Understanding why the genetic code is the way it is, has been the subject of numerous models and still remains largely a challenge [START_REF] Freeland | Early fixation of an optimal genetic code[END_REF][START_REF] Sella | The coevolution of genes and genetic codes: Crick's frozen accident revisited[END_REF]. Associations between codons and amino acids were suggested to rely on RNAamino acid interactions [START_REF] Raszka | Is there a physical chemical basis for the present genetic code?[END_REF][START_REF] Yarus | Amino acids as RNA ligands: a direct-RNA-template theory for the code's origin[END_REF]. Closely related codons were put in correspondence with closely related amino acids within their biosynthetic pathways [START_REF] Wong | Coevolution theory of the genetic code at age thirty[END_REF]. Codons have also been grouped into systems characterized by interlocked thermodynamic cycles [START_REF] Klump | Exploring the energy landscape of the genetic code[END_REF]. Evolutionary models that minimise the number of the most frequent mutations provide a rationale for the fact that transitions at the third base of codons are mostly neutral mutations [START_REF] Goldberg | Genetic code: aspects of organization[END_REF]. Similarly, minimization of the deleterious effects of sequence-dependent single-base deletions catalyzed by DNA polymerases provides a rationale for the assignment of stop signals to codons [START_REF] Jestin | Chain-termination codons and polymerase-induced frameshift mutations[END_REF]. While in-frame stop codons are strictly selected against, out-of-frame stop codons minimize the costs of ribosomal slippages [START_REF] Seligmann | The ambush hypothesis: hidden stop codons prevent off-frame gene reading[END_REF]. In this context, the frequencies of codons were found to be highly dependent on the reading frame and highlighted a symmetrical codon pattern [START_REF] Koch | About a symmetry of the genetic code[END_REF]. As the genetic code is quasi-universal among living organisms, models do not need to be timedependent, even though time-dependent models have been suggested [START_REF] Bahi | A stochastic gene evolution model with time dependent mutations[END_REF][START_REF] Rodin | Origin of the genetic code: first aminoacyl-tRNA synthetases could replace isofunctional ribozymes when only the second base of codons was established[END_REF][START_REF] Sella | The coevolution of genes and genetic codes: Crick's frozen accident revisited[END_REF]. Symmetries in the genetic code are of special interest as they may highlight underlying organization principles of the code. A supersymmetric model for the evolution of the genetic code was proposed: successive breaking of these symmetries would provide an evolutive scenario for the decomposition into sets of synonymous codons [START_REF] Hornos | Algebraic model for the evolution of the genetic code[END_REF][START_REF] Bashford | Codon and nucleotide assignments in a supersymmetric model of the genetic code[END_REF]. When the amino acids are mapped to the vertices of a 28-gon, three two-fold symmetries were identified for three subsets of the cognate aminoacyl-tRNA synthetases [START_REF] Yang | On the 28-gon symmetry inherent in the genetic code intertwined with aminoacyl-tRNA synthetases--the Lucas series[END_REF]. This letter reports complete sets of two-fold symmetries between partitions of the universal genetic code. By substituting bases at each position of the codons according to a fixed rule, it happens that properties of the degeneracy pattern or of tRNA aminoacylation specificity are exchanged.

First the set of sixty-four codons of the genetic code was partitionned in two groups of thirty-two codons depending on whether the third base of triplets is necessary or not to define unambiguously an amino acid or a stop signal (property 1). Rumer reported a symmetry by base substitutions that alters property 1 [START_REF] Rumer | About the codon's systematization in the genetic code[END_REF] . The substitutions exchanging T and G as well as A and C are applied to all three codon bases and are called Rumer's transformation. If the third base is necessary to define an amino acid, then the symmetrical codon by Rumer's transformation does not require the third base of codons to be defined so as to define unambiguously the amino acid. Conversely, if the third base does not have to be defined so as to define unambiguously an amino acid, then the symmetrical codon by Rumer's transformation requires the third base to be given so as to define unambiguously the amino acid. More recently, one of the authors reported a symmetry that leaves unchanged property 1 [START_REF] Jestin | Degeneracy in the genetic code and its symmetries by base substitutions[END_REF]: this symmetry consists in applying to the first base of codons the substitutions exchanging G and C as well as T and A. For example, GCN codons coding for alanine are exchanged into CCN codons coding for proline; for GCN and CCN codons, the third base does not have to be defined so as to define unambiguously the amino acid.

Here we report a third symmetry that alters property 1 (Fig. 1). This symmetry is obtained by applying successively the two symmetries described above. It consists in applying the substitution exchanging A and G as well as C and T (a transition) to the first base in the codon, the substitution exchanging A and C as well as G and T (a transversion) to the second base in the codon, and the substitution exchanging A and C as well as G and T (a transversion) in the third base of the codon.

We show further that the only other symmetries exchanging both groups into each other are obtained by combining the previous ones with a symmetry acting only on the third base of the codons (here we do not include the substitution on the second base which exchanges A and C when fixing G and T). This can be seen by counting the number of occurrences of A, C, G, and T as first, second or third base in a codon of each group.

The result is given in Table 1.

These symmetries are valid for the standard genetic code and for other genetic codes such as the vertebrate mitochondrial genetic code which has a higher degree of symmetry of its degeneracy pattern as noted earlier [START_REF] Lehmann | Physico-chemical constraints connected with the coding properties of the genetic system[END_REF][START_REF] Jestin | Degeneracy in the genetic code and its symmetries by base substitutions[END_REF].

In addition to the existence of Rumer's transformation, Shcherbak discussed the following Rumer's rule [START_REF] Shcherbak | Rumer's rule and transformation in the context of the co-operative symmetry of the genetic code[END_REF], which can be read off Table 1: the ratio R = C+G/T+A of the number of occurrences of C and G by the number of occurrences of T and A in positions 1, 2 and 3 is equal to 3, 3 and 1 respectively in codons of the first group (and hence it is 1/3, 1/3 and 1 for codons of the second group). Similarly, the ratio P = T+C/A+G is 1, 3 and 1 in positions 1, 2 and 3 of the first group of codons.

Secondly, we considered another grouping of codons of the genetic code depending on whether the amino acids are acylated by amino acyl-tRNA synthetases at the 2' or at the 3' hydroxyl group of the tRNA's last ribose (property 2) [START_REF] Sprinzl | Site of aminoacylation of tRNAs from Escherichia coli with respect to the 2'-or 3'-hydroxyl group of the terminal adenosine[END_REF][START_REF] Arnez | Aminoacyl-tRNA synthetase tRNA recognition[END_REF]. This classification of amino acyl-tRNA synthetases is very similar to the one based on sequence homology and on structural considerations [START_REF] Eriani | Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs[END_REF][START_REF] Cusack | Aminoacyl-tRNA synthetases[END_REF]. Class I synthetases contain HIGH and KMSKS consensus sequences, which are absent from class II amino acyl tRNA synthetases. At the structural level, class I synthetases also contain a Rossman fold, a domain that binds nucleotides, unlike class II synthetases. Class I enzymes catalyse acylation at the 2' hydroxyl group of the tRNA while class II enzymes generally catalyse acylation at the 3' hydroxyl group of the tRNA. PheRS as a class II enzyme that catalyses acylation at the tRNA's 2' hydroxyl group is therefore an exception.

The case of cysteinyl-tRNA Cys synthetase (CysRS) is ambiguous and was investigated recently. CysRS is a class I synthetase, but establishes contacts with the major groove of the acceptor stem of the tRNA Cys as commonly found for class II enzymes. The enzyme from Escherichia coli is able to catalyse the acylation reaction at both 2' and 3' hydroxyl groups of the tRNA Cys . The 2' acylation is about one order of magnitude faster than the 3' acylation when catalysed by E. coli cysteinyl-tRNA synthetase in vitro [START_REF] Shitivelband | Breaking the stereo barrier of amino acid attachment to tRNA by a single nucleotide[END_REF].

The following classification was then used for 2' acylated amino acids (Ile, Leu, Met, Val, Trp, Tyr, Arg, Gln, Glu, Phe) and for 3' acylated amino acids (His, Pro, Ser, Thr, Asn, Asp, Lys, Ala, Gly). To the class of 2' acylated amino acids we also added the stop signals, a choice partially justified by the fact that two stop codons of the mitochondrial code of vertebrates code for the 2' acylated amino acid Arg in the universal code. Note that if cysteine were not in the class 3', or if a stop signal was not in the class 2', symmetries could not be identified. If cysteine is assigned to the class 2' as suggested by the previous paragraph, the symmetries are broken. Loss of the symmetries might have occurred during the evolution of aminoacyl-tRNA synthetases and might be associated to the late appearance of this amino acid in the genetic code [START_REF] Brooks | Increased frequency of cysteine, tyrosine, and phenylalanine residues since the last universal ancestor[END_REF].

When considering molecular properties such as polarity, volume and hydrophobicity, no statistical differences were noted between class 2' and class I on one hand, class 3' and class II on the other hand (Table 3).

There exist two symmetries by base substitutions that exchange the class 2' with the class 3' of the corresponding codon groups (cf. Fig. 2). They consist in applying the substitution exchanging A and C as well as G and T (a transversion) to the first base of the codon, the substitution exchanging A and G as well as C and T (a transition) to the second base of the codon, and the substitution exchanging A and C as well as G and T or A and T as well as C and G (a transversion) to the third base of the codon. These two symmetries differ by the substitution exchanging A and G as well as C and T in the third position. They are not related to those depicted in Figures 4 and 5 [START_REF] Yang | On the 28-gon symmetry inherent in the genetic code intertwined with aminoacyl-tRNA synthetases--the Lucas series[END_REF]) as Yang's three symmetries act only on three subsets of amino acids whereas the symmetries described herein are valid for the whole codon table.

There are no other symmetries by base substitutions between the two classes 2' and 3', as can be seen by counting the occurrences of A, C, G and T in each class and each position (Table 2). Note also the following analog of the Rumer's rule: both the ratio R = C+G / T+A and the ratio Q = A+C / G+T are equal to 1, 1/3, 1 in positions 1, 2, 3 respectively in the class 2' (and 1, 3, 1 in the class 3').

In this letter we have described new symmetries by base substitutions in the genetic code for partitions concerning the codon degeneracy level or the tRNA-aminoacylation class. Several evolutionary models have been proposed concerning tRNAs and their aminoacyl-tRNA synthetases [START_REF] Martinez Gimenez | On the dimerization of the primitive tRNAs: implications in the origin of genetic code[END_REF][START_REF] Klipcan | Amino acid biogenesis, evolution of the genetic code and aminoacyl-tRNA synthetases[END_REF][START_REF] Chechetkin | Genetic code from tRNA point of view[END_REF][START_REF] Di Giulio | The non-monophyletic origin of the tRNA molecule and the origin of genes only after the evolutionary stage of the last universal common ancestor[END_REF]. Newly introduced amino acids may well have been selected to minimize the deleterious effects of mistranslations, and possibly according to their molecular volumes [START_REF] Torabi | The case of an error minimizing set of coding amino acids[END_REF]. A unique serie of binary divisions of the codon table was recently noted: when the same differentiation rule was applied at each division, the class I / class II pattern arose consistently [START_REF] Delarue | An asymmetric underlying rule in the assignment of codons[END_REF]. Aminoacyl-tRNA synthetases are likely to have evolved by gene duplication and mutation of primordial synthetases within each class, as evidenced by sequence homology [START_REF] Woese | Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process[END_REF]. Consistently, the symmetries highlighted in this manuscript require three base substitutions per codon, which are unlikely to happen, thereby shedding some light on the duplication and divergence mechanism of evolution among the two classes of aminoacyl-tRNA synthetases. 
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 III Statistical t-values computed from the data on hydrophobicity[START_REF] Kyte | A simple method for displaying the hydropathic character of a protein[END_REF], molecular volume and polarity[START_REF] Di Giulio | On the optimization of the physicochemical distances between amino acids in the evolution of the genetic code[END_REF] comparing the class 2' with class I, and the class 3' with class II. These values are below the threshold of significance given in the Student's table.
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