
HAL Id: hal-00139686
https://hal.science/hal-00139686

Submitted on 12 Apr 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A hybrid kinetic-fluid model for solving the Vlasov-BGK
equation

Nicolas Crouseilles, Pierre Degond, Mohammed Lemou

To cite this version:
Nicolas Crouseilles, Pierre Degond, Mohammed Lemou. A hybrid kinetic-fluid model for solving the
Vlasov-BGK equation. Journal of Computational Physics, 2005, 203, pp.572-601. �hal-00139686�

https://hal.science/hal-00139686
https://hal.archives-ouvertes.fr


A hybrid kinetic-fluid model for solving the Vlasov-BGK

equation.

Nicolas Crouseilles† Pierre Degond ‡ Mohammed Lemou ‡

1st September 2004

Abstract

Our purpose is to derive a model for charged particles which combines a kinetic de-
scription of the fast particles with a fluid description of the slow ones. In a previous paper,
a similar model was derived from a kinetic BGK equation that uses a constant relaxation
time and does not include the effect of an electric field. In this paper, we consider a more
general kinetic equation including an electric field and a varying relaxation time. Fast
particles will be described through a collisional kinetic equation of Vlasov-BGK type while
thermal particles will be modeled by a hydrodynamic model. Then, we construct a nu-
merical scheme for this model and validate the approach by presenting various numerical
tests.

Key words: Vlasov equation, Euler equations, entropy minimization principle, kinetic-
hydrodynamic coupling, numerical schemes

1 Introduction

Numerical simulations have become a very important tool to study complex problems in
plasma physics. Consequently, the description of the motion of charged particles arose as a
crucial problem. Kinetic models of Boltzmann type and, on the other hand, macroscopic mod-
els such as hydrodynamic ones are commonly used in plasma physics. Even if hydrodynamic
models are sufficiently accurate to describe many observed phenomena, however, for some of
them, a fluid treatment is inadequate. Thus, one must resort to a kinetic model to overcome the
insufficiency of the hydrodynamic models. Nevertheless, the numerical simulations of kinetic
models are very prohibitive in terms of both CPU time and memory storage. Thus, interme-
diate models or hybrid approaches have been recently proposed; these approaches appear as
a good compromise between physical accuracy and a low computational cost. This paper is
a contribution in this direction. Indeed, we derive a hybrid kinetic-fluid model describing the
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evolution of slow particles by means of a hydrodynamic (or fluid) model, and restricting the
use of the kinetic model to the modelling of fast particles.

In a previous paper ([13], see also [12]), the hybrid model was derived in a rarefied gas
dynamics context. A transport kinetic equation coupled with a BGK collision operator was
considered as our basic model; besides, a constant collision frequency was taken into account.
This simple framework enabled us to make rather exhaustive comparisons between the hybrid
model, the full kinetic BGK model and the Euler equations. In the present work, we study the
evolution of charged particles, so that the basic kinetic model used in [13] and [14] has to be
enriched. Two kinds of improvements are performed. On the one hand, we introduce a given or
self-consistent electric field (according to the considered case), which represents a wide range of
applications in plasma physics. On the other hand, binary collisions between charged particles
have to be considered. The simple BGK collision operator used in [14] with constant collision
frequency cannot accurately describe such collisions. Usually, the Fokker-Planck-Landau (FPL)
collision operator is the common collision model in plasma physics. Classically, the FPL oper-
ator is obtained as a remedy to the loss of finiteness of the Boltzmann operator for long-range
Coulomb interaction (see [16, 21]). It takes the form of a nonlinear partial integro-differential
operator whose direct numerical implementation is very expensive and difficult. Consequently,
a simpler relaxation time model of BGK type (intended to approximate the Fokker-Planck-
Landau operator) is considered in this paper. A collision frequency ν depending on time, space
and velocity is computed from the FPL operator using results in [19] for instance. The so-
obtained frequency behaves like |v|−3 for large particle velocities v which corresponds to the
usual behaviour for Coulombian interactions between charged particles (see [2]). On the basis of
these two investigations (electric field and collision frequency), a physically realistic numerical
code for one-dimensional plasmas has been developed.

Following the methodology introduced in [12] and developed in [13] and [14], we derive a
hybrid kinetic-fluid model based on a domain decomposition method in the velocity variable.
We consider a set of particles as described by a distribution function f = f(t, x, v), where
t ∈ [0,+∞[, x ∈ Ω and v ∈ R

3 denote time, position and velocity respectively, and Ω is a
bounded subdomain of R

3. The quantity f(t, x, v)dxdv represents the number of particles at
time t in an elementary volume dxdv in the phase space around (x, v). Before defining the
model satisfied by f , let us introduce the expression of a Maxwellian M

M(v) = exp

(

− ρ

RT
− |v|2/2 − u · v

RT

)

, (1.1)

where ρ = ρ(t, x), u = u(t, x), T = T (t, x) (the chemical potential, the mean velocity and the
temperature of M) are the parameters of M; R is the gas constant. The evolution of f is
governed by a kinetic equation which we consider as our starting point for the derivation of the
hybrid model

∂f

∂t
+ v · ∇xf +

e

m
E · ∇vf = ν(M[f,ν] − f), (1.2)

where E = E(t, x) is a given electric field, m the mass of the particle, e the unit charge and
ν = ν(t, x, v) is a collision frequency, depending on time, space and velocity. Moreover, M[f,ν]

has the Maxwellian form (1.1); its parameters ρν , uν , Tν are functions of t and x only and are
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determined from the moments of νf by the following constraints

∫

R3

νf(v)





1
v
|v|2



 dv =

∫

R3

νM[f,ν](v)





1
v
|v|2



 dv. (1.3)

This ensures the conservation of the mass, the momentum and the energy of the particles.
Within the framework of this paper, we also consider a self-consistent electric field E which
evolves through the Poisson equation. Equations (1.2)-(1.3) are supplemented with an initial
condition f(t = 0, x, v).

Our hybrid model relies on the assumption that the particles can be clearly grouped into
two categories. The first category consists of thermal particles, whose distribution function
is close to a Maxwellian. The second category is that of suprathermal or energetic particles.
Following this assumption, we choose a domain B1 in velocity space (most often a ball as in [13]
or [14]) and we suppose that the distribution function can be approximated by a Maxwellian
inside B1. Therefore, we make the Ansatz that the solution of (1.2)-(1.3) can be approximated
by

f(v) =

{

M1(v), v ∈ B1,
f2(v), v ∈ B2 = R

3 \B1,
(1.4)

where M1 has the Maxwellian form (1.1) and f2 is the restriction of f to B2. The parameters
of M1 are (ρ1, u1, T1) and are determined by

∫

B1

f(v)





1
v
|v|2



 dv =

∫

B1

M1(v)





1
v
|v|2



 dv. (1.5)

We must derive a set of fluid equations for (ρ1, u1, T1) from the Vlasov-BGK model (1.2)-(1.3),
as well as a kinetic equation for f2. The way we achieve this task is the same as in [14]: we take
the moment equations of (1.2)-(1.3) on the domain B1 and close the system by using an entropy
minimization strategy [29]. The so-obtained system differs from the hybrid model derived in
[14] because of the presence of the electric field. It intervenes in two ways. On the one hand, it
plays a part as a source term of the fluid model, as usual in the fluid approximation of plasmas
([2, 11, 26]). On the other hand, its influence together with the variations of the fluid domain
in space and time, induces fluxes of particles from B1 to B2 and vice versa. These fluxes appear
as source and sink terms depending on f2 in the Euler equations, and as boundary conditions
depending on M1 at the boundary of B2 for f2. Besides, the electric field is present in the
kinetic part of the model.

We shall present a numerical strategy which respects the balance between the two sets of
equations. The methodology is mainly the same as in [14]: the basic kinetic equation was
discretized following a conservative finite volume method which also preserves the positivity,
and the decomposition was performed at the discrete level; the discrete moment equations were
obtained for the thermal particles and a discrete entropy minimization principle was used to
close these equations. In this paper, the main difference comes from the discretization of the
Vlasov equation (the left hand side of (1.2)). To that purpose, we adopt a method which
discretizes (1.2) on a phase space grid (see [4, 36]). But, both conservation and positivity
properties are difficult to obtain due to the projection on the grid. Since the positivity property
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is crucial in our case to guarantee the existence of the Maxwellians M1 and M[f,ν], the scheme
has to be positive. Thus, we adopt a first order finite volume method which warrants the strict
positivity of the distribution function (at the cost of a restriction on the time step), even if it
does not ensure the energy conservation. However, following [14], an algorithm that respects
the balance between the kinetic and fluid sets of equations can be obtained. Of course, there
exist conservative and positive numerical schemes to approach Vlasov type equations without
any restriction on the time step (see [24]), but a simpler scheme is chosen here.

In this paper, we try to demonstrate the validity of the hybrid approach by comparing it on
the one hand to the kinetic model of BGK type from which the hybrid model can be derived,
and on the other hand to the Navier-Stokes equations. To that purpose, various numerical tests
have been implemented to describe the evolution of charged particles in the one dimensional
case in space and velocity. These numerical tests deal with various plasma physics situations:
electronic shock waves, Landau damping, ion acoustic waves or deceleration of an electron
beam. Our results are also compared to analytical or literature results, according to the test
case.

We now outline some similar approaches in the literature. This approach was first developed
for diffusion equations in [12], and for hydrodynamic equations in [13] and [14]. It bears some
similarities with the so-called δf method ([1, 35, 7]). Most hybrid kinetic-fluid approaches used
so far are based on a domain-decomposition in position space: a fluid model is used except
in specific regions where the flow is supposed to be far from equilibrium, and where a kinetic
model is used (see [5, 27, 28] for the gas dynamics context and [6, 20, 31] for the plasmas or [17]
for the semiconductors). A smooth transition between the two models can also be envisaged
like in [18]. Thus, one uses hybrid codes: a kinetic solver and a hydrodynamic solver are used
in different regions of the flows.

The remainder of the paper is organized as follows. In a first part, we derive the hybrid
model taking account of a given electric field and a varying collision frequency. Then, we
present the numerical scheme allowing us to discretize the hybrid model. Before concluding,
various numerical tests coming from plasma physics are presented to validate the approach.

2 Derivation of the hybrid model

This section is devoted to the derivation of the hybrid model describing the evolution of
charged particles in a collisional plasma. The starting point of the methodology is the colli-
sional kinetic equation (1.2)-(1.3). This model is a simplified one which allows us to make the
derivation of the hybrid model easier. Admittedly, the Fokker-Planck-Landau (FPL) collision
operator is more adapted to describe binary collisions between charged particles, for which the
interaction potential is the long-range Coulomb interaction; but its direct numerical implemen-
tation is very expensive, in spite of several approaches for reducing its computing cost (see
[8]). Consequently, we propose to adopt in this paper a BGK type model which expresses the
relaxation towards a local equilibrium. We take into account the FPL collision operator by
introducing in (1.2) the collision frequency ν derived from the FPL collision operator. This
collision frequency is a function of the velocity (see [2] for instance) and expresses the Coulom-
bian interaction of the particles. Let us denote by ν = ν(|v − u|) ∈ R (where u is the mean
velocity of the considered particles) a collision frequency between the considered particles (like
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electrons). Some computations which are detailed in Appendix lead to the following expression
of ν

ν(|v − u|) = CFP

{

(4/3)(2π)−1/2n/(RT )3/2 if |v − u| ≤ C0

√
RT,

2n/|v − u|3 if |v − u| > C0

√
RT,

(2.1)

where CFP = e4 ln Λ/(8πm2ǫ20), e is the electric charge, ln Λ is the usual Coulomb logarithm
and ǫ0 is the permittivity of free space, m is the mass of the considered particles. Besides, C0

is chosen such that ν(|v − u|) is a continuous function of |v − u|, i. e.,

C0 =

(

3

2

)1/3

(2π)1/6.

Finally, R = kB/m is the gas constant associated to the considered particles (where kB stands
for the Boltzmann constant) and n, u, T denote the density, the mean velocity and the temper-
ature of f

n =

∫

R3

f(v)dv, u =
1

n

∫

R3

vf(v)dv, T =
1

3Rn

∫

R3

|v − u|2f(v)dv. (2.2)

To derive our hybrid model, the starting point is the Vlasov-BGK equation (1.2)-(1.3) where
ν is the collision frequency (2.1). Let us now introduce B1 and B2

B1 =
{

v ∈ R
3||v − u| ≤ R

√

RT
}

, B2 = R
3 \B1,

where R is a nonegative constant, u and T are respectively some characteristic velocity and
temperature of the plasma. A possible choice can be u = u and T = T where u and T are
given in (2.2). Let us also introduce some notations relative to B1 and B2

Definition 2.1. For all function g : R
3 −→ R, we define for i = 1, 2

gi(v) =

{

g(v) if v ∈ Bi,
0 otherwise.

Our goal is to approximate (1.2)-(1.3) by a kinetic-fluid model. The methodology is the
same as in [14] and we refer to it for more details. Let f be a solution to (1.2)-(1.3). Associated
to f , we denote by f2 the unknown of the kinetic part of the hybrid model. On the other
hand, the fluid part is a system satisfied by the moments of f on B1. If we denote by m(v) the
conserved quantities

m(v) = (1, v, |v|2)T , (2.3)

the moments U1 = (n1, P1, 2W1) of f on B1 are written

∫

B1

f(v)m(v)dv =





n1

P1

2W1



 = U1, (2.4)

where n1 is the density, P1 the momentum and W1 the total energy of f on B1. Finally, we
consider the following entropy minimization problem























Given n1 ≥ 0, P1 ∈ R
3, W1 ≥ 0, find a nonnegative function M1 on B1,

realizing the following minimum

Min







∫

B1

g(v) log(g(v))dv, g ≥ 0, s.t.

∫

B1

g(v)m(v)dv =





n1

P1

2W1











.
(2.5)
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Under some conditions on U1, the unique solution of (2.5) is given by a Maxwellian function
whose expression is

M1(v) = exp(λ1 ·m(v)) = exp(λ1
0 + λ1

1 · v + λ1
2|v|2), (2.6)

where λ1 = (λ1
0, λ

1
1, λ

1
2)

T ∈ R
5 is uniquely determined by the constraints

∫

B1

exp(λ1 ·m(v))m(v)dv =





n1

P1

2W1



 . (2.7)

Now, in order to write the hybrid system satisfied by (n1, P1,W1, f2), we take the moments of
(1.2) on B1 and close by the Maxwellian (2.6). On B2, a kinetic description is keeped. In the
present case, we obtain the following system on (n1, P1,W1, f2)






















∂

∂t





n1

P1

W1



+ ∇x ·





ψn1

ψP1

ψW1



 =





0
e
m
n1E

e
m
P1 · E



+







n
(1)
ν − nν,1

P
(1)
ν − Pν,1

W
(1)
ν −Wν,1






+





Gn1

GP1

GW1



−





Ln1

LP1

LW1



 ,

∂f2

∂t
+ v · ∇xf2 +

e

m
E · ∇vf2 = ν

((

M[M1+f2,ν]

)

2
− f2

)

, on B2,

(2.8)
with the boundary condition: f2(v) = M1(v), ∀v ∈ S+.

Let us detail the notations used in (2.8). The expressions (n
(1)
ν , P

(1)
ν ,W

(1)
ν ) and (nν,1, Pν,1,Wν,1)

are given by






n
(1)
ν

P
(1)
ν

2W
(1)
ν






=

∫

B1

νM[M1+f2,ν]m(v)dv,





nν,1

Pν,1

2Wν,1



 =

∫

B1

νM1(v)m(v)dv.

The quantities,




ψn1

ψP1

2ψW1



 =

∫

B1

M1(v)vm(v)dv =

∫

B1

M1(v)





v
v ⊗ v
|v|2v



 dv, (2.9)

are the moment fluxes and M1(v) is given by (2.6) and (2.7). The outgoing and incoming
semi-fluxes in the fluid equation are defined by





Ln1

LP1

2LW1



 :=

∫

S+

−→
F (v) · −→τ M1(v)m(v)dS(v),





Gn1

GP1

2GW1



 :=

∫

S−

|−→F (v) · −→τ |f2(v)m(v)dS(v).

where the term

−→
F (v) = D

(

v − u

R√
RT

)

− e

m
E, with D =

∂

∂t
+ v · ∇x, (2.10)
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is a force; the first term results from the space and time variations of B1 whereas the second
term is due to the electric field. Now, if we denote by S(u,R

√
RT ) the boundary of B1, which,

in the case we consider, is a sphere of center u and radius R√
RT , we can define S− and S+ as

follows
S− = {v ∈ S(u,R

√

RT ) s.t.
−→
F (v) · −→τ < 0}, (2.11)

S+ = {v ∈ S(u,R
√

RT ) s.t.
−→
F (v) · −→τ > 0}, (2.12)

where −→τ is the outward unit normal to S(u,R√
RT ). Finally, dS(v) is the Euclidean surface

element on S(u,R
√
RT ).

3 Numerical schemes for the hybrid model

In this section, we present a numerical scheme for the hybrid model (2.8). The approxima-
tion proposed here is mainly the same as [14] and we refer to it for more details. Nevertheless,
the hybrid model (2.8) takes account of the effect of an electric field and comprises a velocity
derivative. These differences with [14] involve some additional problems. Indeed, it is known
that both the conservation of energy and the property of the positivity of the distribution func-
tion are difficult to preserve when one approximates the Vlasov equation on a phase space grid.
Here, we propose a numerical scheme that ensures the positivity of the distribution function.
Indeed, this property of positivity is crucial in our case since it guarantees the Maxwellian form
of the solution to the entropy minimization problem (2.5) (see [32] or [14] for more details).
However, the numerical scheme does not ensure the exact conservation of the energy but the
perfect balance between the two sets of equations (hydrodynamic and kinetic parts) is preserved
at the discrete level.

We start from a fully discretized version of the basic kinetic equation in position, velocity
and time. To that purpose, we use a first order finite volume method [23] to approximate the
Vlasov-BGK equation (1.2)-(1.3). Then we perform the domain decomposition and pass to the
fluid quantities (moments on B1), directly on the discrete equations. The motion of the ball
B1, which takes account of the evolution of the mean velocity u and the temperature T , is
performed at the end of each discretization step.

The numerical scheme is presented in one dimension of both space and velocity but can be
easily extended to any higher dimensions. For the sake of simplicity, we let e = m = 1 in the
sequel. We consider a cartesian grid xi = i∆x, vk = k∆v, i, k ∈ Z, while tn = n∆t is the time
discretization, n ∈ N. We denote by ∆x, ∆v and ∆t the space, velocity and time steps. We
approximate f(tn, xi, vk) by fn

i,k such that

fn+1
i,k = fn

i,k − v+
k

∆t

∆x

[

fn
i,k − fn

i−1,k

]

− v−k
∆t

∆x

[

fn
i+1,k − fn

i,k

]

−En,+
i

∆t

∆v

[

fn
i,k − fn

i,k−1

]

− En,−
i

∆t

∆v

[

fn
i,k+1 − fn

i,k

]

+∆t νn
i,k

[

En
i,k − fn

i,k

]

, (3.1)

where b± = (b ± |b|)/2 for an arbitrary real quantity b, En
i = E(tn, xi), ν

n
i,k = ν(tn, xi, vk) and

En
i,k is defined as being the Maxwellian such that

∑

k∈Z

νn
i,kEn

i,kmk∆v =
∑

k∈Z

νn
i,kf

n
i,kmk∆v, (3.2)
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with mk = m(vk)
mk = (1, vk, |vk|2). (3.3)

Now, in order to decompose the velocity domain, we have to define a discretized version of
the ball B1. In the remainder of this paper, we shall choose u and T as the global mean velocity
u and temperature T respectively. They are approximated at point xi and at time tn by

un
i =

P n
i

nn
i

, (3.4)

Tn
i =

2W n
i n

n
i − (P n

i )2

R(nn
i )2

, (3.5)

where nn
i , P

n
i and W n

i are the mass, momentum and energy at xi and tn, and are such that

Un
i =





nn
i

P n
i

2W n
i



 =
∑

k∈Z

fn
i,kmk∆v.

Then, at position xi and time tn, (B1)
n
i can be approximated by the following discrete set

Kn
i = {k ∈ Z s.t. vk = k∆v satisfies |vk − un

i | ≤ R
√

RT n
i }, (3.6)

where R is an arbitrary nonnegative parameter.
To introduce the moments of a discrete distribution function, let us denote by g = (gk)k∈Z

an arbitrary sequence. Then, we define the moments of g on Kn
i by

Mn
i (g) =

∑

k∈Kn

i

gkmk∆v,

and the moments of the shifted sequences (gk±1)k∈Z

Mn
i,±(g) =

∑

k∈Kn

i

gk±1mk∆v.

We also denote by
Un

1,i = Mn
i (fn

i ),

the discrete moments of fn
i = (fn

i,k)k∈Z on the discrete ball; the restriction of (fn
i,k)k∈Z on Z\Kn

i

is defined by

fn
2,i,k =

{

fn
i,k if k ∈ Z \ Kn

i ,
0 otherwise.

We are going to present an algorithm which, from the knowledge of Kn
i , U

n
1,i, f

n
2,i,k at time

tn, computes Kn+1
i , Un+1

1,i , fn+1
2,i,k at time tn+1, based on the moments of (3.1). First, the discrete

fluxes on Kn
i of an arbitrary discrete distribution function g = (gk)k∈Z are denoted by

ψn
1,i,±(g) =

∑

k∈Kn

i

v±k gkmk∆v, (3.7)
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whereas the moments of νn
i En

i = (νn
i,kEn

i,k)k∈Z and of νn
i f

n
i = (νn

i,kf
n
i,k)k∈Z on Kn

i are written

Un
1,i,ν = Mn

i (νn
i f

n
i ), Un

(1),i,ν = Mn
i (νn

i En
i ).

To close our discrete moment systems, we shall approximate fn
i,k on Kn

i by the solution (Mn
1,i,k)k∈Kn

i

of the following minimization problem, with the prescribed moments Un
1,i

Min







∑

k∈Kn

i

gk log(gk)∆v, g = (gk)k∈Z, gk ≥ 0, ∀k ∈ Kn
i s.t. Mn

i (g) = Un
1,i







. (3.8)

This minimization problem is solved in the same way as in [14]. If the prescribed moments Un
1,i

are strictly realizable (i. e. Un
1,i is the moment vector of a strictly positive dicrete function),

Mn
1,i,k has the following Maxwellian form Mn

1,i,k = exp(λn
1,i ·mk), where λn

1,i ∈ R
3 is the solution

to the discrete moment problem

∑

k∈Kn

i

exp(λn
1,i ·mk)mk∆v = Un

1,i. (3.9)

Now, we first take the moments of (3.1) on Kn
i and close the resulting equations using Mn

1,i,k.

In a next step, we shall “move” the set Kn
i into a new one, Kn+1

i . Let us introduce the moments
Ũn+1

1,i of fn+1
i on the ball Kn

i

Ũn+1
1,i = Mn

i (fn+1
i ),

as well as the restriction of fn+1
i,k onto its complementary Z \ Kn

i

f̃n+1
2,i,k =

{

fn+1
i,k if k /∈ Kn

i

0 otherwise.

If we take the discrete moments of (3.1) on Kn
i , and close the resulting moment equations by

the solution Mn
1,i,k, ∀k ∈ Kn

i of the discrete entropy minimization problem (3.8) on the one
hand, and take the restriction of (3.1) on Z \ Kn

i on the other hand, we obtain

Ũn+1
1,i = Un

1,i −
∆t

∆x

[

ψn
1,i,+(Mn

1,i) − ψn
1,i,+(Mn

1,i−1 + fn
2,i−1)

]

−∆t

∆x

[

ψn
1,i,−(Mn

1,i+1 + fn
2,i+1) − ψn

1,i,−(Mn
1,i)
]

−∆t

∆v
En,+

i

[

Un
1,i −Mn

i,−(Mn
1,i + fn

2,i)
]

−∆t

∆v
En,−

i

[

Mn
i,+(Mn

1,i + fn
2,i) − Un

1,i

]

+ ∆t
[

Un
(1),i,ν − Un

1,i,ν

]

, (3.10)

f̃n+1
2,i,k = fn

2,i,k − v+
k

∆t

∆x

[

fn
2,i,k − (Mn

1,i−1,k + fn
2,i−1,k)

]

− v−k
∆t

∆x

[

(Mn
1,i+1,k + fn

2,i+1,k) − fn
2,i,k

]

−En,+
i

∆t

∆v

[

fn
2,i,k − (fn

2,i,k−1 + Mn
1,i,k−1)

]

− En,−
i

∆t

∆v

[

(fn
2,i,k+1 + Mn

1,i,k+1) − fn
2,i,k

]

+∆t νn
i,k

[

En
2,i,k − fn

2,i,k

]

. (3.11)
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The next step of the algorithm is to consider the time variations of Kn
i . To that purpose, we

construct (M̃n+1
1,i,k)k∈Kn

i
the discrete distribution solution to (3.8) with the prescribed moments

Ũn+1
1,i . Then we define an approximation of fn+1

i,k , for all k ∈ Z, solution to (3.1) by f̃n+1
i,k such

that

fn+1
i,k ≈ f̃n+1

i,k =

{ M̃n+1
1,i,k if k ∈ Kn

i ,

f̃n+1
2,i,k if k /∈ Kn

i .

Hence, the discrete moments of f̃n+1
i,k are an approximation of Un+1

i . At this level, un+1
i , T n+1

i

and Kn+1
i can then be defined through (3.4), (3.5) (with n replaced by n + 1). The unknowns

at the next time step are finally
Un+1

1,i = Mn+1
i (f̃n+1

i ), (3.12)

fn+1
2,i,k = f̃n+1

i,k |
Z\Kn+1

i

. (3.13)

Remark 3.1 Let us consider (f 0
i,k)i∈I,k∈Z a strictly positive initial condition where I is the

discrete bounded computational domain in space. Moreover, let us denote by K a bounded
discrete velocity domain which is a truncation of Z. If the following condition on the time step
∆t is fulfilled

∆t

(

max
i∈I,k∈K

νn
i,k +

1

∆x
max
k∈K

|vk| +
1

∆v
max
i∈I

En
i

)

< 1.

then the kinetic sequence (fn
2,i,k)n≥0 defined by the above algorithm satisfies

fn
2,i,k > 0, for all n ≥ 0, i ∈ I, k ∈ K \ Kn

i .

The proof of this statement is a straightforward generalization of a similar statement (with
E = 0) proved in [14]. Our time-stepping strategy is based on it.

4 Numerical results

In this section, we present numerical tests to validate the approach. We check our method
on one-dimensional numerical tests. Although the collision frequency (2.1) was obtained from a
three-dimensional operator, we shall use it in our one-dimensional simulations. We are aiming
at a qualitative rather than quantitative results. For more realistic simulations, fully three-
dimensional computations are necessary but are outside the scope of the present work. Nu-
merically, the boundary conditions in space variable are treated by a ghost cell technique or
by periodic conditions, according to the test case. In the velocity variable, the distribution
function is truncated to zero for large velocities.

4.1 Stationary shock wave without electric field

4.1.1 Plasma context

We study a one-dimensional stationary shock wave (see [3, 32]) for electrons. The flow is
initialized with two Maxwellian states related by the discrete Rankine-Hugoniot relations (see
[32] or [14] for more details). The starting kinetic equation is the following

∂f

∂t
+ v · ∇xf = ν(M[f,ν] − f), (4.1)
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where ν is chosen as in section 2.1

ν(|v − u|) = CFP

{

(4/3)(2π)−1/2n/(ReT )3/2 if |v − u| < C0

√
ReT ,

2n/|v − u|3 if |v − u| ≥ C0

√
ReT ,

(4.2)

where C0 = (3/2)1/3(2π)1/6, and CFP = e4 ln Λ/(8πm2
eǫ

2
0). We have used the following values

for the density nL = 7.2857 × 1024 m−3, the mean velocity uL = 6.95549 × 105 m.s−1, and the
temperature TL = 293 K, of the upstream flow. We only consider electrons whose mass is equal
to me = 9.1 × 10−31 kg. These values yield a shock Mach number equal to 6.

For numerical reasons, we will use dimensionless variables. We choose as units of our
problem the mean free path l as unit of length, the thermal velocity v0 =

√
ReTR (where TR is

the temperature of the downstream flow) as unit of velocity and the collision time τ0 = l/v0 as
unit of time. We choose the values of l, v0 and τ0 as following

l = 5.158 × 10−9 m, v0 =
√

ReTR = 3.49583 × 105 m.s−1, τ0 = l/v0 = 1.4755 × 10−14 s.

We obtain the following value for the dimensionless CFP

C ′
FP = CFP/(l

6τ−4
0 ) = CFP/(l

2v4
0) = 15.25.

The velocity set extends from −vmax to vmax = 6 and the physical space is [0, 50]. The
velocity step ∆v is chosen equal to 0.05 whereas Nx = 200 points are used in the x variable.
The same numerical parameters are used for the kinetic model.

On Figs. 1, 2 and 3, we present the profiles of the density, the mean velocity and the
temperature, as functions of the scaled space. These figures display the results obtained by the
full BGK equation (discretized by (3.1)), by the Navier-Stokes equations (discretized following
[16]) and by the hybrid model, for different values of R (R = 0.5, 2 and 4).

We observe that, for small R, the hybrid model is closer to the BGK model than to the
Navier-Stokes equations, but the shock profiles are stiffer than that of the BGK equation. In
this case (small values of R), our model has an intermediate behaviour between the kinetic
model and the Navier-Stokes equations, as could be expected. We also notice that the hybrid
model has a better behaviour than the Navier-Stokes equations upstream the shock. Moreover,
when R is large enough, the hybrid model present stiffer shock profiles than the Navier-Stokes
ones. Indeed, at large R, the hybrid model approximates the Euler equations (without diffusion
terms).

On Fig. 4, the distribution functions computed by the hybrid model at locations upstream,
within, and downstream the shock are plotted as functions of the normalized velocity. On
Fig. 5, we compare the distribution function given by the hybrid model to the distribution
function given by the full BGK model within the shock, as functions of the velocity variable,
for different values of R. When the flow is at equilibrium, the distribution functions are very
well approximated by the hybrid model. On the contrary, inside the shock, our model loses
accuracy. Indeed, it reconstructs the distribution function f by a Maxwellian on the ball B1

whereas f is far from equilibrium in this zone. Nevertheless, the bump in the tail of f is
accurately represented by the hybrid reconstruction if R is sufficiently small. We also notice
a small discontinuity at the boundary of the ball: this is the transition between the kinetic
unknown f2 and the Maxwellian M1.
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We plot on Fig. 6 the heat flux obtained by the BGK and the hybrid model for different
values of R, as a function of the space. We defined the heat flux by (1/2)

∫

R
|v−u|2(v−u)f(v)dv,

where u is the mean velocity. It is constant when we are far from the shock and presents very
large gradients in the shock zone. The heat flux is accurately described by the hybrid model,
since the correct behaviour is reached for sufficiently large R. Nevertheless, the amplitude of
the peak becomes smaller as R is increasing and a discontinuity is creating downstream the
shock (R = 4). In this case, we recover a hydrodynamic behaviour.
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Figure 1: Stationary shock wave: density as a function of x. The Mach number of the flow is 6.
Comparison of the BGK model, the hybrid model and the Navier-Stokes equations for different
values of R (left panel R = 0.5, middle R = 2, right R = 4).

4.1.2 Gas dynamics context

In this subsection, we are interested in the simulation of a rarefied gas flow. As in the
previous section, we compare the hybrid model with the associated kinetic model and with the
Navier-Stokes equations. The basic kinetic model is (4.1), where ν is adapted to describe binary
collisions between particles in a rarefied gas. Following [38], we choose the collision frequency
with a polynomial form in velocity variable

ν(|v − u|) = ξ|v − u|α, (4.3)

where u is the mean velocity of the flow, ξ = ξ(t, x) and α > 0 are determined to reach the
correct Prandtl number (2/3 for most monoatomic gases). More precisely, an expansion of the
solution to the BGK equation (4.1) with the collision frequency (4.3) in power of the Knudsen
number ε (Hilbert or Chapman-Enskog expansion [9], [10]) can be done. If the second order in
ε is retained, both the function ξ(t, x) and the parameter α can be computed as a function of a
reference viscosity coefficient and of the Prandtl number. On the one hand, we find for ξ(t, x)

ξ(t, x) =
2n

d(d+ 2)

(2RT )
2−α

2

µ

Γ
(

4+d−α
2

)

Γ
(

d+2
2

) ,
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Figure 2: Stationary shock wave: mean velocity as a function of x. The Mach number of the
flow is 6. Comparison of the BGK model, the hybrid model and the Navier-Stokes equations
for different values of R (left panel R = 0.5, middle R = 2, right R = 4).
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Figure 3: Stationary shock wave: temperature as a function of x. The Mach number of the
flow is 6. Comparison of the BGK model, the hybrid model and the Navier-Stokes equations
for different values of R (left panel R = 0.5, middle R = 2, right R = 4).
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Figure 4: Stationary shock wave: distribution functions at locations upstream, within and
downstream the shock as functions of the normalized velocity, given by the hybrid model for
different values of R (left panel R = 0.5, middle R = 2, right R = 4).
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Figure 5: Stationary shock wave: distribution functions at locations within the shock as func-
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Figure 6: Stationary shock wave: Influence of the parameter R on the heat flux as a function
of x. Comparison of the BGK model and the hybrid model.

where Γ(x) =
∫ +∞

0
tx−1e−tdt, d is the dimension, n the density and T the temperature, R =

kB/m is the gas constant (kB denotes the Boltzmann constant and m the particle mass), µ is
the viscosity coefficient of the Boltzmann equation: µ = µ0(T/T0)

α/2 and µ0, T0 are respectively
the reference viscosity at the temperature T0 (µ0 = 2.117 × 10−5 N.s.m−2 and T0 = 273 K for
argon (see [3])). On the other hand, the power α is equal to 1.3 in order to reach the correct
Prandtl number of 2/3 in dimension one in the velocity variable. Finally, the collision frequency
(4.3) has the following expression

ν(|v − u|) =
2n

3

(2RT )
2−α

2

µ

Γ
(

5−α
2

)

Γ
(

3
2

) |v − u|α, α = 1.3. (4.4)

This collision frequency has already been implemented in [33] for the BGK model.
The shock profiles of the macroscopic quantities (density, mean velocity and temperature)

obtained by the BGK model, the Navier-Stokes equations and the hybrid model for different
values of R are presented on Figs. 7, 8 and 9. As in the plasma context, the hybrid model has
an intermediate behaviour between the kinetic model and the hydrodynamic one. When R is
small enough, the hybrid model is very close to the BGK model whereas the profiles become
stiffer as R increases. We observe that the curves obtained by our model with R = 2 are not
very correct upstream the shock. Our method suffers of the problem of the discontinuity in the
profiles of the macroscopic variables. This phenomenon is characteristic of the classic moment
methods (see [22, 30]). Large values of R give very stiff profiles which correspond to profiles
given by Euler equations.

We plot on Fig. 10 the distribution functions computed by the hybrid model at locations
upstream, within and downstream the shock. On Fig. 11, we compare the results given by
the hybrid model to the results of the full BGK model on the distribution function within the
shock, as a function of the velocity variable. As in [14], the departure from the equilibrium is
not very well described by the hybrid model. The method needs a very small R to recover the
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Figure 7: Stationary shock wave: density as a function of x. The Mach number of the flow is 6.
Comparison of the BGK model, the hybrid model and the Navier-Stokes equations for different
values of R (left panel R = 0.5, middle R = 2, right R = 4).
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Figure 8: Stationary shock wave: mean velocity as a function of x. The Mach number of the
flow is 6. Comparison of the BGK model, the hybrid model and the Navier-Stokes equations
for different values of R (left panel R = 0.5, middle R = 2, right R = 4).
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Figure 9: Stationary shock wave: temperature as a function of x. The Mach number of the
flow is 6. Comparison of the BGK model, the hybrid model and the Navier-Stokes equations
for different values of R (left panel R = 0.5, middle R = 2, right R = 4).
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Figure 10: Stationary shock wave: distribution functions at locations upstream, within and
downstream the shock as functions of the normalized velocity, given by the hybrid model for
different values of R (left panel R = 0.5, middle R = 2, right R = 4).
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Figure 11: Stationary shock wave: distribution functions at locations within the shock as
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different values of R (left panel R = 0.5, middle R = 2, right R = 4).

0 10 20 30 40 50
x

-2

-1,5

-1

-0,5

0

he
at

 f
lu

x

BGK
R=0.5
R=2
R=4

Figure 12: Stationary shock wave: Influence of the parameter R on the heat flux as a function
of x. Comparison of the BGK model and the hybrid model.

18



results given by the kinetic model (e. g. for R = 0.5, the reconstructed distribution function
is very close to f). On the contrary, when R is greater (R = 4), the distribution functions
given by the hybrid model become Maxwellians and we recover hydrodynamical results; hence,
in these cases, our model is not accurate enough.

Finally, Fig. 12 presents the heat flux approximated by both the kinetic model and the
hybrid model for different R. For the definition of the heat flux, we consider (1/2)

∫

R
|v −

u|2(v−u)f(v)dv, where u denote the mean velocity. The hybrid model gives interesting results;
besides, when R is small enough, we recover the results of the kinetic model, as expected. As
R is growing, the amplitude of the peak becomes small compared to the results obtained by
the BGK model.

4.2 Landau damping without collision

In this section, we propose to validate our method against the standard test case of the linear
Landau damping. This test is a collisionless one but a self-consistent electric field is considered
through the Poisson equation. We study the evolution of electrons whose distribution function
is, initially, an isotropic Maxwellian of density n0 and of temperature T0. The plasma is then
perturbed and a periodic damped wave is created. The object of this test is the study of
the evolution of this damped wave. To that purpose, we consider the distribution function of
electrons which is a solution to the Vlasov-Poisson equation

∂f

∂t
+ v · ∇xf +

e

me

E · ∇vf = 0,

where the self-consistent electric field E is coupled to the Poisson equation

∂xE =
e

ǫ0

(
∫

R

f(v)dv − ni

)

,

where e is the unit charge, me the electron mass, ǫ0 the permittivity of free space and ni the ion
density which we assume to be constant. To accurately describe the physical phenomena, we
introduce dimensionless parameters. Hence, we introduce the plasma frequency ωp, the Debye
length λD and the thermic velocity of electrons vth by:

ωp =

√

n0e2

ǫ0me
, λD =

√

ǫ0kBT0

n0e2
, vth =

√

kBT0

me
, (4.5)

where kB is the Boltzmann constant. The scaled initial condition associated to the scaled
Vlasov-Poisson equation has the following form

f0(x, v) =
1√
2π

exp

(

−v
2

2

)

(1 + α cos(kx)) , (x, v) ∈ [0, 2π/k] × R, (4.6)

where α is the amplitude of the initial wave and k is the scaled wave number. The parameter
α is taken small enough such that we only consider linear regimes.

To capture the Landau damping, the size of the velocity domain must be chosen greater
than the phase velocity vφ (see [15]). The phase velocity is given by vφ = ω/k, where ω is the
frequency related to k and approximated by

ω2 = 1 + 3k2.
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Figure 13: Linear Landau damping: electric energy as a function of time in log scale. Study
of the influence of R. Comparison of the Vlasov-Poisson model and the hybrid model. k = 0.3
and α = 0.001.
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Figure 14: Linear Landau damping: electric energy as a function of time in log scale. Compar-
ison of the hybrid model and the Euler-Poisson model. k = 0.3 and α = 0.001.

Then, we set vmax = 6 where the velocity domain extends from −vmax to vmax. We use a
number of cells Nv = 100 for the velocity domain and Nx = 200 in the spatial direction. The
boundary condition for the distribution function are periodic in the space variable. Finally, the
wave number is fixed to k = 0.3 and α = 0.001. The same numerical parameters are used for
the kinetic model.

In this test, we are interested in the evolution of the square root of the electric energy
approximated by

Eh(t) =

(

∑

i

E2
i (t)∆x

)1/2

. (4.7)

Indeed, according to the Landau theory, the amplitude of Eh(t) is expected to be exponentially
decreasing with a frequency ω.

On Fig. 13, we plot the evolution of Eh(t) in logarithmic scale as a function of time, for
the Vlasov-Poisson model and for the hybrid model for comparison. We also plot a line (which
we call Landau line) which passes through the maximum of each period of (4.7). For small
R and for the Vlasov-Poisson equation, we observe that the amplitude of Eh(t) is damped
exponentially in time as predicted by the Landau theory. On the contrary, as R is growing,
the damping is not exponential any more for the hybrid model. Even if the hybrid model gives
a damped wave, the amplitude of Eh(t) oscillates around the Landau line. For large values of
R, these oscillations are amplified and we observe that they are not damped any more.

Thanks to the Landau theory, the numerical results can be compared from a quantitative
point of view. Indeed, if we linearize the Vlasov-Poisson system, the damping rate of the
amplitude of Eh(t) can be estimated by solving the dispersion relation ([2, 11]). However, when
k is small enough, a more accurate formula, which is obtained by increasing the order of the
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Taylor expansion predicts the damping rate of the amplitude of the electric energy (see [25, 15]):

γ =

√

π

8

(

1

k3
− 6k

)

exp

(

− 1

2k2
− 3

2
− 3k2

)

. (4.8)

Our numerical results are in good agreement with (4.8) for the Vlasov-Poisson system and
for the hybrid model for small R. As R is growing, the amplitude of Eh(t) moves away from the
Landau line. On Fig. 14, we plot the electric energy (in logarithm scale) as a function of time
given by the hybrid model with a large value of R and by the Euler-Poisson model discretized
using a high order WENO method [37]. We observe a wave with two different amplitudes for
which the damping is zero. This is explained by the fact that the Landau damping is a purely
kinetic effect which cannot be derived from the hydrodynamic theory (see [2, 11]). We also
notice that the two curves of Fig. 14 become different at large times. One explanation can be
the following. The WENO method uses a high order approximation (order 4 in time and order
5 in space) whereas the hybrid model is discretized by means of a first order method.

4.3 Ion acoustic wave

In this section, we study the frequency and damping of ion acoustic waves. This numerical
test takes account of both the electric field and collisions. We then consider the equation (1.2)-
(1.3) (where ν is given by (2.1)) to describe the evolution of the ion acoustic waves in a singly
ionized plasma (see [34]). As the ionic mean free path is bigger than the electron one, we can
consider a constant electron temperature; in this case, the electric field satisfies

eE

m
= −kB

m
Te

∇xn

n
,

where m is the ionic mass, kB the Boltzmann constant, Te is the electronic temperature, and n
denotes the ionic density (see [34]). The starting kinetic equation then reads

∂f

∂t
+ v · ∇xf − kBTe

mn
∇xn · ∇vf = ν

(

M[f,ν] − f
)

, (4.9)

where ν = ν(t, x, v) is the collision frequency given by (2.1).
By choosing an initial condition of the form of (4.6), the density and the mean velocity

have a purely exponential behaviour, i. e. exp(iωt + γt). The damping γ and the frequency
ω represent the solution of the dispersion relation. Thus, by changing k, the desired functions
ω(k) and γ(k) are determined.

As in [34], we rescale (4.9) using the ionic mean free path l = (kBTi)
2/(4πn0e

4 ln Λ), (with
Ti the ionic temperature, n0 the unperturbed density, e the charge and ln Λ the Coulombian
logarithm) as unit of length, v0 = (kBTi/m)1/2 as unit of velocity and the collisional ion-ion
time τ = l/v0 as unit of time. Consequently, in these units, (4.9) is written

∂f

∂t
+ v · ∇xf − Te

Ti

∇xn

n
· ∇vf = ν

(

M[f,ν] − f
)

. (4.10)

We consider a rescaled initial condition of the form

f0(x, v) =
n0

(2π)1/2
exp

(

−|v|2
2

)

(1 + α cos(kx)), (x, v) ∈ [0, 2π/k] × R, (4.11)
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where k is the wave number and α is the perturbation (α is chosen small enough to consider
linear regimes). Note that n0 can be taken equal to 1 because the problem is homogeneous in
f . The only dimensionless parameter of the problem are the ratio Te/Ti and k; as proposed in
[34], we will consider different ratios of temperature (equal to 1, 2, 4) with different k (from
0.025 to 1).

To accurately describe the physics of the test, we consider a velocity set from −vmax to vmax

with vmax = 6. We use a number of cells Nv = 50 in velocity whereas we consider Nx = 200 in
physical space. Besides, the perturbation α is equal to 0.001. The same numerical parameters
are used for the kinetic model.

On Figs. 15, 16 and 17, we plot the quantity γ/k (where γ is the damping rate of the
perturbed density and k the wave number as a function of k. The results obtained by both
the Vlasov-BGK equation and the hybrid model (for various R) are presented. When R = 0.5,
the hybrid model gives satisfying results since they are very close to the full kinetic one. When
R = 2, the results are in correct agreement with the BGK ones for small values of k. As k
increases, γ/k moves away from the kinetic results and decreases. Besides, as R is growing, the
results become far from that obtained by the kinetic model. For example, the value R = 10
(which corresponds to a full hydrodynamic model) gives a very small damping (γ ≃ 0). Like
in Landau damping case, hydrodynamic models cannot reach the ion acoustic wave damping.

We also compare our results to [34]. From a qualitative point of view, both the BGK model
and the hybrid model for R = 0.5 are in good agreement with [34]. In particular, we observe
that the behaviour of γ/k is proportional to k when we consider small values of k (k < 0.2).
Besides, for larger values of k, γ/k becomes nearly constant and is more important when the
ratio Te/Ti decreases. From a quantitative point of view, even if our numerical results do
not coincide exactly with [34], they are in correct agreement. Indeed, at the collisional and
collisionless limits (i. e. k = 0 and k = +∞), our results are close to the predicted values of
γ/k (obtained by linearizing (4.9)). The differences between our results and those of [34] can be
explained in two ways. First, in [34], the authors consider the whole 3 dimensional case in the
velocity variable and second, they solve the linearized Fokker-Planck-Landau problem whereas
a simpler collision operator of BGK type is used here.

On Figs. 18, 19 and 20, we plot ω/k as a function of k. The same remarks made previously
hold. Indeed, the behaviour of the curves is correct for both the BGK model and the hybrid
model for small R, since, for small k, we recover the approximation obtained by the linearization

ω2 =

(

3 +
Te

Ti

)

.

Besides, we observe that, at the beginning, ω/k slowly decreases as k increases. After some
time, according to the considered ratio, ω/k increases slowly or remains almost constant. A
similar behaviour has also been noticed in [34]. However, when R is bigger, the numerical
results given by the hybrid model are not correct. Indeed, we observe that for R = 2, ω/k is a
decreasing function of k, and for R = 10, ω/k remains almost constant. Thus, in this case, the
numerical results are not in good agreement with estimated values.
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Figure 15: Ion acoustic waves: γ/k as a function of k for Te/Ti = 4. Comparison between the
BGK model and the hybrid model.
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Figure 16: Ion acoustic waves: γ/k as a function of k for Te/Ti = 2. Comparison between the
BGK model and the hybrid model.
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Figure 17: Ion acoustic waves: γ/k as a function of k for Te/Ti = 1. Comparison between the
BGK model and the hybrid model.

2.6

2.62

2.64

2.66

2.68

2.7

2.72

2.74

2.76

2.78

2.8

0 0.2 0.4 0.6 0.8 1

ω/k

k

BGK

3
3 3

3
3

3
3

3
3

3

3
R=0.5

++ +
+

+
+

+ + +
+

+
R=2

R=10

×× × × × × × × × ×

×

Figure 18: Ion acoustic waves: ω/k as a function of k for Te/Ti = 4. Comparison between the
BGK model and the hybrid model.
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Figure 19: Ion acoustic waves: ω/k as a function of k for Te/Ti = 2. Comparison between the
BGK model and the hybrid model.
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Figure 20: Ion acoustic waves: ω/k as a function of k for Te/Ti = 1. Comparison between the
BGK model and the hybrid model.
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Figure 21: Electron beam: density of the beam as a function of time. Comparison between the
BGK model and the hybrid model.

4.4 Electron beam

In this subsection, we propose to validate our hybrid model by modelling the deceleration
of an electron beam in a plasma. Let us consider a beam of electrons that enter in a plasma
composed of electrons. We consider the plasma at equilibrium. Let us denote by f = f(t, x, v)
the density of the electrons in the phase space (x, v). The evolution of f can be modelized by
the following scaled kinetic equation

∂f

∂t
+ v · ∇xf = ν(M[f,ν] − f), (4.12)

where ν is given by (2.1). Equation (4.12) is supplemented with the following initial condition

f0(x, v) = Mne,ue,Te
+ Mnb,ub,Tb

,

where Mn,u,T = n/
√

2πT exp(−|v−u|2/(2T )), ne, ue, Te are the plasma parameters and nb, ub, Tb

the parameters of the beam. In this test, we choose ne = 1, ue = 0, Te = 2 for the parameters
of the plasma and nb = 0.001, ub = 6, and Tb = 0.001 are the beam parameters.

The velocity set extends from −vmax to vmax = 8 whereas the space domain is equal to
[0, 1]. We consider Nv = 400 cells in velocity because the beam temperature is low whereas
Nx = 50 is used to discretize the physical space. Some periodic conditions are implemented in
space whereas the distribution function is truncated for large velocities. The same numerical
parameters are used for the kinetic model.

We are interested in the evolution in time of the density, mean velocity and temperature of
the beam. As explained in [26], the electron beam is decelerated by collisions with the particles
of the plasma (electrons in our case).

On Figs. 21, 22 and 23 we plot the evolution in time of the density, mean velocity and
temperature of the beam. We observe that the density is decreasing in time. Moreover, the
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Figure 22: Electron beam: mean velocity of the beam as a function of time. Comparison
between the BGK model and the hybrid model.
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Figure 23: Electron beam: temperature of the beam as a function of time. Comparison between
the BGK model and the hybrid model.
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Figure 24: Evolution of the beam: distribution function as a function of the velocity.
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mean velocity remains constant equal to the initial mean velocity of the beam. We also notice
that the temperature is almost constant at the beginning before increasing strongly. We remark
that the results obtained by the hybrid model with R ≤ 4 are superposed on the kinetic results.
Indeed, the evolution of the beam is then described by the kinetic part of the hybrid model.

On Fig. 24, we study the evolution in time of the beam by plotting the distribution function
as a function of the velocity v. We observe that the density of the beam decreases whereas its
mean velocity remains constant. As remarked above, the hybrid model gives the same results
as the kinetic one when the radius of B1 is smaller than ub. Indeed, in this case, the beam
is situated in the kinetic part of the hybrid model. On the contrary, when R is sufficiently
large, i. e. the beam is contained in B1, nothing happens. The density, mean velocity and
temperature remains constant. An intermediate behaviour occurs when the beam is treated by
both the fluid and the kinetic equations (R = 4.24). Nevertheless, the results given the hybrid
model in such a case are not correct. Indeed, the use of a fluid model to treat the beam is not
accurate at all. In this case, we notice that the numerical results are very far from the results
given by the full kinetic model.

This test case shows the limitation of a BGK collision operator. Indeed, whereas the full
Fokker-Planck-Landau operator decelerates the beam (its mean velocity decreases), the BGK
operator takes particles off the beam into the plasma without changing the mean velocity of
the beam. Hence, the mean velocity remains constant, which is not correct from a physical
point of view.

Remark 4.1 Even if in the present stage of our work the numerical cost does not depend on
R, an a priori determination of a suitable R can be important. Such a choice can be made in
some particular cases (stationary shock wave for instance), but remains difficult in the general
case. However, note that the parameter R may depend on time and on space, but also on the
Knudsen number. For instance, in the test case of the stationary shock wave, R can be small
at locations where the flow is known to be far from equilibrium without destroying the accuracy.
An x-dependent R can then be used. Applications concerning nonlinear Landau damping can
also be considered since after a long time, the solution becomes close to a Maxwellian with some
particles trapped in the tail. In this last case, a time-dependent R would be appropriate.

5 Conclusion

We have presented an extension of the hybrid model introduced in [13, 14] to describe
systems of charged particles. This model is derived using a domain-decomposition in the
velocity space and an approximation of the solution to the kinetic equation is made for small
velocities. This approximation is based on a moment method with an entropy minimization
principle. The starting kinetic model is a Vlasov-BGK-like equation. It takes account of an
electric field and a velocity-depending collision frequency computed from the Fokker-Planck-
Landau collision operator.

Then, various numerical simulations have been made to validate the obtained hybrid model.
Comparisons between the BGK model, the Navier-Stokes equations and the hybrid model are
presented.

The hybrid model is a compromise between a kinetic and a fluid regimes and, by varying
R, we can cross between the pure fluid to the full kinetic solution. The parameter R is a kind
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of cutover between Maxwellian and kinetic solvers.
Consequently, the present approach could be used to correctly describe some systems of

particles with a reduced cost compared to a pure kinetic description. However, this reduction
has not been the main subject of this work and the hybrid model is as costly as a direct
implementation of a kinetic model. All we have done is the derivation and the numerical
validation of the hybrid model. Nevertheless, the optimization procedure can be done in several
ways: a pre-storage of the numerical fluxes, an explicit computation of the fluxes, the rapid
calculation of the Maxwellian parameters in terms of its moments on a ball and, finally, the use
of a particle method for the kinetic part. This task is under investigations.

From the hybrid model, one can derive a bi-fluid model in which the kinetic part is also
approximated by a fluid model. The bi-fluid model is another intermediate model between the
kinetic and the fluid description. Besides, collisions between different species of particles (e. g.
electrons and ions) can also be taken into account. Future work will be dedicated to the two
latter points.

6 Appendix: computation of a collision frequency

This section is devoted to the computation of the collision frequency (2.1). Our starting
point is the bilinear FPL operator

Q(f, g) = CFP∇v ·
∫

R3

Φ(v − w)(g(w)∇vf(v) −∇wg(w)f(v))dw, (6.1)

where CFP = e4 ln Λ/(8πm2ǫ20) (e is the electric charge, ln Λ is the usual Coulomb logarithm
and ǫ0 is the permittivity of free space), m is the mass of the considered particles and Φ(v) is
the 3 × 3 matrix

Φ(v) =

(

I3 −
v ⊗ v

|v|2
)

1

|v| ,

with I3 the identity matrix. This operator describes the interactions between electrons. The
distribution function of test particles is f whereas g denotes the distribution function of a
background. Let us consider that the particles of the background are at the local equilibrium,
i. e. their associated distribution function is a Maxwellian M whose parameters are n, u, T .
Then, (6.1) becomes

Q(f,M) = CFP∇v·
[

(∇vf(v))

∫

R3

Φ(v − w)M(w)dw

]

−CFP∇v·
[

f(v)

∫

R3

Φ(v − w)∇wM(w)dw

]

,

(6.2)
where M(v) denotes the Maxwellian of parameters n the density, u the mean velocity and T
the temperature

M(v) =
n

(2πRT )3/2
exp

(

−|v − u|2
2RT

)

,

and R = kB/m, with kB the Boltzmann constant, is the constant gas. The collision frequency
of the FPL collision operator is obtained using the loss term of (6.2)

ν(v − u)(v − u) := −CFP

∫

R3

Φ(v − w)∇wM(w)dw. (6.3)
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So, we have to compute the following quantity

ν(v − u)(v − u) = CFP
n

(2πRT )3/2

1

RT

∫

R3

Φ(v − w) exp

(

−|w − u|2
2RT

)

dw (v − u), (6.4)

because the kernel of the matrix Φ(v) is generated by v. By the following change of variables
w =

√
RTs+ u in the integral, we get

ν(v − u)(v − u) = CFP
n

(2πRT )3/2

∫

R3

Φ(v − u− s)e−
|s|2

2 ds (v − u). (6.5)

Thanks to a result of [19], the following matrix which depends on v
∫

R3

Φ(v − s) exp

(

−|s|2
2

)

ds,

has an eigenvalue λ(|v|) associated with the eigenvector v

λ(|v|) =

∫

R3

(

1 − (v, s)2

|v|2|s|2
)

1

|s| exp

(

−|v − s|2
2

)

ds.

Thanks to this expression, we can compute the behaviour of λ at |v| = 0 and at |v| → +∞. As
|v| goes to zero, we obtain the following limit

lim
|v|→0

λ(|v|) =
8

3
π.

Now, let us compute the behaviour when |v| → +∞
λ(|v|) ∼ 2(2π)3/2|v|−3. (6.6)

Then, we conclude on the behaviour of our collision frequency as |v − u| goes to zero

lim
|v−u|→0

ν(v − u) =
4CFP

3
(2π)−1/2n/(RT )3/2, (6.7)

and on the behaviour of our collision frequency as |v − u| goes to +∞
ν(v − u) ∼ 2nCFP/|v − u|3. (6.8)

We have obtained the behaviour of our collision frequency at 0 and at +∞. Then, a possible
collision frequency can be the following

ν(|v − u|) = CFP

{

4/3(2π)−1/2n(RT )−3/2 if |v − u| < C0

√
RT,

2n/|v − u|3 if |v − u| > C0

√
RT,

(6.9)

where C0 is chosen such that ν(|v − u|) is a continuous function of |v − u|

C0 =

(

3

2

)1/3

(2π)1/6.

Some similar computations leads to a BGK type collision operator taking into account collisions
between different species of particles as electrons and ions.
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