
HAL Id: hal-00139664
https://hal.science/hal-00139664v1

Preprint submitted on 2 Apr 2007 (v1), last revised 11 Oct 2007 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quantum non-local effects with Bose-Einstein
condensates

Franck Laloë, William J. Mullin

To cite this version:
Franck Laloë, William J. Mullin. Quantum non-local effects with Bose-Einstein condensates. 2007.
�hal-00139664v1�

https://hal.science/hal-00139664v1
https://hal.archives-ouvertes.fr


ha
l-

00
13

96
64

, v
er

si
on

 1
 -

 2
 A

pr
 2

00
7

Quantum non-local effects with Bose-Einstein condensates
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Abstract

We study the properties of double Bose-Einstein condensates in different spin states, represented
quantum mechanically by double Fock states. We assume that individual measurements of the spins
of the particles are performed in transverse directions (perpendicular to the spin quantization axis),
giving access to the relative phase of the condensates. Initially, this phase is completely undefined,
and the first measurements provide purely random results. But a fixed value of this phase rapidly
emerges value under the effect of the successive quantum measurements, giving rise to a quasi-classical
situation where all spins have parallel transverse orientations. If the number of measurements reaches
its maximum value (the number of particles), this classical phase disappears and quantum effects show
up again. These effects can give rise to substantial violations of Bell type inequalities, comparable to
those obtained with two spins in singlet state, even if the total number of particles involved is very
large.

The notion of non-locality in quantum mechanics (QM) takes its roots in a chain of two theorems,
the EPR (Einstein Podolsky Rosen) theorem [1] and its logical continuation, the Bell theorem. The EPR
theorem starts from three assumptions (Einstein realism, locality, the predictions of quantum mechanics
concerning some perfect correlations are correct) and proves that QM is incomplete: additional quantities,
traditionally named λ, are necessary to complete the description of physical reality. The Bell theorem
[2] then proves that, if the λ exist, the predictions of QM concerning other imperfect correlations can
not always be correct. The ensemble of three assumptions: Einstein realism, locality, all predictions of
QM are correct, is therefore self-contradictory; or, in other words, if Einstein realism is valid, then QM
is non local. Bohr rejected Einstein realism because, in his view, the notion of reality could not correctly
be applied to microscopic quantum systems, defined independently of the measurements apparatuses.
Indeed, since EPR consider a system of two correlated microscopic particles, which can be “seen” only
with the help of measurement apparatuses, the notion of their independent physical reality is open to
discussion.

Nevertheless, it has been pointed out recently [5, 6] that the EPR theorem also applies to macroscopic
systems, namely Bose-Einstein (BE) condensates in two different internal states. The λ introduced by
EPR then corresponds to the relative phase of the condensates, in other words to macroscopic transverse
spin orientations, that is physical quantities at a human scale; it then seems more difficult to deny the
existence of their reality, even in the absence of measurement devices. This gives even more strength
to the EPR argument and weakens Bohr’s refutation. On the other hand, no transposition of the Bell
theorem to this case was obtained in [5].

This is precisely what we do in this article. We consider an ensemble of N+ particles in a state
characterized by an orbital state u and a spin state +, and N− particles in the same state with spin
orientation −, described quantum mechanically by a double Fock state:

| Φ > =
[

(au,+)
†
]Na

[

(au,−)
†
]Nb

| vac. > (1)
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where au,+ and au,− are the destruction operators associated with the two populated single particle states
and |vac. > is the vacuum state. We introduce an appropriate sequence of transverse spin measurements
that leads to quantum predictions that are in violation with the so called BCHSH [7, 8] Bell inequality.
This is reminiscent of the work of Mermin [9], who finds exponential violations of local realist inequalities
with N particle spin states, by taking an initial state that is maximally entangled and presumably difficult
to produce. Here we assume that the initial state is the simple juxtaposition of two Fock states, possibly
highly populated, and find violations of inequalities that are the same order of magnitude as with the
usual singlet spin state (they may actually saturate the Cirel’son bound [10]), and also comparable to
those observed in the experiments that have been performed so far.

We remain in this article at the level of discussing a thought experiment, without claiming to make
a precise proposal for a feasible experiment. We just consider that, since double Fock states such as (1)
exist in the quantum space of states, they can be reached physically; we also assume that a series of rapid
transverse spin measurements can be performed and described by the usual postulate of measurement of
QM. We do not worry about possible perturbations (for instance decoherence taking place between the
measurements, breaking of the condensates into several phase independent domains, etc.). In other words,
here we study the logical and physical content of QM for itself, without claiming that the experiment we
consider is directly feasible in a laboratory. It is in this context that we will call the above double Fock
state a “double BE condensate” .

The operators associated with the local density and the local density of spins can be expressed as
function of the two fields operators Ψ±(r) associated with the two internal states ± as:

n(r) = Ψ†
+(r)Ψ+(r) + Ψ†

−(r)Ψ−(r)

σz(r) = Ψ†
+(r)Ψ+(r) − Ψ†

−(r)Ψ−(r)

σx(r) = Ψ†
+(r)Ψ−(r) + Ψ†

−(r)Ψ+(r)

σy(r) = i
[

Ψ†
−(r)Ψ+(r) − Ψ†

+(r)Ψ−(r)
]

(2)

while the spin component in the direction of plane xOy making an angle ϕ with Ox is:

σϕ(r) = e−iϕΨ†
α(r)Ψβ(r) + eiϕΨ†

β(r)Ψα(r) (3)

Consider now a measurement of this component performed at point r and providing result η = ±1. The
corresponding projector is:

Pη=±1(r, ϕ) =
1

2
[n(r) + η σϕ(r)] (4)

and, because the measurements are supposed to be performed at different points (ensuring that these
projectors all commute) the probability for a series of results ηi ±1 for a series of measurements at points
ri of spins along directions ϕi can be written as:

P(η1, η2, ...ηN ) = < Φ | Pη1
(r1, ϕ1) × Pη2

(r2, ϕ2) × ....PηN
(rN , ϕN ) | Φ > (5)

We now substitute (2) into (3), and then into (4) and (5), exactly as in the calculation of ref. [5],
but with one difference: instead of assuming that the number of measurements is much smaller than N±,
we assume that it is equal to its maximum possible value N = N+ + N−. In the product of projectors
appearing in (5), because all r’s are different, commutation of operators allows us to push all the field
operators to the right, all their conjugate to the left; one can then easily see that each Ψ±(r) acting on
| Φ > can be replaced by u(r) × au,± , and similarly for the Hermitian conjugates. With the initial state
(1), a non-zero result can be obtained only if exactly N+ operators au,+ appear in the term considered,
and N− operators au,−; a similar condition exists for the Hermitian conjugate operators. To express these
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conditions, we introduce two additional variables. As in [5], the first variable λ ensures an equal number
of creation and destruction operators in the internal states ± through the mathematical identity:

∫ π

−π

dλ

2π
einλ = δn,0 (6)

The second variable Λ expresses in a similar way that the difference between the number of destruction
operators in state + and − is exactly N+ − N−, through the integral:

∫ π

−π

dΛ

2π
e−inΛ ei(N+−N−)Λ = δn,N+−N−

(7)

The introduction of the corresponding exponentials into the product of projectors (4) in (5) provides the
expression (c.c. means complex conjugate):

N
∏

j=1

|u(rj)|2
1

2

[

eiΛ + e−iΛ + ηj

(

ei(λ−ϕj+Λ) + c.c.
)]

(8)

where, after integration over λ and Λ, the only surviving terms are all associated with the same matrix
element in state | Φ > (that of the product of N+ operators a†

u,+ and N− operators a†
u,+ followed by the

same sequence of destruction operators, providing the constant result N+!N−!). We can thus write the
probability as:

∼
∫ π

−π

dλ

2π

∫ +π

−π

dΛ

2π
ei(N+−N−)Λ

N
∏

j=1

{

|u(rj)|2
1

2

[

eiΛ + e−iΛ + ηj

(

ei(λ−ϕj+Λ) + c.c.
)]

}

(9)

or, by using Λ parity and changing one integration variable (λ
′

= λ + Λ), write P(η1, η2, ...ηN ) as:

(

2NC
)−1

∫ +π

−π

dΛ

2π
cos [(N+ − N−)Λ]

∫ +π

−π

dλ
′

2π

N
∏

j=1

{

cos (Λ) + ηj cos
(

λ
′ − ϕj

)}

(10)

The normalization coefficient CN is easily obtained by writing that the sum of probabilities of all possible
sequences of η’s is 1 (this step requires discussion; we come back to this point at the end of this article):

CN =

∫ +π

−π

dΛ

2π
cos [(N+ − N−)Λ] [cos (Λ)]

N
(11)

Finally, we just need to generalize this result to any number of measurements M that is smaller than N .
We can always complete the sequence of M measurements by additional N −M measurements, and take
the sum over the possible results of these additional measurements. This provides:

P(η1, η2, ...ηM ) =
(

2MCN

)−1
∫ +π

−π

dΛ

2π
cos [(N+ − N−)Λ] [cosΛ]

N−M

∫ +π

−π

dλ
′

2π

M
∏

j=1

{

cos (Λ) + ηj cos
(

λ
′ − ϕj

)}

(12)

The Λ integral can be replaced by twice the integral between −π/2 and π/2, as can be seen by a change
of Λ into π − Λ, which multiplies the result by (−1)N+−N−+N−M+M = 1.

This general formula includes different cases. If, for instance, if M ≪ N , the large power of cosΛ in the
first integral concentrates all its contribution around Λ ≃ 0, so that a good approximation is to assume
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that Λ vanishes. We then recover the results of refs [5, 6], with a single integral over λ, corresponding to
the relative phase of the condensates (Anderson phase). Initially, this phase is completely undetermined,
and the first spin measurement provides a completely random result. But the phase rapidly emerges
under the effect of a few measurements, and then remains constant; it takes a different value for each
realization of the experiment, as if the experiment was revealing the pre-existing value of a classical
quantity. Moreover, when cosΛ is replaced by 1, each term of the product over j remains positive (or
zero), a situation where the Bell inequalities can be obtained, excluding any violation by the quantum
results. On the other hand, when N −M is small or even vanishes, cosΛ can take values that are smaller
than 1, opening the possibility of Bell inequality violations. The additional variable Λ is, in a sense, the
variable that controls the amount of quantum effects in the series of measurements.

We now discuss when these standard quantum predictions violate Bell inequalities resulting from
local realism. We will need the value of the quantum average of the product or results, that is the sum
P(η1, η2, ...ηM ) over all possible values of the η’s, which according to (12) is given by:

E(ϕ1, ϕ2, ..ϕM ) = (CN )
−1

∫ +π

−π

dΛ

2π
cos [(N+ − N−)Λ] [cosΛ]

N−M
∫ +π

−π

dλ
′

2π

M
∏

j=1

cos
(

λ
′ − ϕj

)

(13)

Consider a thought experiment where two condensates, each in a different spin state (two eigenstates of
the spin component along the quantization axis Oz). We assume that the two condensates overlap in two
remote regions of space A and B , where two experimentalists Alice and Bob measure the spins of the
particles in arbitrary transverse directions (any direction perpendicular to Oz) at points of space where
the orbital wave functions of the two condensates are equal. We assume that all measurements performed
by Alice are made along the same direction ϕa, which plays here the usual role of the ”setting” a, while
all measurements performed by Bob are made with the same angle ϕb. To complete the analogy with
the usual situation with two particles, we assume that Alice retains from all her measurements just their
product A, while Bob retains only the product B of his results (these numbers are both ±1, the parities
resulting from all the local measurements).

We now assume two possible orientations ϕa and ϕ
′

a for Alice, two possible orientations ϕb and ϕ
′

b

for Bob. Within deterministic local realism, for each realization of the experiment, it is possible to define
a two numbers A, A

′

, both equal to ±1, and associated with the two possible results that Alice will
observe (more precisely product of results), depending of her choice of orientation; the same is obviously
true for Bob, introducing B and B

′

. Within stochastic local realism [13], A and A
′

are the difference of
probabilities associated to the difference of probabilities of Alice observing +1 and −1, and these numbers
have any value between +1 and −1. In both cases, the following inequalities (BCHSH) are obeyed:

−2 ≤ AB + AB
′ ± (A

′

B − A
′

B
′

) ≤ 2 (14)

In standard quantum mechanics, of course, “unperformed experiments have no results” [14], and
several of the numbers appearing in (14) are undefined; only two of them are defined after the experiment
has been performed with a given choice of the orientations. Consequently, while one can calculate from
(13) the quantum average < Q > value of the sum of products of results appearing in the middle of (14),
there is no special reason why < Q > should be limited between +2 and −2. Situations where it is not
the case will be considered as “quantum non-local situation”.

There remains much flexibility on the possible experiments associated with (13): the choice of N+ and
N−, the total number of measurements M , and how M it is shared between Alice (Ma measurements)
and Bob (Mb measurements). Because the interesting quantum effects are due to the contribution of large
values of Λ, we expect that the most interesting situations will occur when the cosines do not introduce
their peaking effect around Λ = 0, that is when N+ = N− (N is necessarily even) and the number of
measurements M has its maximum value N . From now on, we assume that this is the case: then, for
a given N , the only remaining choice is then how the number of measurements is shared between Alice
and Bob.
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Figure 1: The maximum of the quantum average < Q > for Alice doing P experiments and Bob
doing N − P , as a function of the total number of particles N . Local realist theories predict that this
maximum can never exceed 2; large violations of this limit are obtained, even with macroscopic systems
with N → ∞. If P = 1, the violation saturates the Cirel’son limit for any value of N .

Assume first that Na = 1 (Alice makes one measurement only) and therefore Nb = N − 1 (Bob makes
all the others). Because N+ and N− are equal, the Λ integral in (13) disappears, and the λ integral only

contains the product of cos
(

λ
′ − ϕa

)

by the N − 1th power of cos
(

λ
′ − ϕb

)

, which is straightforward

and provides cos (ϕa − ϕb) times the normalization integral CN . As a consequence, the quantum average
associated to the product AB is merely equal to cos (ϕa − ϕb), exactly as the usual case of two spins
in a singlet state. Then it is well-known that a violation of (14) occurs by a factor

√
2, which saturates

the Cirel’son bound [10], when the angles form a “fan”1 spaced by χ = π/4. A similar calculation can
easily be performed when Alice makes 2 measurements and Bob N − 2, and shows that the quantum

average is now equal to 1
2

[

1 + 1
N−1 + (1 − 1

N−1 ) cos 2 (ϕa − ϕb)
]

, which is no longer independent of N.

The maximum of the Bell quantity is, for this case no longer at the Cirel’son limit, but has value 2.28 at
N = 4 and then rises to 2.41 as N → ∞. It is possible to generate an integrated analytic expression for
the generalization of the quantum average to any number P and N − P of measurements by Alice and
Bob, respectively. We find (with χ = ϕa − ϕb)

E(χ) =
N
2 !

N !

{P/2}
∑

k=0

P !(N − 2k)!

k!(P − 2k)!(N/2 − k)!
sin2k χ cosP−2k χ (15)

where {P/2} is the integer part of P/2. The maximization of < Q > for this can be found using a numerical
Mathematica routine. Results are shown for several values of P in Fig. 1. The angles maximizing the
quantum Bell quantity always occur in the fan shape, although the basic angle changes with P and N.

In all but one of the curves in the figure, P is held fixed. All of these curves have a finite limit
with increasing N. When N is large, for fixed P, all by the first term in Eq. (15) is negligible and

1The term “fan” refers to the angles arranged as ϕba = ϕa′b = ϕab′ and ϕa′b′ = χ where ϕab ≡ ϕa − ϕb.
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E(ϕa, ϕb) → cosP (ϕa − ϕb) , which gives us limiting values of the Bell quantity ranging from 2.8 for
P = 1 to 2.32 for P large. In the lowest curve we consider P = N/2, that is Alice and Bob each make
half of the measurements. Even here there is a finite limit of 2.32 as the maximum violation of the Bell
inequality in the limit of N → ∞. Also in this case angle fan opening decreases as 1/

√
N.

We can consider cases in which the number of measurements considered is M < N. These cases never
violate the BCHSH inequality. That is, if Bob makes all his measurements, but ignores one or two of
them (independently of the order of the measurements), when he correlates his results with Alice, he can
not a obtain violation. All measurements have to be taken into account to obtain violations. Furthermore
if the number of particles in the two condensates do not satisfy N+ = N− = N/2 we find no inequality
violation.

It is also possible to consider cases where we generalize the angles considered so that Carole makes
measurements at ϕc and ϕ′

c and possibly David at ϕd and ϕ′
d. In every such case we find that maximization

of < Q > reduces to the cases already studied where the new angles collapse to the previous angles
ϕa, · · · , ϕ′

b. For the sake of simplicity, we have not yet discussed some general important issues that
underlie our calculations. We now fill this gap, starting from a discussion of the so called “sample bias
loophole” (also called “detection/efficiency loophole”). Expressions (2)-(5) are actually local densities (of
spin, of probability, etc.) and must be integrated over position in a small volume ∆r surrounding r to
become real densities; this is done explicitly in the second of refs [5]. Each volume ∆r defines a small
but finite “detection box”, all of them being spatially disconnected. It is then clear that ±1 are not
the only possible results of a spin measurement; actually, if the volumes are sufficiently small, most of
the measurements find no particle at all in their volume. Therefore, strictly speaking, the normalization
condition (11) is not correct; the particles have a much smaller chance to be detected, the average values
are smaller and the violations of the inequalities do not occur. This is a well known difficulty, which already
appears in the usual two-photon experiments [8], where most photons are missed by the detectors: local
realism alone is not sufficient to put limits on the observed correlations, one has to assume in addition
that the probability of detecting a particle at a particular point does not depend on the local setting of
the apparatus (its orientation angle ϕ), a very plausible but not logically compulsory assumption.

Fortunately, if this loophole still raises a real experimental challenge, the difficulty can be completely
resolved if we remain at the level of thought experiments. As noted by Bell [2], and Clauser and Shimony
[8], it is sufficient to assume the presence of additional detectors, completely spin independent, which
ensure the detection of one particle in each detector (see for instance [11] for a description of a thought
experiment realizing this selection of initial conditions with veto detectors). Here we associate one of
these preliminary detector to each “detection box”. In a given realization of the experiment, the chance
that each preliminary detector will give the desired positive result may be very small, but this is not
a problem: by repeating the experiment a sufficient number of times, one can preselect a sample of
systems with appropriate initial conditions and then run the spin detectors. In other words, the role of
the preliminary detectors is to select by the effect wave packet reduction on (1) a new state that contains
only components where one particle exactly is in every detection box, which closes the “sample bias
loophole”. The calculation of this state reduction can be performed explicitly and provides interesting
results; in particular, it leads to the expression of a state for many distinguishable spins (spins contained
in different boxes are indeed distinguishable) that violates the Bell inequalities. But, for lack of space, we
postpone this discussion to another article [12].

A second important issue deals with the very existence of the local realist quantities A, B, etc.. For a
pair of spins in the singlet state, the EPR local realist reasoning proves their existence from the perfect
correlations observed when the two analyzers are parallel. Here, for two condensates, we have a slightly
different situation: the local realist reasoning leads to the existence of a well defined phase between the
condensates [5], not to individual properties associated with individual spins. Nevertheless, the emergence
of this phase means that the probabilities associated with single particle measurements can be calculated
locally as if each spin was polarized in a well defined direction; in other words, we replace the certainties
of the usual EPR situation by an information on local probabilities. Fortunately, it is known [3, 8] that
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local probabilistic information is sufficient to derive Bell inequalities (see also for instance [9] or appendix
I of [13]). Here again, for lack of space, we can not discuss the question explicitly, but the absence of
perfect correlations in the case we study does not prevent the logical construction of Bell inequalities.

In conclusion, we have shown that strong violations of local realist inequalities for large N parti-
cle systems, even if the N particle state is as simple as the simple juxtaposition of two Bose-Einstein
condensates in different internal states. This does not mean that violations of the inequalities appear
with the measurement of macroscopic variables. In all inequalities, we have assumed that the measured
quantity is the product of many microscopic measurements, and not their sum or average, which would
be clearly macroscopic. A sum of results is determined when most measurements have been performed,
but a product of result remains sensitive to the last measurement, even after a long sequence of other
measurements. Curiously, we have a case where the first few measurements are quantum, then become
classical for many measurements, are become strongly quantum for the last one or two measurements, a
sort of revival of quantum-ness of the system.

Laboratoire Kastler Brossel is “Unité de recherche associée du CNRS, de l’ENS, et de l’Université
Pierre et Marie Curie”.

References

[1] A. Einstein, B. Podolsky and N. Rosen, “Can quantum-mechanical description of physical reality be
considered complete?”, Phys. Rev. 47, 777-780 (1935).

[2] J.S. Bell, “On the Einstein-Podolsky-Rosen paradox”, Physics 1, 195-200 (1964), reprinted in [3].

[3] “Speakable and unspeakable in quantum mechanics”, Cambridge University Press (1987).

[4] N. Bohr, “Can quantum-mechanical description of physical reality be considered complete?”, Phys.
Rev. 48, 696-702 (1935).
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