns

at the next time step are finally:

Un+1
1,i =

∑

k∈Kn+1

i

mkf̃
n+1
i,k ∆v, (3.13)

fn+1
2,i,k = f̃n+1

i,k |
Z\Kn+1

i

. (3.14)

The following proposition presents some properties of the above scheme:

Proposition 3.1 Equations (3.10)-(3.14) give a numerical scheme that preserves the total
mass, momentum and energy. Moreover, let (f 0

i,k)i,k∈Z be a strictly positive initial condition:

f 0
i,k > 0, ∀k ∈ Z, ∀i ∈ Z.

Let us denote by K a bounded discrete velocity domain which is an approximation of Z. If the
following condition on the time step is fulfilled:

∆t

(

1

τ
+ max

k∈K

( |vk|
∆x

))

< 1, (3.15)

then the kinetic sequence (fn
2,i,k)n≥0 defined by the above scheme, satisfies:

fn
2,i,k > 0, for all n ≥ 0, i ∈ Z, k ∈ K \ Kn

i . (3.16)

Proof. We first prove the conservation property of the scheme. For this purpose, we
introduce the discrete moments of (fn

2,i,k)k :

Un
2,i =

∑

k∈Z\Kn

i

mkf
n
2,i,k∆v.

Let us multiply (3.11) by mk = (1, vk, v
2
k)

T and sum over k ∈ Z \ Kn
i :

∑

k∈Z\Kn

i

mkf̃
n+1
2,i,k∆v = Un

2,i −
∆t

∆x





∑

k∈Z\Kn

i

vk
+mk

(

fn
2,i,k − (fn

2,i−1,k + Mn
1,i−1,k)

)

∆v







−∆t

∆x





∑

k∈Z\Kn

i

vk
−mk

(

(Mn
1,i+1,k + fn

2,i+1,k) − fn
2,i,k

)

∆v





+
∆t

τ





∑

k∈Z\Kn

i

(mkEn
i,k)∆v − Un

2,i



 . (3.17)

If we add (3.17) with (3.10), and sum up over i ∈ Z, the discrete fluxes vanish. As well, the
discrete collision operator vanishes. Then, if we note:

Ũn+1
2,i =

∑

k∈Z\Kn

i

mkf̃
n+1
2,i,k∆v,

we obtain:
∑

i∈Z

(Ũn+1
1,i + Ũn+1

2,i ) =
∑

i∈Z

(Un
1,i + Un

2,i).

The second step of the algorithm (3.13), (3.14) preserves the macroscopic quantities, so that
we finally obtain:

∑

i∈Z

Un+1
i =

∑

i∈Z

Un
i = C,

where C is a constant, only depending on the initial discrete mass, momentum and energy.
In order to show the positivity of the sequence (fn

2,i,k)n≥0, let us write (3.11) as follows:

f̃n+1
2,i,k =

(

1 − ∆t

τ
− |vk|

∆t

∆x

)

fn
2,i,k + v+

k

∆t

∆x
Mn

1,i−1,k + v+
k

∆t

∆x
fn

2,i−1,k

−v−k
∆t

∆x
Mn

1,i+1,k − v−k
∆t

∆x
fn

2,i+1,k +
∆t

τ
En

i,k, for all k ∈ K \ Kn
i ,

with the notations: v±k =
vk ± |vk|

2
, and K is a bounded discrete velocity domain. The strict

positivity of f̃n+1
2,i,k is ensured if:

1 − ∆t

τ
− |vk|

∆t

∆x
≥ 0, ∀k ∈ K, ∀i ∈ Z,

holds. Then, if we suppose the existence of M̃n+1
1,i,k, ∀k ∈ Kn

i , which is positive because it is a

maxwellian, relations (3.13) and (3.14) ensure the positivity of fn+1
2,i,k .

Remark 3.2 The property (3.16) of the above numerical scheme allows us to show that En+1
i,k ,

and Mn+1
1,i,k, have an exponential form with respect to k. Indeed, the strict positivity of (f̃n+1

2,i,k )

(under the condition on the time step (3.15) of proposition 3.1 ensures that Un+1
i is the moment

vector of a strictly positive discrete function (see (3.13)). According to [22], this implies that
Un+1

i is also a moment vector of a discrete maxwellian function En+1
i,k , which uniquely solves the

discrete entropy minimization problem (3.2). The same is true for the moments Un+1
1,i .

The resolution of the discrete entropy minimization problems (3.2) and (3.8) are classical
([22], [24]). For the sake of completeness, this step is detailed in Appendix C.



4 Numerical results:

In this section, we present numerical tests to illustrate the capabilities of the method. We
validate our method on one-dimensional flows (shock tube problems). We also investigate the
influence of the numerical parameters. Note that in this section, we go back to an equation
using physical variables. In particular, τ is the relaxation time, t, x, v are respectively the time,
space and velocity variables.

Numerically, the boundary conditions are treated by a classical ghost cell technique (see
[31]). A Dirichlet or a reflecting condition is imposed in the ghost cell according to the test
case.

Computations by means of the BGK model and the hybrid model take about the same
amount of CPU time (slightly more for the hybrid model). However, at this stage, we did not
try to optimize the numerical efficiency but wanted first to test the hybrid methodology in
the most straightforward way. Indeed, the numerical fluxes (3.7) for the Euler equations are
calculated by discrete integration of the maxwellian on phase space. Therefore, the complexity
of the method is the same as for the resolution of the BGK model. Some pre-storage of these
numerical fluxes will reduce the CPU time. Also, shifting from a finite volume method to
a particle method for the discretization of the kinetic part should also greatly improve the
efficiency of the method.

4.1 Shock tube problem: basic test problem:

We study a one-dimensional stationary shock wave (see [4], [22]). The flow is initialized
with two maxwellian states related by the discrete Rankine-Hugoniot relations. Let us detail
these discrete Rankine-Hugoniot relations:

For a given left state UL, we must find a right state UR such that there exists a stationary
solution of the discrete BGK model (3.1), i.e.:

vk

∂fk

∂x
=

1

τ
(Ek − fk), ∀k ∈ Z, (4.18)

with the boundary conditions:

fk(−∞) = Ek,L, and fk(+∞) = Ek,R,

where
∑

k∈Z
mkEk,L∆v = UL and

∑

k∈Z
mkEk,R∆v = UR. Multiplying (4.18) by mk and sum-

ming on k ∈ Z, we see that UL and UR must necessarily satisfy the following discrete Rankine-
Hugoniot relations:

∑

k∈Z

vkmkEk,L∆v =
∑

k∈Z

vkmkEk,R∆v.

To solve this problem, we use a Newton iterative algorithm in order to compute the downstream
values of n, u, T as functions of the upstream ones.

We have used the following values for the mass density nL = 6.63 × 10−6 kg.m−3, the
mean velocity uL = 2551 m.s−1, and temperature TL = 293 K, of the upstream flow. The
gas considered is argon (the molecular mass mA equals 66.3 × 10−27kg). These values yield
a shock Mach number equal to 6. The computational domain is [0, L], L = 1 m whereas the
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Figure 1: Stationary shock: Normalized mass density as a function of x/l, x ∈ [0, L]. The
Mach number of the flow is 6. Comparison between the BGK model (dashed line), the hybrid
model (continuous) and the Euler equations (stars).

velocity domain takes into account the discrete velocities between vmin = (−5600) m.s−1 and
vmax = 8200 m.s−1. A one-dimensional grid of 200 cells in space and 200 cells in velocity is
used. The constant parameter R is taken equal to 2 and τ equals 3 × 10−5 s.

In Figs. 1, 2, and 3, we present the normalized profiles (q−qL)/(qR−qL) for q = n (the mass
density), q = u (the mean velocity) and q = T (the temperature) as functions of the normalized
space variable x/l (where l is the mean free path of the upstream flow (l = τ

√
RTL, where R is

the gas constant)). These figures display the results obtained by the hybrid model, by the full
BGK equation (discretized by (3.1)) and by the Euler equations (discretized following [13]).
The velocity set (given by [vmin, vmax]) ensures that the left and right maxwellians are correctly
represented. The stationary shock wave of the Euler equations is situated at x = 0.5 m. On
Figs. 1, 2, and 3, we can see that the hybrid model is closer to the BGK model than to the
Euler equations, but the shock wave of the hybrid model is stiffer than that of the BGK model.
The hybrid model has an intermediate behaviour between the Euler equations and the BGK
model, as could be expected.
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Figure 2: Stationary shock: Normalized mean velocity as a function of x/l, x ∈ [0, L]. The
Mach number of the flow is 6. Comparison between the BGK model (dashed line), the hybrid
model (continuous) and the Euler equations (stars).
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Figure 3: Stationary shock: Normalized temperature as a function of x/l, x ∈ [0, L]. The Mach
number of the flow is 6. Comparison between the BGK model (dashed line), the hybrid model
(continuous) and the Euler equations (stars).
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Figure 4: Stationary shock: Distribution functions as functions of the velocity v ∈ [vmin, vmax].
The Mach number of the flow is 6. Distribution functions upstream the shock (x = 0.1 m)
(dashed line), inside the shock (x = 0.5 m) (continuous line) and downstream the shock (x =
0.9 m) (stars) are presented. B1 = [k0, k1] is the fluid zone at x = 0.5 m.

The distribution functions computed by the hybrid model at locations upstream (x =
0.1 m), within (x = 0.5 m) and downstream (x = 0.9 m) the shock, are plotted on Fig. 4
as functions of the velocity v ∈ [vmin, vmax]. When the flow is at equilibrium (upstream and
downstream the shock), the distribution functions are very well approximated by the hybrid
model. Inside the shock, the hybrid model computes an intermediate maxwellian between the
upstream and downstream maxwellians, with a jump at the boundary of the ball v = k0 (where
k0 is s.t. B1 = [k0, k1]). The departure from equilibrium of the distribution function inside
the shock is not accurately enough described by the hybrid model. On Fig. 5, we can see the
distribution functions of the hybrid model and of the full BGK model within the shock, as func-
tions of the velocity; we can see a jump at v = k0 for the hybrid model; this is a discontinuity
between the kinetic unknown f2 and the maxwellian M1.

On Fig. 6, we present the distribution functions of the hybrid model and of the full BGK
model, as functions of the velocity, at x = 0.54 m. The BGK distribution function has two
humps of comparable size whereas a maxwellian (with one hump only) takes place for the
hybrid model. This figure shows the limit of our approach. Indeed, the hybrid model makes
some errors in describing the distribution function inside the shock.
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Figure 5: Stationary shock: Distribution functions as functions of the velocity v ∈ [vmin, vmax].
The Mach number of the flow is 6. Distribution functions within the shock (x = 0.5 m).
Comparison between the full BGK model (dashed line) and the hybrid model (continuous).
B1 = [k0, k1] is the fluid zone at x = 0.5 m.

4.2 Shock tube problem: Influence of the numerical parameters:

In this subsection, we present the influence of the numerical parameters on both the macro-
scopic and microscopic quantities. First, we study the influence of the velocity discretization,
while the other parameters are kept fixed to the values ∆x = 1

200
,R = 2, τ = 3 × 10−5 s. and

∆t = 6 × 10−7; Fig. 7 represents the normalized mass density as a function of the normalized
space variable x/l, x ∈ [0, L], (L = 1 m), where l is the upstream mean free path, obtained
by the hybrid model with different velocity discretizations. We can see that the increase of the
number of discrete velocities does not improve the results significantly. Nevertheless, a minimal
number of discrete points in velocity space is needed. Indeed, we need a sufficient number of
discrete velocities in the discrete ball in order to solve the discrete moment problem (3.8) (see
Appendix C).

We also study the influence of the space discretization. Fig. 8 represents the normalized
mass density as a function of the normalized space variable x/l, x ∈ [0, L], obtained with
different values of ∆x (and with R = 2, τ = 3 × 10−5 s., 200 discrete velocities and ∆t =
6 × 10−7). We can see that the shock becomes stiffer as ∆x is decreased, up to ∆x

L
= 1

400
. The

same behaviour is observed for the mean velocity and the temperature. The value ∆x = 1
200

seems to be a good compromise between accuracy and computer time.
The variation of ∆t does not improve the results (with R = 2, τ = 3× 10−5 s., 200 discrete

velocities and ∆x = 1
200

). Indeed, the condition (3.15) imposes a small time step which already
gives some quite good results (∆t = 6 × 10−7). In Fig. 9, we can see the normalized mass
density as a function of the normalized space variable x/l, x ∈ [0, L], obtained by the hybrid
model with different values of ∆t.

Once the numerical parameters are chosen properly, we investigate the influence of the
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Figure 6: Stationary shock wave: Distribution functions as functions of the velocity v ∈
[vmin, vmax]. The Mach number of the flow is 6. The distribution functions at x = 0.54 m
are represented. Comparison between the full BGK model (dashed line) and the hybrid model
(continuous).

parameter R on both the macroscopic and microscopic quantities. The parameter R is a kind
of cutover between Maxwellian and kinetic solvers. By varying R, we cross between the pure
fluid description (large R) to the full kinetic one (small R). The other parameters are taken
as follows: τ = 3 × 10−5 s., ∆t = 6 × 10−7, 200 discrete velocities and ∆x = 1

200
. For instance,

on Fig. 10, we plot the distribution functions within the shock (x = 0.5 m) as functions of
the velocity v ∈ [vmin, vmax] for the hybrid model with various values of R, and for the full
BGK model. In the same way, on Fig. 11, the normalized mass density profile is plotted as a
function of the normalized space variable x/l for the hybrid model (for different value of R) and
for the full BGK model in comparison. When R is small (R = 0.5 or R = 1), both microscopic
and macroscopic quantities are in good agreement with results given by the BGK model. On
the contrary, as R is growing, the macroscopic profiles (Fig. 11 and the same is true for the
mean velocity and the temperature) become less smooth and tend towards the results given by
the Euler equations. In the same way, the distribution function inside the shock given by the
hybrid model is very close to that given by the BGK model for small values of R (R = 0.5 or
R = 1 for example). When R is greater (R = 3), the distribution function (Fig. 10) becomes
a maxwellian (like that given by the Euler equations). In this case, the hybrid model does
not describe accurately the results of the BGK model. As pointed out in the introduction, we
focused on the validation of the hybrid model without any consideration about the numerical
cost. In particular, the numerical cost does not depend on R. The a priori choice of R = 2
seems to be a good compromise. Note that the parameter R may depend on the space variable
x. This allows to choose a suitable R, which is small at locations where the flow is known to
be far from equilibrium and large when the flow is close to the equilibrium. For example, in
the case of a stationary shock wave, a smaller R can be used within the shock while a larger
R is sufficient to describe the flow far from the shock.
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Figure 7: Stationary shock: Influence of the number of discrete velocities on the normalized
mass density as a function of x/l, x ∈ [0, L]. The Mach number of the flow is 6. Results
obtained with 100 (continuous line), 200 (dotted line) and 400 discrete velocities (dashed line)
are presented.

Finally, on Fig. 12, we have plotted the inverse of the shock-wave thickness as a function of
the upstream Mach number (see [4] and [22]). We define the shock-wave thickness, for instance
for the mass density, by the length LS s.t.:

LS =
nR − nL
(

dn
dx

)

max

,

where nR and nL are the downstream and upstream mass densities respectively. As mentionned
above, when R is large (R = 3, 4), the shock-wave thickness of the hybrid model is smaller
than that of the BGK model. When R = 0.5 or R = 1, the thickness LS of the hybrid model
is comparable with that of the BGK model. Our results seem to be in good agreement with
the experimental data, up to Mach 5 or Mach 6 (see [4] and [22]).



-20 -10 0 10 20

x/l
0

0.5

1

no
rm

al
iz

ed
 d

en
si

ty

50 meshes in space
100 meshes in space
200 meshes in space
400 meshes in space
500 meshes in space

Figure 8: Stationary shock: Influence of the space discretization on the normalized mass density
as a function of x/l, x ∈ [0, L]. The Mach number of the flow is 6. Results obtained with 50
(dotted line), 100 (dashed line), 200 (continuous), 400 (dashed and dotted line) and 500 mesh
points (thick continuous line) are presented.
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Figure 9: Stationary shock: Influence of the time step on the normalized mass density as a
function of x/l, x ∈ [0, L]. The Mach number of the flow is 6. Results obtained with ∆t
(continuous), ∆t/2 (dashed and dotted line), ∆t/5 (dotted line) and ∆t/10 (thick dashed line)
are presented (∆t = 6 × 10−7).
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Figure 10: Stationary shock: Influence of the parameter R on the normalized mass density as
a function of x/l, x ∈ [0, L]. The Mach number of the flow is 6.
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Figure 11: Stationary shock: Influence of the parameter R on the normalized mass density as
a function of x/l, x ∈ [0, L]. The Mach number of the flow is 6.
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Figure 12: Shock-wave thickness as a function of the Mach number.

4.3 Sod shock tube problem:

In this section, we present an other numerical test, the Sod shock tube problem (see [30],
[28]). We compare the hybrid model to the discrete BGK model (3.1) and to the exact solution
of the Sod shock tube problem. The initial conditions are the following: the mass density
nL = 1 kg.m−3, the mean velocity uL = 0 m.s−1 and the pressure pL = 105 Pa for x ∈
[0, L/2], L = 1 m, and the mass density nR = 0.125 kg.m−3, the mean velocity uR = 0 m.s−1

and the pressure pR = 104 Pa for x ∈ [L/2, L] The numerical parameters are: 200 cells in space
(∆x = 1/200), 100 cells in velocity (∆v = 15) and ∆t = 2.5× 10−6. Moreover τ = 10−5 s. and
R = 2. The solution is observed at 0.52 ms.

Figs. 13, 14 and 15 respectively represent the mass density, mean velocity and pressure
(circles) profiles as functions of the space variable x for the hybrid model. We have also plotted
the numerical solution of the BGK model (continuous curves) and the exact solution of the Euler
equations (discontinuous curves). We see that the rarefaction wave, the contact discontinuity
and the shock wave are well described by the hybrid model. The hybrid numerical solution can
be nearly superimposed on the BGK solution. On Fig. 14, we can see a bump at the contact
discontinuity level. This bump seems to remain even when the time, space and velocity steps
decrease (see [28]).

4.4 Unsteady shock problem:

We compare the results obtained by our hybrid model, with those obtained by the full BGK
model and by the Euler equations, in the case of an unsteady shock wave (see [15], [7], and [4]).

The calculations are made in an unsteady fashion by using a classical procedure to produce
a shock. At the beginning, the flow is uniform with a mass density n = 10−6 kg.m−3, a mean
velocity u = −900 m.s−1 and a temperature T = 273 K. The gas considered is argon, as in the
steady case (see section 4.1); at x = 0 m, we put a specular wall and at x = 2.5 m, an incoming



0 0.2 0.4 0.6 0.8 0.9 1

x   (m)
0

0,2

0,4

0,6

0,8

1

de
ns

ity
   

(k
g.

m
-3

)

BGK model
Hybrid model
Euler solution

Figure 13: Sod shock tube problem: Mass density as a function of x ∈ [0, L]. Comparison
between the BGK model (continuous), the hybrid model (circles) and the exact solution of the
Euler equations (dashed line).
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Figure 14: Sod shock tube problem: Mean velocity as a function of x ∈ [0, L]. Comparison
between the BGK model (continuous), the hybrid model (circles) and the exact solution of the
Euler equations (dashed line).
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Figure 15: Sod shock tube problem: Pressure as a function of x ∈ [0, L]. Comparison between
the BGK model (continuous), the hybrid model (circles) and the exact solution of the Euler
equations (dashed line).

distribution equal to a maxwellian with parameters (n, u, T ) is imposed in the ghost cell. We
look at the solution when the shock arrives at a distance 1.6 m of the wall, which corresponds
to t = 1.64 ms.

The space domain [0, 2.5] m is discretized using 500 mesh points, and we consider 140
discrete velocities in [−4000, 4000] m.s−1. Moreover τ = 3 × 10−5 s. and R = 2. On Figs.
16, 17, 18, comparison between the three models are made on the macroscopic profiles (mass
density, mean velocity and temperature). As in the steady case, the hybrid model has an
intermediate behaviour between the BGK model and the Euler equations.

On Fig. 19, we study the influence of the parameter R on the mass density. When R is
small (R = 1), the results obtained thanks to the hybrid model are nearly superimposed on
those given by the BGK model. On the contrary, as R is growing, our hybrid model gets closer
to the Euler equations. The same conclusions hold for the mean velocity and the temperature.
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Figure 16: Unsteady shock: Mass density as a function of the space variable x ∈ [0, 2.5] m.
Comparison between the BGK model (dashed line), the hybrid model (continuous) and the
Euler equations (dashed and dotted line).
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Figure 17: Unsteady shock: Mean velocity as a function of the space variable x ∈ [0, 2.5] m.
Comparison between the BGK model (dashed line), the hybrid model (continuous) and the
Euler equations (dashed and dotted line).



0 0,5 1 1,5 2 2,5

x   (m)
0

1000

2000

3000

4000

5000

te
m

pe
ra

tu
re

   
(K

)

BGK model
Hybrid model
Euler equations

Figure 18: Unsteady shock: Temperature as a function of the space variable x ∈ [0, 2.5] m.
Comparison between the BGK model (dashed line), the hybrid model (continuous) and the
Euler equations (dashed and dotted line).

5 Conclusion

First, we have presented a new hybrid model to describe systems of particles which are far
from equilibrium. This model is based on a domain decomposition in velocity space and a fluid
approximation of the solution of the kinetic equation for small velocities, based on a entropy
minimization principle. The associated moment problems are rigourosly treated.

Second, we give a discrete version to this hybrid model. In particular, we obtain a numerical
scheme preserving the total mass, momentum and energy of the system. Numerical results
show that this method gives accurate results for the computation of transition regimes. In such
regimes, the Euler or Navier-Stokes models are known to be insufficient to describe the flow.
So far, our hybrid strategy is as costly as a direct resolution of the BGK model. Optimization
procedure will be investigated in future work. However, the present work is a basis for the
development of intermediate models between kinetic and fluid ones aiming at the description
of transition regimes.

The approach will be further extended to more realistic collision operator. Moreover, the
effect of an electrical field will be incorporated. These extensions will be the subject of future
works.
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Figure 19: Unsteady shock: Influence of the parameter R on the mass density as a function of
the space variable x ∈ [0, 2.5] m.



5.1 Appendix A: Resolution of the entropy minimization problem:

This section is devoted to the resolution of the entropy minimization problem (2.2). We
shall prove that (2.2) has a unique solution provided that the prescribed moments satisfy
some constraints that will be precised later on. In order to make this statement precise, wee
first need to specify what is known as the moment realizability problem: what necessary and
sufficient conditions have to be satisfied by the prescribed moments n1, P1,W1 so that the
moment problem:















Find a nonnegative function M1 on B1 such that
∫

B1

M1(v)





1
v
|v|2



 dv =





n1

P1

2W1





(5.1)

admits at least one solution? When the moment realizability problem is solvable, the question
is then: what are the necessary and sufficient conditions on n1, P1,W1 so that the entropy
minimization problem (2.2) admits a solution?

The proof is similar to that of [12] which uses results of [20]. To make the conditions
such that (2.2) admits a solution explicit, we will use the following result borrowed from [20]
(Theorem 7.1 and Theorem A.1):

Theorem 5.1 [20] Let Ω be an open subset of R
d, d = 1, 2, 3; consider N + 1 independent

moment functions (ai(x), i = 0..N) of the variable x ∈ Ω (where Ω is an open subset of R
d),

satisfying:

aN (x) ≥ 0 and
|ai(x)|

1 + aN (x)
−→ 0 as |x| → +∞, for i = 0..N − 1.

Let D be the following functional domain:

D = {f ≥ 0, f 6= 0 and

∫

Ω

|(1 + aN (x))f(x)|dx < +∞}.

For any f ∈ D, we consider the moment vector µ(f) = (µ0, µ1, ..., µN)(f) defined by:

µ(f) =

∫

Ω

a(x)f(x)dx, with a = (a0, a1, ..., aN )T .

The exponential functions are the functions of the form:

expλ(x) = exp(λ0a0(x) + λ1a1(x) + ... + λNaN(x)), (5.2)

with λ = (λ0, λ1, ..., λN) ∈ R
N+1. We then define the following subset of R

N+1:

Λ = {λ ∈ R
N+1 s.t. expλ ∈ D},

and denote ∂Λ its boundary. Finally, we note:

E = {expλ s.t. λ ∈ Λ}.



(i)Then the following moment problem:

For ρ ∈ R
N+1, find f ∈ D s.t. µ(f) = ρ,

admits a solution if and only if, for all β ∈ R
N+1\ {0}, we have

β · a(x) ≤ 0 a.e. =⇒ β · ρ ≤ 0.

(ii) Assume that Λ 6= ∅ and Λ ∩ ∂Λ = ∅. Then µ(D) = µ(E) ie:

For all ρ ∈ µ(D), there is an unique λ ∈ Λ s.t. µ(expλ) = ρ.

Moreover the entropy minimization problem:

Min

{
∫

Ω

f log fdx, f ≥ 0 s.t. µ(f) = ρ

}

is uniquely solvable for all ρ ∈ µ(D).

Using this theorem, we will prove the proposition 2.3:
Proof of the proposition 2.3:
Thanks to (ii) of Theorem 5.1, we only have to show that the moment problem has a solution

in the form of an exponential function. In fact, here we have Λ = R
d+2 and Λ ∩ ∂Λ = ∅. To

show that the moment problem has a solution in the form of an exponential function, we use
(i) of Theorem 5.1.

To get conditions (2.3), (2.4), we first rewrite the moment problem (5.1) as follows:

find f s.t.

∫

B1

f(v)







1
v−u

R
√

T

|v−u|2

R2T






dv =







n1
P1−un1

R
√

T
1

R2T
(2W1 − 2u · P1 + |u|2n1)






.

The change of variables w = v−u

R
√

T
leads to:

∫

B(0,1)

f(R
√

Tw + u)





1
w
|w|2



 dw = (R
√

T )−3





M0

M1

M2



 , (5.3)

with B(0, 1) the unit ball and
M0 = n1,

M1 =
P1 − un1

R√
T

,

M2 =
2W1 − 2u · P1 + |u|2n1

R2T
.

We will prove that (5.3) has a solution. For that purpose, we use assertion (i) of Theorem 5.1
with Ω = B(0, 1) and:

a0(w) = 1, a1(w) = w (a1 ∈ R
d) and a2(w) = |w|2.



Theorem 5.1 says that (5.3) has a solution if and only if, for all (β0, β1, β2) s.t. β0 + β1 · w +
β2|w|2 ≤ 0, ∀w ∈ B(0, 1), we have:

β0M0 + β1 ·M1 + β2M2 ≤ 0.

Passing in polar coordinates in the first inequality, we obtain:

β0 + β1 · w + β2|w|2 = β0 + |β1||w| cos θ + β2|w|2, ∀w ∈ B(0, 1), ∀θ ∈ [0, 2π]. (5.4)

The second member of (5.4) is negative ∀w ∈ B(0, 1), ∀θ ∈ [0, 2π] if and only if β0 + |β1|X +
β2X

2 is negative ∀X ∈ [0, 1] (we set X = |w|).
We now characterize the set C =

{

(β0, β1, β2) s.t. β0 + |β1|X + β2X
2 ≤ 0, ∀X ∈ [0, 1]

}

.

Looking at the asymptotic behavior when X goes to zero and to 1, we get : β0 ≤ 0 and
β0+|β1|+β2 ≤ 0. For the function F (X) = β0+|β1|X+β2X

2 to be negative for all X ∈ [0, 1], it
is necessary and sufficient that its maximum remains negative. We then compute the maximum
of the function F . If the critical point X = − |β1|

2β2
belongs to [0, 1], F (X) ≤ 0 is equivalent to

F (X) ≤ 0, ∀X ∈ [0, 1] (because of the strict concavity of F (β2 < 0)). On the other hand, if
X /∈ [0, 1], max(F (0), F (1)) ≤ 0 is an equivalent condition to F (X) ≤ 0, ∀X ∈ [0, 1]. We find:

F (X) = β0 − |β1|2

4β2
. Therefore,

C =
{

(β0, β1, β2)/
(

− |β1|
2β2

∈ [0, 1] and β0 −
|β1|2
4β2

≤ 0
)

or
(

β0 ≤ 0, β0 + |β1| + β2 ≤ 0,
−|β1|
2β2

/∈ [0, 1]
)}

.

Assertion (i) of Theorem 5.1 says that for all β ∈ C, we have β0M0 + β1 ·M1 + β2M2 ≤ 0,
or equivalently β0M0 + |β1||M1| + β2M2 ≤ 0.

If we first consider β s.t. − |β1|
2β2

∈ [0, 1] and β0 − |β1|2

4β2
≤ 0, i.e. β s.t. β2 < − |β1|

2
and

β0 ≤ |β1|2

4β2
, this is equivalent to saying that for all β2 < − |β1|

2
, we have:

|β1|2
4β2

M0 + |β1||M1| + β2M2 ≤ 0.

For a fixed β2 s.t. β2 ≤ − |β1|
2
, consider the function G : R → R such that:

G(|β1|) = |β1|2M0 + 4β2|β1||M1| + 4β2
2M2.

For the function G to be positive (because β ≥ 0), it is necessary and sufficient that its
minimum is positive. As G(0) ≥ 0 and G(+∞) = +∞, this minimum is reached at a finite
value of |β1| ≥ 0. If |β1| = 0, then:

G′(|β1|) = 2|β1|M0 + 4β2|β1||M1| ≥ 0, ∀|β1| > 0.

By passing to the limit |β1| → 0, we obtain β2 ≥ 0 which is a contradiction. Then |β1| > 0 and
therefore G′(|β1|) = 0. This gives:

|β1| = −2β2|M1|
M0

, and G(|β1|) =
4β2

2

M0
(M2M0 − |M1|2).



The necessary and sufficient condition is G(|β1|) ≥ 0 which is equivalent to: M2M0−|M1|2 ≥ 0.

Let us consider now β s.t. β0 ≤ 0 and β0 + |β1|+ β2 ≤ 0 and − |β1|
2β2

/∈ [0, 1]. Combining the

three inequalities, we obtain: β0 ≤ −(|β1|+ β2) and β2 > − |β1|
2
. Recall that we must prove, for

all these β :
β0M0 + |β1||M1| + β2M2 ≤ 0.

Thanks to β0 ≤ −(|β1| + β2), this is equivalent to saying that for all β2 > − |β1|
2

, we have:

|β1|(|M1| −M0) + β2(M2 −M0) ≤ 0.

By passing to the limit |β1| and β2 → +∞, we obtain the following conditions:

M2 ≤M0 and |M1| ≤M0.

Moreover, the inequality |β1|(|M1| −M0) + β2(M2 −M0) ≤ 0 is satisfied ∀β2 s.t. β2 > − |β1|
2

.
So, it follows that M0 − 2|M1| +M2 ≥ 0.

Finally, the necessary and sufficient conditions on (M0,M1,M2) reads:

M2 ≤ M0, |M1|2 ≤M0M2, M0 − 2|M1| +M2 ≥ 0, and |M1| ≤M0.

We can easily show that the first two conditions imply the last two ones. Therefore, the moment
problem (5.1) admits a solution in D if and only if:

2W1 − 2u · P1 + n1|u|2 ≤ R2Tn1, |P1|2 ≤ 2W1n1.

5.2 Appendix B: Calculations relative to the proof of proposition

2.4:

In this section, we prove that expression (2.15) can be simplified. Indeed, the volumic terms
preceded by the minus sign in (2.15) vanish. More precisely, we show that:

∂

∂t
(m̃(w)J) + ∇x ·

(

(R
√

Tw + u)m̃(w)J
)

+ ∇w ·
(

m̃(w)
−→
F1(w)J

)

= 0, (5.1)

where m̃(w) is the vector of the conserved quantities in the w variable:

m̃(w) =





1
R√

Tw + u
|R√

Tw + u|2



 ,

J is the Jacobian J = (R√
T )d, d = 1, 2, 3, and

−→
F1(w) is the force term given by (2.16). Let

us calculate the divergence of this force term:

∇w·−→F1(w) = − 1

R√
T

[

R
√

T∇x · u+ d

(

∂

∂t
+ (u+ R

√

Tw) · ∇x

)

R
√

T + R
√

Tw · ∇x(R
√

T )

]

(5.2)



Now, we investigate the mass component, i.e. when m̃(w) = 1. In this case, (5.1) is written:

∂J

∂t
+ ∇x ·

(

(R
√

Tw + u)J
)

+ ∇w ·
(−→
F1(w)J

)

= d
∂R√

T

∂t

(

R
√

T
)d−1

+ J∇x ·
(

R
√

Tw + u
)

+d
(

R
√

Tw + u
)

· ∇x(R
√

T )
(

R
√

T
)d−1

+ J∇w ·
(−→
F1(w)

)

.

Thanks to the expression (5.2), this term is equal to zero.
The momentum component corresponds to m̃(w) = R√

Tw + u. Let us detail the calcula-
tions of the three terms of (5.1). The first one gives,

∂

∂t
(m̃(w)J) = J

(

∂m̃(w)

∂t

)

+ d
(

u+ R
√

Tw
) ∂R√

T

∂t
(R

√

T )d−1,

whereas the second one becomes, (with m̃(w) = u+ R√
T ):

∇x · (m̃(w)m̃(w)J) = (m̃(w)m̃(w) · ∇x)J + J [(∇x · m̃(w)) m̃(w) + (∇xm̃(w)) m̃(w)]

Finally, the last term can be written as follows:

∇w ·
(

m̃(w)
−→
F 1(w)J

)

= J (∇wm̃(w))
−→
F 1(w) + J

(

∇w · −→F 1(w)
)

m̃(w).

If we use (5.2) in the last term, we find:

∇w ·
(

m̃(w)
−→
F 1(w)J

)

= JR
√

T
−→
F 1(w)

− J

R√
T

[

R
√

T∇x · u+ d

(

∂

∂t
+ (u+ R

√

Tw) · ∇x

)

R
√

T + R
√

Tw · ∇x(R
√

T )

]

m̃(w)

= −J
[(

∂

∂t
+ (u+ R

√

Tw) · ∇x

)

(u+ R
√

Tw)

]

− J

R√
T

[

R
√

T∇x · u+ d

(

∂

∂t
+ (u+ R

√

Tw) · ∇x

)

R
√

T + R
√

Tw · ∇x(R
√

T )

]

m̃(w).

If we develop and sum these three terms, we can see that they vanish.
Finally, let us calculate the third component (the energy component). In this case, m̃(w) is

equal to
∣

∣u+ R√
T

∣

∣

2
.We then denote

∣

∣u+ R√
T

∣

∣

2
by m̃(w). As in the momentum calculations,

we investigate each of the three terms of (5.1). For the first term, we have:

∂

∂t
(Jm̃(w)) = 2J

∂(u+ R√
T )

∂t
· (u+ R

√

T ) + dm̃(w)
∂(R√

T )

∂t
(R

√

T )d−1,

and for the second term of (5.1), where m̃(w) =
∣

∣u+ R√
T

∣

∣

2
, we find:

∇x ·
(

(u+ R
√

T )m̃(w)J
)

= m̃(w)J∇x · (u+ R
√

T ) + J(u+ R
√

T ) · ∇xm̃(w) + m̃(w)(u+ R
√

T ) · ∇xJ.

Finally, the third term of (5.1) can be developed as follows:



∇w ·
(

m̃(w)
−→
F (w)J

)

= Jm̃(w)∇w · −→F (w) + J
−→
F (w) · ∇wm̃(w)

= −Jm̃(w)

R√
T

[

R
√

T∇x · u+ d

(

∂

∂t
+ (u+ R

√

Tw) · ∇x

)

R
√

T + R
√

Tw · ∇x(R
√

T )

]

− 2J

R√
T

[(

∂

∂t
+ (u+ R

√

Tw) · ∇x

)

(u+ R
√

Tw)

]

· (u+ R
√

Tw)R
√

T

= −Jm̃(w)

R√
T

[

R
√

T∇x · u+ d
∂R√

T

∂t
+ (u+ R

√

Tw) · ∇xR
√

T + R
√

Tw · ∇x(R
√

T )

]

−2J

[

∂(u + R√
Tw)

∂t
· (u+ R

√

Tw)

]

−2J
[(

(u+ R
√

Tw) · ∇x(u+ R
√

Tw)
)

· (u+ R
√

Tw)
]

The sum of these three terms vanish. We conclude that (5.1) vanishes.

5.3 Appendix C: Numerical resolution of discrete moment and en-

tropy problems:

As in the continuous case, the discrete entropy minimization problem requires the resolution
of a discrete moment problem. First, for numerical reasons, we must restrict the discrete velocity
space Z to a finite discrete set. Let K be the following set of indices:

K = {k ∈ N such that k ≤ 2K}, (5.1)

where K > 0 is given. We then define a discrete velocity set V of R by:

V = {vk = (k −K)∆v, k ∈ K},

where ∆v is the velocity step, ∆v > 0. Three minimization problems take place in our scheme:
(3.2), (3.8) and, in the second step of the algorithm, (3.8) with prescribed moments Ũn+1

1,i . The
first one (3.2) determines En

i,k. At the continuous level, we have seen that En
i,k has an exponential

form (2.5). At the discrete level, we use a result of [22] stating that this property remains true
provided that the set (5.1) contains at least three points (which is not very restrictive) and
the prescribed discrete moments Un

i are strictly realizable, i.e. Un
i is the moment vector of a

strictly positive discrete function (which is fulfilled thanks to proposition 3.1 and remark 3.2).
Consequently, thanks to this result, we let:

En
i,k = exp(αn

i ·mk), ∀k ∈ K.

So, it is sufficient to solve the following discrete moment problem:







Find αn
i ∈ R

3 such that for Un
i ∈ R

3 given
∑

k∈K

exp(αn
i ·mk) = Un

i . (5.2)



As well as for (3.8), if Kn
i contains more than three points and the prescribed discrete

moments Un
1,i are strictly realizable (which is satisfied thanks to proposition 3.1 and remark

3.2), the second minimization problem (3.8) yealds Mn
1,i,k which also has an exponential form:

Mn
1,i,k = exp(λn

1,i ·mk), ∀k ∈ Kn
i .

So, we only have to solve the following discrete moment problem:






Find λn
1,i ∈ R

3 such that for Un
1,i ∈ R

3 given
∑

k∈Kn

i

exp(λn
1,i ·mk) = Un

1,i. (5.3)

Let us now pay attention to the resolution of the third minimization problem (3.8) with
prescribed moments Ũn+1

1,i . It allows us to obtain M̃n+1
1,i,k, ∀k ∈ Kn

i in the second step of the

algorithm. We have to solve (3.8) with prescribed moments Ũn+1
1,i . Nevertheless, we do not

know if the prescribed moments Ũn+1
1,i are satisfied by a strictly positive discrete distribution.

So, we can not apply the result of [22]. The problem is different and we are faced with a discrete
moment realizability problem; we are seeking conditions on Ũn+1

1,i so that there exists a strictly

positive discrete distribution, the moments of which should be equal to Ũn+1
1,i . However, the

restriction on the time step ensures that Ũn+1
1,i is not “far” from Un

1,i which is strictly realizable;
consequently, in practice, we solve this entropy minimization problem in the same way as
the two previous entropy minimization problems, i.e. solving the discrete associated moment
problem:







Find λ̃n+1
1,i ∈ R

3 such that for Ũn+1
1,i ∈ R

3 given
∑

k∈Kn

i

exp(λ̃n+1
1,i ·mk) = Ũn+1

1,i . (5.4)

Consequently, the computation of these three discrete entropy minimization problems does
not require the resolution of some expensive minimization problems. Indeed, it is sufficient to
solve the associated discrete moment problems (5.2), (5.3) and (5.4).

Let us now consider the numerical resolution of the discrete moment problems (5.2), (5.3)
and (5.4). Several strategies can be used to solve them (see [24] or [22]). We have chosen here
a Newton algorithm.
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