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Numerial Simulation of Cavitation Bubbles byCompressible Two-Phase Fluids �Siegfried M�ullery, Philippe Helluyz, Josef BallmannxFebruary 14, 2007AbstratThe present work deals with the numerial investigation of ollapsingavitation bubbles in ompressible uids. Here the uid of a two-phasevapor-liquid mixture is modeled by a single ompressible medium. This isharaterized by the sti�ened gas law using di�erent material parametersfor the two phases.For the disretization of the sti�ened gas model the approah of Ab-grall and Saurel is employed where the ow equations, here the Eulerequations, for the onserved quantities are approximated by a �nite vol-ume sheme and an upwind disretization is used for the non-onservativetransport equations of the pressure law oeÆients. The original 1st or-der disretization is extended to higher order applying 2nd order ENOreonstrution to the primitive variables. The derivation of the non-onservative upwind disretization for the phase indiator, here the gasfration, is presented for arbitrary unstrutured grids.The eÆieny of the numerial sheme is signi�antly improved byemploying loal grid adaptation. For this purpose multisale-based gridadaptation is used in ombination with a multilevel time stepping strategyto avoid small time steps for oarse ells. The resulting numerial shemeis then applied to the numerial investigation of the ollapse of a vaporbubble in a free ow �eld and near to a rigid wall.Contents1 Introdution 22 Mathematial Model 5�This work has been performed with funding by the Deutshe Forshungsgemeinshaft inthe DFG-CNRS-Forshergruppe FOR 563 "Miro-Maro Modelling and Simulation of Liquid-Vapor Flows".yInstitut f�ur Geometrie und Praktishe Mathematik, RWTH Aahen, 52056 Aahen, Ger-many, mueller�igpm.rwth-aahen.dezIRMA, 7 rue Rene-Desartes, 67084 Strasbourg Cedex, Frane, helluy�math.u-strasbg.frxLehr- und Forshungsgebiet f�ur Mehanik, RWTH Aahen, 52064 Aahen, Germany,ballmann�lufmeh.rwth-aahen.de
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3 Numerial Disretization 73.1 Finite Volume Disretization of Conserved Variables . . . . . . . 73.2 Upwind Disretization of Non-Conservative Transport Equationsfor Pressure Law CoeÆients . . . . . . . . . . . . . . . . . . . . 83.3 Multisale-Based Grid Adaptation . . . . . . . . . . . . . . . . . 103.4 Multilevel Time Stepping . . . . . . . . . . . . . . . . . . . . . . 134 Numerial Results 144.1 Two-Phase Riemann Problem . . . . . . . . . . . . . . . . . . . 154.2 Planar Bubble Collapse . . . . . . . . . . . . . . . . . . . . . . . 184.3 Planar Bubble Collapse next to a Rigid Wall . . . . . . . . . . . 215 Conlusion 246 Figures 326.1 Two-Phase Riemann Problem . . . . . . . . . . . . . . . . . . . . 326.2 Planar Bubble Collapse . . . . . . . . . . . . . . . . . . . . . . . 366.3 Planar Bubble Collapse near to a Rigid Wall . . . . . . . . . . . 381 IntrodutionThe formation of vapor bubbles in a liquid is alled avitation. The bubblesmay grow or ollapse. Lord Rayleigh disovered that pressure waves emittedduring proesses of avitation [Ray17℄ may damage solids, e.g., ship propellers.However, the mehanisms ausing the damage of the solid are far from beingompletely understood.Cavitation is indued by a pressure drop in the liquid below vapor pressure.Suh a pressure derease may our due to loal aeleration of the liquid owaused by geometrial onstraints, e.g., if the liquid ows through a narrowori�e or around an obstale. In this ase, the pressure drops below vaporpressure, the liquid bursts and reates a free surfae �lled with gas and vapor{ the bubble. Due to hanges in the ow �eld, the pressure in the liquid mayinrease again ausing the bubble to ollapse. The ollapse is aompanied bystrong shok and rarefation waves running into the bubble and the surroundingliquid. The inwards running shok wave fouses in the enter of the bubble. Thisleads to extreme physial states in the interior. In addition, the shrinking of thebubble leads to a strong ompression of the vapor. Both e�ets evoke an inreaseof pressure whih bulges the bubble. Hereby, a dynami osillation proess isinitiated whih �nally leads to the ollapse of the bubble. If the ollapse takesplae next to a boundary, ow and pressure �elds beome asymmetri and aliquid jet develops whih is either direted towards or away from the boundary,depending on its ompliane.The investigation of the dynamis of avitation bubbles is of speial interestin di�erent real world appliations arising, for instane, in engineering, medialappliations and biology suh as (i) avitation erosion of under water strutures,see [NE61, BE66, PL98℄, (ii) lithotripsy and sonoporation, see [OI03, OW03℄,and (iii) avitation{enhaned ablation of materials e.g. biologial tissues, see[BNSV01a, BNSV01b, OW03℄. In this regard, the investigation of avitationan be helpful (i) to improve the resistibility of under water strutures suh as2



ship propellers and ship walls against strong pressure waves and (ii) to optimizemedial laser or lithotripter appliations with regard to ollateral damage tosensitive tissue strutures in the viinity of the laser fous or to its sonoporationapabilities for drug delivery.The proesses taking plae in the interior and exterior of the ollapsing andosillating bubble and the predition of onset and extent of avitation damageare still subjet of theoretial and experimental researh. However, small timeand spae sales as well as the ompliated dynamis make any theoretial andexperimental approah a hallenge. Therefore, advaned numerial investiga-tions are needed to reveal further information about the highly unsteady owdynamis in the uid.Here we will fous on the modeling and numerial simulation of the ollapseof a single bubble in a nonstationary, invisid ompressible two{phase ow.In ase of spherial symmetry this has been studied by Westenberger [Wes87℄.There the Euler equations for ompressible liquids (Tait equation of state) anda homogenized bubbly uid, respetively, have been onsidered. Investigationsveri�ed that the uid state inside the bubble does not stay homogeneous duringthe ollapse. Moreover, shok waves develop if the smallest bubble radius is al-most obtained or the bubble growth just started again. These wave phenomenaour preferably in the liquid but they also an develop inside the bubble andthere they interat with the phase boundary due to the small radius. Thereby,the frequently made assumption of inompressibility of the liquid and the ho-mogeneity of the vapor are quali�ed as inappropriate. In order to validate theextreme states that may our due to fousing e�ets in liquids as well as in va-por an expliit �nite volume method for the spherial bubble ollapse has beendeveloped based on the Navier-Stokes equations using di�erent equations ofstate, e.g., van der Waals and others, [HB98, Han98℄. It ould be veri�ed thatthe modeling of the bubble inside by a perfet gas is only valid at moderatehanges in volume.For the numerial simulation of two{phase immisible ows in ompressibleuids, it is distinguished in the literature between the Lagrangian and the Eu-lerian approah. In the Lagrangian framework the interfae is typially trakedduring the time evolution. There are mainly three types of tehniques: (i) par-tile methods, e.g., Smooth Partile Hydrodynamis, where the movement ofpartiles is simulated, f. [Mon94, DGP98℄, (ii) front traking methods wherethe underlying disretization undergoes a deformation due to the movement ofthe interfae, f. [Hym86, CGM+86, KP91, Di97℄, and (iii) marker methods,e.g., Marker and Cells [WHSD℄, Volume of Fluid [HN79℄, where the disretiza-tion is �xed. Typially diÆulties arise if the interfae hanges topologially orbeomes ompliated. To overome this diÆulty tehniques have been devel-oped based on an Eulerian formulation wherby the interfae is aptured. Todistinguish the two uid phases in this formulation the underlying equationsof motion are supplemented with an additional salar equation approximatingthe position of the interfae, for instane, a olor funtion [BKZ92℄ or a levelset funtion [OF01, Set96℄. For inompressible two{phase uid ow this hasbeen applied with great suess, see [SSO94, SAB+99℄. In ase of ompress-ible two{phase ow, diÆulties arise at the phase boundary aused by pressureosillations in the numerial simulation. In order to suppress these pressureosillations, di�erent approahes have been onsidered in the literature. Ab-grall et al. proposed a quasi-onservative formulation [Abg96, SA99, AK01a℄.3



Another approah, the ghost uid method, has been developed by Fedkiw etal. [FAMO99, FAX01℄. A modi�ation of their ansatz has been introdued byAbgrall and Karni [AK01a, AK01b℄ based on a two-ux method. Reently, Suss-man [Sus03℄ suggested a di�erent strategy for omputing growth and ollapseof vapor bubbles where a level set method is oupled with a volume-of-uidmethod. However, the liquid is assumed to be inompressible. These methodsturn out to give good results in ase of wave proesses in ows of two immisibleompressible gases. For instane, in [ABM05, And06℄ the two-ux method issuessfully used in ombination with a level set method to investigate waveinterations with gas-gas interfaes. However, these methods in general fail forompressible liquid-gas ow. In the Eulerian approah the material interfaeis aptured rather than traked. Therefore the two phases undergo a numer-ial phase transition due to the smearing of the material interfae. Sine thepressure laws for liquids and gases typially are not valid in the same regimeof phase spae the numerial mixture of the phases leads to non-physial val-ues in the numerial phase transition regime. This typially auses the rashof the omputation. Among the aforementioned approahes, the sti�ened gasapproah of Saurel and Abgrall [SA99℄ seems to be presently the only methodthat is apable to deal with ompressible liquid-gas ow.In addition to an adequate mathematial model highly eÆient numerialalgorithms are required, whih allow for a high resolution of the waves pro-dued by the bubble osillation and their interation and provide qualitativeand quantitative results on the dynamis of these waves. In reent years, anew adaptive onept for �nite volume shemes has been developed based onmultisale tehniques. First work in this regard has been published by Harten[Har94, Har95℄ where by means of a multisale sequene the ux evaluation isperformed. This results in a hybrid sheme working on a uniform grid. Reently,a fully adaptive onept for multisale �nite volume shemes has been developedand investigated [M�ul02, CKMP03℄. This new onept turns out to be highlyeÆient and reliable. By now, the new adaptive multiresolution onept hasbeen applied with great suess to di�erent appliations, e.g., 2D/3D{steadyand unsteady omputations of ompressible uids about airfoils modeled by theEuler and Navier{Stokes equations, respetively, on blok{strutured urvilin-ear grid pathes [BLM04℄, bakward{faing step on 2D triangulations [CKP01℄and simulation of a ame ball modeled by reation{di�usion equations on 3DCartesian grids [RS02, RSTB03℄. These appliations have been performed forompressible single-phase uids. More reently, this onept has been extendedto two-phase uid ow of ompressible gases, and applied to the investigation ofnon{stationary shok{bubble interations on 2D Cartesian grids for the Eulerequations [ABM05, And06℄.In the present work the fous is on the numerial investigation of ollapsingvapor bubbles in ompressible uids. Here the uid of a two-phase vapor-liquidmixture is modeled by a single ompressible medium. For the two phases weemploy the sti�ened gas law with di�erent material parameters for the twophases, see Setion 2. In Setion 3 the sti�ened gas model is disretized bythe approah of Saurel and Abgrall [SA99℄ where the ow equations for theonserved quantities are approximated by a �nite volume sheme and an up-wind disretization is used for the non-onservative transport equations of thephase indiator (gas fration). The eÆieny of the resulting sheme is im-proved by applying multisale-based grid adaptation tehniques. Note that the4



disretization is presented in the multi-dimensional ase on arbitrary grids wherewe employ a higher order reonstrution for the primitive variables. Due to thenonstationary behavior of the ow time integration is performed expliitly. TheCFL ondition of the highest resolution level is loally relaxed by employingthe reent multilevel time stepping strategy, f. [MS06, LMS05, LMMS06℄. Theresulting numerial sheme is then applied to the numerial investigation of theollapse of a vapor bubble, see Setion 4.2 Mathematial ModelCompressible uid ow is haraterized in ontinuum mehanis by the �eldsof density %, veloity v, internal energy e and pressure p distributions. Thebalanes of mass, momentum and energy for invisid ow lead to the Eulerequations in onservation form%t + div(%v) = 0;(%v)t + div(%v 
 v + pI) = 0;(%E)t + div(%v(E + p=%)) = 0; (1)where E = e + 0:5v2 is the total energy. In order to take into aount thetwo di�erent uids (a gas and a liquid) we introdue a new unknown ' thatwe all the fration of gas. We make the onvention that ' = 0 and ' = 1orrespond to pure liquid and vapor, respetively. Beause we are interestedin very high speed ows and very short observation times we suppose that thephase transition an be negleted so that there is no mass transfer between thetwo uids. Thus the fration satis�es a homogeneous transport equation, i.e.,its material derivative is vanishing,'t + v � r' = 0: (2)If at the initial time t = 0 the fration ' takes only the values 1 or 0, it willremain true for t > 0. Thus there is no physial mixing in the ontinuous model.However, the numerial model will introdue arti�ial mixture zones where 0 <' < 1. This auses some diÆulties that are disussed below. Anyway, with agood numerial approximation, the size of the mixture region will tend to zerowith the size of the ells in the mesh.Using the mass onservation law, equation (2) an be written in an equivalentonservative form (%')t + div(%'v) = 0; (3)whih expresses the mass onservation of eah uid.In order to lose the system, we have to provide a pressure lawp = p(%; e; '): (4)In this work, we onsider a relatively simple pressure law: the sti�ened gaspressure law suggested in [CS97℄ and [Abg96℄. It readsp(%; e; ') = ((')� 1)%e� (')�('): (5)If we were only studying the ontinuous model, it would be suÆient to pro-vide the values of the pressure law oeÆients  and � for ' = 0 or ' = 1.5



But beause of the numerial mixture, it is neessary to interpolate  and �for 0 < ' < 1. An arbitrary hoie of interpolation would lead to numerialdiÆulties that are studied in many works [Abg96℄, [BHR03℄, [GHS03℄, et. andommented below.It appears that a good hoie onsists in a linear interpolation of the twospeial quantities �1 and �2 de�ned by8><>:�1 = 1 � 1�2 = � � 1 , 8>><>>:  = 1 + 1�1� = �21 + �1 : (6)The pressure law in the numerial mixture zone is then onstruted as fol-lows. First,  and � are dedued from measurements in the pure uids. Apossible proedure is explained in [CS97℄. For water and air the material oef-�ients for the pure phases are listed in Table 1. This gives (0), �(0) for thepure liquid and (1), �(1) for the pure vapor. We dedue then from (6) thequantities �1(0), �2(0), �1(1), �2(1) and, by a linear interpolation�1(') = '�1(1) + (1� ')�1(0);�2(') = '�2(1) + (1� ')�2(0): (7)The mixture pressure law oeÆients (') and �(') are then obtained from thereverse relation in (6). Vapor (Air) Liquid (Water) [-℄ 1.4 7.15� [Pa℄ 0 3.e+8v [J/kg K℄ 717.5 201.1Table 1: Material oeÆientsTo the sti�ened gas pressure law (5) we an assoiate a temperature saleT . The temperature sale is ompatible with thermodynamis if it is possibleto �nd an entropy funtion s suh thatTds = de+ pd(1=%): (8)Several hoies are possible. The simplest orresponds tovT = e� �% ; (9)where the onstant v is the spei� heat at onstant volume, f. [BH05℄. Thetemperature law has no physial meaning in the arti�ial mixture region beauseour mixture pressure law has been seleted for numerial reasons and not fromphysial arguments. Sine  = 1 +R=v holds in the pure phases, interpolatedvalues for the heat apaity v and the spei� gas onstant R in the mixtureregion are omputed byv(') = v(0) v(1)((1)� (0))v(0)((')� (0)) + v(1)((1)� (')) ;R(') = v(1)R(0)((1)� (')) + v(0)R(1)((') � (0))v(0)((')� (0)) + v(1)((1)� (')) :6



These interpolated values have no lear physial meaning but will be used for anumerial study of the temperature in the mixture region. They are motivatedby [BH05℄.Finally, we remark that instead of (2) we might equivalently solve the evo-lution equations for the material parameters � = (�1; �2), whih have vanishingmaterial derivatives as they depend only on ' aording to eq. (7)�t + v � r� = 0: (10)3 Numerial DisretizationThe numerial disretization of ompressible two-phase uid ow is still a hal-lenge. The naive approah to apply a standard �nite volume disretization tothe oupled system in onservation form (1) and (3) fails to work beause ofpressure osillations at the material interfae. Cures have been proposed inreent years [Kar94℄, [FAMO99℄, [Abg88℄, [SA99℄, [WK05℄. They are based onnon-onservative shemes and are suessful for gas-gas interfaes. For liquid-gas interfaes the omputations will typially rash after a few time steps. Onetypially observes severe pressure osillations at the phase interfae due to thenumerial di�usion of the density. For the sti�ened gas model as summarizedin Setion 2 the approah of Saurel and Abgrall [SA99℄ is working robustlyalso for liquid-gas interfaes. The basi idea is to apply a �nite volume shemeto the ow equations (1) and to employ an upwind disretization of the non-onservative transport equations for the pressure law oeÆients (10). Here wesummarize the disretization in the multi-dimensional ase on arbitrary gridswhere we employ a higher order reonstrution for the onserved variables. TheeÆieny of the resulting sheme is improved by applying reentmultisale-basedgrid adaptation tehniques and a multilevel time stepping strategy.3.1 Finite Volume Disretization of Conserved VariablesThe Euler equations (1) are solved approximately by a �nite volume method.For this purpose the �nite uid domain 
 � Rd is split into a �nite set ofsubdomains, the ells Vi, suh that all Vi are disjoint at eah instant of timeand that their union gives 
. Furthermore let N (i) be the set of ells that havea ommon edge with the ell i, and for j 2 N (i) let �ij := �Vi \ �Vj be theinterfae between the ells i and j and nij the outer normal of �ij orrespondingto ell i. The time interval is disretized by tn+1 = tn+� t assuming a onstanttime step size. On this partiular disretization the �nite volume sheme anbe written as un+1i = uni � � tjVij Xj2N (i) j�ij jF (unij ;unji;nij) (11)using an expliit time disretization to ompute the approximated ell averagesun+1i of the onserved variables u = (%; %v; %E) on the new time level. Herethe numerial ux funtion F (u;w;n) is an approximation for the uxf(u;n) := 0� %v%v 
 v + p I%v (E + p=%) 1A � n = 0� % vn% vn v + pn% vn (E + p=%) 1A (12)7



in outer normal diretion nij on the edge �ij . Here vn = v n is the normalveloity omponent. The numerial ux is assumed to be onsistent, i.e.,F (u;u;n) := f (u;n): (13)For simpliity of presentation we neglet that due to higher order reonstrutionof the values unij and unji at the ell interfae �ij it usually depends on anenlarged stenil of ell averages. Furthermore, the pressure law is applied whenomputing the numerial ux. Therefore it also depends on the fration vetorY or the vetor of pressure law oeÆients �, respetively, assoiated to thestates unij and unji.Sine a reasonable numerial method should at least be able to maintaina onstant ow �eld, i.e., if u(x; t) = u1 for all (x; t), we require that thenumerial solution ful�lls uni = u1 for all index pairs (i; n), too. From theonsisteny of the numerial uxes (13) and the disretizations (11) we thenobtain for eah ell Vi the geometri onsisteny onditionXj2N(i) j�ij jnij = 0: (14)In order to �x the numerial ux we have to hoose the Riemann solver andthe reonstrution method. Aording to Saurel and Abgrall [SA99℄ these haveto be hosen suh that a moving ontat disontinuity is preserved in one spatialdimension. In higher dimensions we therefore require that the onditionvni = v = onst; pni = p = onst =) vn+1i = v; pn+1i = p (15)holds for all ells i in the omputational domain, i.e., onstant pressure andveloity �elds are preserved. Note that this ondition haraterizes a ontatdisontinuity only in 1D. In higher dimensions the sheme does not neessarilypreserve the normal veloity if there is a jump in the tangential omponent ofthe veloity.For this purpose, in our omputations the Riemann problem at the ellinterfae is solved exatly by the Riemann solver of Colella and Glaz [CG85℄originally developed for real gases. Here we apply it to sti�ened gases where wemodify the implementation of the solver as desribed in [M�ul93℄.Furthermore, we use a higher order reonstrution whih is applied ompo-nentwise to the primitive variables (%;v; p;�). The reonstrution of onservedvariables or harateristi variables violates the onsisteny ondition (15) andwill ause osillations at the material interfae.In our omputations the underlying disretization is always a hierarhy ofCartesian grids. Therefore we employ a quasi one-dimensional seond-orderENO reonstrution and Taylor expansion aording to [HEOC87℄ to improveboth the spatial and temporal auray. See also [M�ul93℄ for details on theimplementation.3.2 Upwind Disretization of Non-Conservative TransportEquations for Pressure Law CoeÆientsBy (11) the onserved quantities an be evolved time. In addition, we also haveto update the frations before we an proeed with the next time step. However8



disretizing the evolution equations (2) or (3), respetively, will lead to osil-lations at the material interfae and spoils the omputation. Therefore Saureland Abgrall in [SA99℄ suggested to use an upwind disretization of the non-onservative transport equations (10) for the vetor of pressure law oeÆients.This is motivated by the requirement that the sheme has to preserve a ontatwave for whih the tangential omponent of the veloity is ontinuous in thesense of (15). A detailed derivation of the disretization in 1D an be foundin [Bar02℄. This an be extended to the multi-dimensional ase on arbitrarygrids as shall be summarized in the following. For this purpose, we assume thatvni = v and pni = p holds for all ells i. Sine the reonstrution is performedon the primitive variables we obtain pnij = pnji = p and vnij = vnji = v whereasthe reonstrution of the density % and the material parameters � may jumpaross the ell interfae, i.e., %nij 6= %nji and �nij 6= �nji. Then the numerial uxomputed by the exat Riemann solver is determined byF (unij ;unji;nij) = 0� %ij vn;ij%ij vn;ij v + pnij%ij vn;ij (Eij + p=%ij) 1A (16)where %ij , vn;ij and Eij are the density, normal veloity and total energy om-puted by the Riemann solver. Sine the underlying veloity �eld is homogeneousvn;ij = v nij (17)holds. The material parameters jump only aross the material interfae, i.e.,vn;ij �ij = �nij max(vn;ij ; 0) + �nji min(vn;ij ; 0): (18)We now plug in (16) into (11). Then we obtain for the disrete ontinuityequation %n+1i = %ni � � tjVij Xj2N (i) j�ij j %ij vn;ij : (19)The disrete momentum equation reads(%v)n+1i = (%v)ni � � tjVij Xj2N (i) j�ij j (%ij vn;ij v + pnij): (20)From (19) and (14) we then onlude (%v)n+1i = v %n+1i and, hene, vn+1i = v.Finally, the disrete energy equation reads(%E)n+1i = (%E)ni � � tjVij Xj2N (i) j�ij j %ij vn;ij (Eij + p=%ij): (21)Sine E = e + 0:5v2 we dedue a disrete evolution equation for the internalenergy. Using (20) and (14) it is given by(% e)n+1i = (% e)ni � � tjVij Xj2N (i) j�ij j %ij vn;ij eij : (22)
9



From the pressure law (5) and equation (22) we then onlude that pn+1i = pni =p holds provided that the pressure law oeÆients satisfy the disrete evolutionequations �n+1i = �ni � � tjVij Xj2N (i) j�ij j vn;ij �ij : (23)These are suÆient but not neessary onditions. Note that (23) is a non-onservative upwind disretization for the evolution equations (10) of the ma-terial parameters beause vn;ij �ij 6= �vn;ji �ji. Furthermore, we remark that(23) oinides with the 1D disretization in [SA99, Bar02℄. To see this we rewritethe sum in (23) by means of (14) and (17), (18) asXj2N (i) j�ij j vn;ij �ij = Xj2N (i) j�ij j vn;ij (�ij � �ni ) (24)Finally we obtain the upwind disretization of the pressure law oeÆients�n+1i = �ni � � tjVij Xj2N (i) j�ij j vn;ij (�ij � �ni ) (25)where in general the veloity of the material interfae in normal diretion vn;ijis not given by (17) but results from solving the Riemann problem.Then the numerial disretization of the two-phase uid model onsists ofthe following steps in eah time step:1) ompute the reonstrution of the primitive variables,2) solve the Riemann problem for eah ell interfae,3) evolve density, momentum and energy in time by (11) where the numerialuxes at the ell interfaes are determined by (12) with u the solution ofthe Riemann problem;4) evolve the pressure law oeÆients in time by (25) where the transportveloities at eah ell interfae are determined by the veloities of theRiemann solution.Sine the transport sheme (23) and (25), respetively, is linear in ' anddue to the linear interpolation (7) of �, it is equivalent to solve the evolutionequation for the fration ', i.e.,'n+1i = 'ni � � tjVij Xj2N (i) j�ij j vn;ij 'ij = 'ni � � tjVij Xj2N (i) j�ij j vn;ij ('ij � 'ni ):(26)3.3 Multisale-Based Grid AdaptationThe numerial simulation of ollapsing bubbles is a highly dynamial proessof ompression and rarefation waves and their interation with the materialboundary and solid walls, f. [ABM05℄. In order to ath properly all thesee�ets high resolution disretizations are needed. However, uniform disretiza-tions are too muh time- and memory-onsuming. Therefore highly eÆient10



shemes are needed that adapt the grid to the ow solution suh that a highresolution is only loally aessed where strong variations in the ow �eld our.In order to improve the eÆieny of the numerial sheme presented in Setion3.1 and 3.2 we employ reent multisale-based grid adaptation tehniques. Bymany appliations these have been proven to be very eÆient and reliable. Herewe briey summarize the basi oneptual ideas. For tehnial details we referthe reader to [M�ul02℄, [CKMP03℄ and[BLM04℄.Step 1: Multisale analysis. The fundamental idea is to present theell averages ûL representing the disretized ow �eld at �xed time level tn ona given uniform highest level of resolution l = L (referene mesh) assoiatedwith a given �nite volume disretization (referene sheme) as ell averages onsome oarsest level l = 0 where the �ne sale information is enoded in arraysof detail oeÆients dl, l = 0; : : : ; L � 1 of asending resolution, see Figure 2.For this purpose one might use Harten's disrete onept of reonstrution andpredition, f. [ADH98℄, or biorthogonal wavelets, f. [CDP96℄.The multisale deomposition is performed on a hierarhy of nested gridsGl with inreasing resolution l = 0; : : : ; L, see Figure 1. In our omputationspresented here we on�ne to strutured urvilinear grids though the generalframework is not restrited to this on�guration but an also be applied tounstrutured grids and irregular grid re�nements in arbitrary spae dimensions.
l = 0 - l = 1 - l = 2Figure 1: Sequene of nested grids ûL ûL�1dL�1 : : :: : : û1d1 û0d0- - - -� � � ���R ��R ��R ��R��I ��I ��I ��IFigure 2: Multisale transformationStep 2: Thresholding. It an be shown that the detail oeÆients be-ome small with inreasing re�nement level when the underlying funtion isloally smooth. In order to ompress the original data this motivates us to dis-ard all detail oeÆients dl;� whose absolute values fall below a level-dependentthreshold value "l = 2l�L". Let DL;" be the set of signi�ant details. The idealstrategy would be to determine the threshold value � suh that the disretiza-tion error of the referene sheme, i.e., di�erene between exat solution andreferene sheme, and the perturbation error, i.e., the di�erene between thereferene sheme and the adaptive sheme, are balaned, see [CKMP03℄.Step 3: Predition and grading. Sine the ow �eld evolves in time,grid adaptation is performed after eah evolution step to provide the adaptivegrid at the new time level. In order to guarantee the adaptive sheme to bereliable in the sense that no signi�ant future feature of the solution is missed,we have to predit all signi�ant details at the new time level n+1 by means ofthe details at the old time level n. Let ~Dn+1L;" � DnL;"[Dn+1L;" be the predition set.The predition strategy is detailed in [CKMP03℄. In view of the grid adaptationstep this set is additionally inated suh that it orresponds to graded tree.Step 4: Grid adaptation. By means of the set ~Dn+1L;" a loally re�nedgrid is determined. For this purpose, we reursively hek proeeding levelwise11



from oarse to �ne whether there exists a signi�ant detail to a ell. If thereis one, then we re�ne the respetive ell. We �nally obtain the loally re�nedgrid with hanging nodes represented by the index set GL;". This proedureis graphially skethed in Figure 3. To eah shaded ell there is at least onesigni�ant detail. These ells are removed and replaed by their hildren on thenext higher level. This results in a grid with hanging nodes.
Figure 3: Grid adaptation: re�nement tree (left) and orresponding adaptivegrid (right)Sine the onept of multisale-based grid adaptation has been presentedand disussed in detail in previous publiations we omit the tehnial detailsneeded to realize it. However, we omment on some aspets that were not ad-dressed in single-phase omputations. Note, that the grid adaptation onepthas been developed and investigated originally for �nite volume shemes. Herethe numerial disretization is a hybrid sheme where the onserved variablesu of mass, momentum and energy are disretized by a �nite volume sheme(11) and the pressure law oeÆients � by an upwind disretization (25) innon-onservative form. Nevertheless, we an apply the grid adaptation to theonserved and non-onserved variables although two hanges have to be made toaount for the extension to two-phase uid ow and the non-onservative dis-retization of the pressure law oeÆients. These onern the threshold proessand the ux omputation at hanging nodes.Threshold proess. Sine the physial states in liquid and vapor di�er ex-tremely in sale it turned out in our omputations that we had to modify slightlythe threshold proess. In previous single-phase omputations, f. [BLM04℄, thedetails for eah physial quantity was saled by its maximum in the entire om-putational domain. This has been useful to adjust the sales of the di�erentquantities. Otherwise, di�erent threshold values " have to be used for the dif-ferent quantities that usually di�er by several orders of magnitude. In thepresent two-phase omputations, this turned out to be inadequate. Due to thehuge values in the liquid the maximum for eah quantity is large and salingby it would make the details orresponding to the vapor phase very small andthey would be disarded in the threshold proess. Hene waves in the vaporphase would not be properly resolved. Therefore we had to replae the globalmaximum by a loal maximum where only the ells in the stenil of the detailare taken into aount.Flux omputation at hanging nodes. Another issue that had to beadjusted onerns the omputation of the gradients in (25) at interfaes withhanging nodes. For the numerial uxes in (11) the strategy was unhanged.12
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Figure 4: Flux evaluation at interfae with hanging node: adaptive grid (right),virtually re�ned grid (left)First the numerial uxes on the higher sale are omputed by values on thesame re�nement level. In ase the neighboring ells orrespond to higher or lowersales the data are projeted to the respetive level by means of the multi-saletransformation. Then the numerial ux on the oarser sale is the sum of alluxes on higher sale by whih the oarse interfae is omposed. This is shownin Figure 4. This proedure is motivated by applying the multisale deom-
Figure 5: Flux omputation: �ne grid (left), anellation due to onservation(middle), oarse grid (right)position to the evolution equations (11). Then by the onservation propertythe uxes orresponding to internal uxes anel and only the �ne-grid uxesontribute to the edges of the oarse-grid ells, see Figure 5. Similarly, we pro-eed with the evolution equations (25). However, due to the non-onservativedisretization, the gradients at the internal interfaes do not anel. Thus,negleting these terms will introdue some additional error to the threshold er-ror resulting from higher re�nement levels. Nevertheless, to add the �ne-gridgradients orresponding to a oarse-grid edge give satisfatory results and thenon-onservation error does not spoil the overall auray of the omputation.3.4 Multilevel Time SteppingSine the referene sheme (11) is assumed to use an expliit time disretiza-tion, the time step size is bounded due to the CFL ondition by the smallestell in the grid. Hene �t is determined by the highest re�nement level L, i.e.,�t = �L. However, for ells on the oarser sales l = 0; : : : ; L � 1 we may use�t = �l = 2L�l �L to satisfy loally the CFL ondition. In [MS06℄ a multileveltime stepping strategy has been inorporated reently to the adaptive multi-sale �nite volume sheme as proposed in [M�ul02℄. It has been extended tomultidimensional problems in [LMS05, LMMS06℄. The basi idea is to save ux13
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Figure 6: Synhronized time evolution on spae-time gridevaluations where the loal CFL ondition allows a large time step. The preisetime evolution algorithm is shematially desribed by Fig. 6: In a global timestepping, i.e., using �t = �L for all ells, eah vertial line setion appearingin Fig. 6 (left) represents a ux evaluation and eah horizontal line (dashed orsolid) represents a ell update of u due to the uxes. In the multilevel time step-ping a ux evaluation is only performed at vertial line setions that emanatefrom a point where at least one solid horizontal line setion emanates from.If a vertial line setion emanates from a point, where two dashed horizontalsetions emanate from, then we do not reompute the ux, but keep the uxvalue from the preeeding vertial line setion. Hene uxes are only omputedfor the vertial edges in Fig. 6 (right).Note, that on eah intermediate time level (horizontal lines) u is updated forall ells and that grid adaptation is performed at eah even intermediate timelevel, i.e., at tn + k �L for k even. Hene it is possible to trak, for instane, ashok movement on the intermediate time levels instead of a{priori re�ning thewhole range of inuene, see Fig. 6 (right).However, the update of u for the onserved quantities and the material oeÆ-ients makes it neessary to modify the omputation of the uxes orrespondingto a oarse ell at grid interfae points, i.e., a dashed and a drawn horizontalline emanate from this point. Here the non-onservative uxes for the mate-rial oeÆients are not updated to aount for the onsisteny ondition (15)whereas the onservative uxes for the onserved quantities are updated by thenew values on the intermediate time level.4 Numerial ResultsWe are interested in the numerial investigation of the ollapse of a vapor bubblefar away from and next to a rigid wall, see Figure 7. These are modeled by thesti�ened gas approah in Setion 2 where the liquid phase is haraterized by asti�ened gas law and the vapor phase by a perfet gas law whih an both bewritten in the form (5) where the material oeÆients for the pure phases arelisted in Table 1.The governing equations are the Euler equations (1) and the non-onservativetransport equations (10) for the pressure law oeÆients. These are disretizedby the �nite volume sheme (11) and the non-onservative upwind disretiza-tion (25). The eÆieny of the numerial disretization is signi�antly improvedby the multisale-based grid adaptation employing multilevel time stepping assummarized in Setion 3.3.Three on�gurations have been investigated, namely, (i) a two-phase Rie-mann problem (1D) to validate the numerial disretization with respet to a-14
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L L* R*Figure 8: Shok tube problem: Initial on�guration (left) and solution at somelater instant (right)[Han98℄, p. 41, are listed in Table 2. They are haraterized by high pressureand density values in the liquid and low pressure and density values in the vaporwhere the temperature is hosen to be in equilibrium. These are harateristifor injetion nozzles of diesel engines, f. [DB06℄.Removing instantaneously the membrane a fast expansion wave is runninginto the liquid phase and a shok wave is moving into the vapor phase followed15



State L State L* State R* State RLiquid Liquid Gas Gas% [kg/m3℄ 1000 978.672 0.028728 0.026077vx [m/s℄ 0 32.998 32.998 0p [Pa℄ 5e+07 2425.7 2425.7 2118%  [kg/m2s℄ 1.58193e+06 1.44889e+06 9.87723 8.79338� [m3/kg℄ 0.001 0.00102179 34.8092 38.348Ma [-℄ 0 0.022288994 0.095975086 0T [K℄ 283 247.86 294.2 283Table 2: Shok tube problem: Initial and intermediate statesby the material interfae, see Figure 8 (right). The onstant intermediate statesare given in Table 2. The veloities of the three waves are listed in Table 3. Wenote that the shok speed is only about 25 % of the veloity of the rarefationwave. v�R = vR� � R� v+R = vR+ � R+ vC vS-1581.93 -1447.46 32.998 357.588Table 3: Shok tube problem: Wave speedsFor this simple on�guration we performed several omputations. The pur-pose of these omputations is twofold, namely, (i) to validate the implementationand the numerial disretization with respet to auray, robustness and re-liability and (ii) to investigate the e�et of higher order reonstrution, gridadaptation and multilevel time stepping on the numerial results.The omputational domain is 
 = [�2; 0:5℄ and the �nal time is t = 1:001984�10�3 [s℄. The oarse grid disretization onsists of N0 = 50 ells. The numberof re�nement levels is always L = 8. From this we infer that the (uniform)referene grid on level L is omposed of NL = 12800 ells. The time step size isdetermined by � t = 3:1312� 10�8 [s℄ orresponding to a CFL number of 0.25with respet to the initial data. Hene, we perform n = 32000 time steps. Ifnot stated otherwise the threshold value is " = 0:0001 and we use the seondorder reonstrution of the primitive variables %, v and p. The omputationsare performed employing multilevel time stepping.Validation. In Figures 9, 10, 11, 12, 13, 14, 15, 16 the numerial resultsand the exat solution are shown for the �nal time. The exat solution ofthe Riemann problem was omputed by the iterative solver of Colella/Glaz[CG85℄. We note that the numerial results are in good agreement with theexat solution exept for the temperature at the material interfae. The problemon the temperature has already been reported in [SCB99℄.Nevertheless there are some de�ienies that beome visible only if one zoomsinto the solution. First of all, we observe that the numerial disretization of thepressure law oeÆients leads to a smearing of the mass and volume fration,see Figure 23 and 24, though the underlying mathematial model in Setion 2 isbased on the assumption of immisibility. This numerial mass di�usion ausesan overheating in the liquid and vapor phase next to the material interfae,16



see Figure 21. In addition, we observe some e�et due to the numerial massdi�usion on the Mah number in the vapor phase, see Figure 22.Another de�ieny an be observed in the pressure in the liquid phase, seeFigures 31 and 37, 38, respetively. When the rarefation wave passes we ob-serve an over-expansion of the liquid. This e�et beomes stronger with highernumerial dissipation introdued by a �rst order disretization, see Figure 31.For the 1st order reonstrution this numerial overheating an be observed inthe entire regime between rarefation wave and the material interfae whereasfor 2nd order reonstrution it only takes plae near the rarefation wave. Wenote that this e�et beomes stronger the more ells are re�ned, i.e., the thresh-old value " dereases. It beomes the strongest if we perform no grid adaptationat all, i.e., " = 0, see Figures 37, 38. Hene this e�et is aused by the numeri-al disretization itself rather than by grid adaptation. These observations havebeen on�rmed by omputations with the non-adaptive 1st order ode developedin [Bar02, BH05℄.Furthermore we note that the position of the material interfae, see Figures18, 19, 21, 22, 23, 24, and the position of the shok wave, see Figures 25,26, 27, 28, 29, 30, di�er slightly between the numerial results and the exatsolution. Most signi�ant is the di�erene for the spei� volume at the materialinterfae displayed in Figure 19. This is aused by the disretization of the non-onservative transport equations for the pressure law oeÆients. In return,we note that pressure and veloity are onstant aross the material interfaeand no osillations are introdued aording to the onstrution of the upwinddisretization (25), see Figures 17 and 20.Although there are some de�ienies we want to emphasize that these e�etsare loal and an only be observed on very small sales.Inuene of thresholding, time stepping and reonstrution. Nextwe investigate the inuene of the higher order reonstrution on the numerialresults. For this purpose we performed omputations using 1st order and 2ndorder reonstrution, respetively, and ompared these with the exat solution.As we may onlude from Figures 25, 26, 27, 28, 29, 30 the shok wave is muhsharper resolved for 2nd order reonstrution. For 1st order reonstrution it issigni�antly smeared. This is important to note beause we want partiularlyto investigate the behavior of a ollapsing vapor bubble. For this purpose, it isimportant to well-resolve the dynamis inside the bubble. For the rarefationwave in the liquid the inuene of the higher order reonstrution is in generalnot as severe as for the shok wave in the vapor phase, see Figures 31, 32, 33,34, 35, 36. There are slight improvements at the edges of the rarefation fan.As already disussed above, the 2nd order reonstrution strongly improves thesolution between the rarefation wave and the material interfae, see Figure31. Furthermore we note that the higher order reonstrution also improves thesolution at the material interfae, see Figures 18, 19, 21, 22 23, 24. Here againthe pressure is exeptional, see Figure 17.Due to the strong smearing for the 1st order sheme the eÆieny of theadaptive sheme is signi�antly redued. To show this we performed severalomputations for 1st and 2nd order where we vary the threshold value ". FromTables 4 and 5 we onlude that the number of ells is always higher for the 1storder omputation. With smaller threshold value " the number of grid ells isinreasing but less strong for the 2nd order sheme. Therefore the omputationaltimes are always lower for these omputations.17



These observations hold true for global and multilevel time stepping. How-ever, omparing the results in Tables 4 and 5 we note that the omputationalosts are always less for multilevel time stepping. As has been observed in pre-vious investigations, f. [MS06℄, less numerial di�usion is introdued beausethe number of time steps is redued for the ells on oarser sales. In addition,thresholding is performed less frequently on all sales reduing the thresholderror introdued in eah grid adaptation step.From the above disussion we �nally onlude that grid adaptation, mul-tilevel time stepping and higher order reonstrution signi�antly improve theeÆieny and the auray of the solution." # ells adapt. grid# ells ref. grid Cpu adapt. shemeCpu ref. sheme1st order 2nd order 1st order 2nd order10�2 0.030 0.024 0.008 0.06010�3 0.056 0.032 0.002 0.01310�4 0.098 0.047 0.054 0.02010�5 0.133 0.072 0.075 0.03410�6 0.119 0.090 0.081 0.043Table 4: Parameter study w.r.t. threshold value and reonstrution order inase of multilevel time stepping" # ells adapt. grid# ells ref. grid Cpu adapt. shemeCpu ref. sheme1st order 2nd order 1st order 2nd order10�2 0.036 0.026 0.031 0.02510�3 0.067 0.033 0.057 0.03110�4 0.111 0.044 0.085 0.05710�5 0.140 0.055 0.103 0.04710�6 0.166 0.078 0.114 0.059Table 5: Parameter study w.r.t. threshold value and reonstrution order inase of global time stepping4.2 Planar Bubble CollapseNext we investigate the ollapse of a vapor-�lled bubble embedded in a liquidsurrounding far from the external boundary of the liquid, see Figure 7 (left).Here we on�ne to a 2D on�guration that an be onsidered a ross-setion ofthe radial ollapse of a ylindrial bubble of in�nite length. The initial states forthe pure phases are the same as for the shok tube problem, see Table 2. Theradius of the bubble is R = 0:001 [m℄. The midpoint of the bubble is loated inthe origin x = (0; 0) of the oordinate system.For the numerial simulation we employ rotational symmetry and performthe omputation only in the domain 
 = [0; 0:01℄ � [0; 0:01℄. The oarse griddisretization onsists of N0 = 25 � 25 ells. The number of re�nement levelsis L = 8. From this we infer that the (uniform) referene grid on level L is18



omposed of NL = 6400 � 6400 ells. The time step size is determined by a�xed CFL number of 0.5. Performing n = 230 maro time steps this orrespondsto a �nal time of about t = 7:26 � 10�6 [s℄. The threshold value is " = 0:001and we use the seond order reonstrution of the primitive variables %, v andp. The omputational domain is hosen 10 times larger than the bubble radiusto avoid unphysial reetions from the boundary. Sine we are not interestedin the expansion wave in the water phase we do not perform grid adaptationoutside a domain of radius larger than 0.002 [m℄. This signi�antly reduesthe number of ells in the far �eld without spoiling the auray of the waveproesses inside the vapor bubble. The omputations are performed employingmultilevel time stepping. The CPU time was about 22.22 hours on a PC withAMD proessor Opteron 250.The wave struture emanating at the phase boundary is the same as forthe shok tube problem, see Setion 4.1, i.e., a very fast rarefation wave isrunning into the water and a less fast shok wave is running into the vapor,respetively. The phase boundary is following the shok wave �rstly at low speedthat leads to a shrinking of the vapor bubble. At the same time the shrinkingis ontinuously aelerated and auses ompression waves in the bubble. Toillustrate the dynami behavior of the bubble ollapse we extrat for eah marotime step the data along the x-axis and store them in one �le. From this wethen visualize the ow along this axis in time, see Figures 39, 40, 41, 42, 43, 44.The shok wave is fousing in the bubble enter at time 2:65�10�6 [s℄ whereit is reeted. The average speed of the shok wave is about 377 [m/s℄. This isalmost the sound speed orresponding to the initial vapor data, i.e., there hasbeen no signi�ant heating of the vapor by the �rst inwards running shok. Butduring the shrinking proess temperature inreases.The reeted shok wave is running towards the phase boundary. At time4:27 � 10�6 [s℄ the shok wave is interating with the phase boundary at ra-dial position r = 0:0006 [m℄. From this we dedue an average shok speed of373 [m/s℄. Due to the high di�erene in the aousti impedane, see Table 2state L� and R, a weak shok is transmitted into the water phase whereas astronger shok wave is reeted and running bak again towards the bubbleenter f. [Hen70, Tho72℄. The bubble still ontinues shrinking.The proesses of shok fousing and reeting in the bubble enter and theinteration of the reeted shok wave with the phase boundary is repeating atleast four times. Due to the shrinking proess and ompression by the shokwaves the vapor is signi�antly heated. Finally at time 6:67�10�6 [s℄ the bubblereahes its minimal radius of about Rmin = 3:93� 10�5 [m℄. Note that due tothe �nite resolution of the disretization not all e�ets an be resolved in detail.The number of shok fousing proesses depends on the initial bubble radiusand the exterior pressure in the liquid.In Figure 39 the temporal variation of the Mah number distribution isshown. We note that the phase boundary is aelerated from subsoni speedMa=0.01, see Table 2, to supersoni speed Ma = 1.22, i.e, vvapor > 555 [m/s℄.As an be dedued from the zoom in Figures 41, 42, 43 and 44 another shok isforming at the bubble in the instant of the largest aeleration and running intothe liquid. Aording to Hanke, see [Han98℄, p. 41, this shok wave is ausedby the strong aeleration of the phase boundary whih omes at rest when thebubble reahes its smallest radius and beomes aelerated later on in outwarddiretion. 19



In Table 6 we summarize the extremal data of ertain physial quantitiesin the instant of the bubble ollapse. In many publiations onerning bubblyunits Vaporminimal radius Rmin [m℄ 3:93� 10�5maximal pressure pmax [Pa℄ 1:09� 109maximal density %max [kg/m3℄ 2:32� 103maximal temperature Tmax [K℄ 8:27� 103maximal veloity vmax [m/s℄ 2000maximal Mah number Ma [-℄ 1.22of bubble ontourTable 6: Quasi-1D Bubble Collapse: Final states after ollapse inside vaporbubbleliquids the liquid is assumed to be inompressible. At the instant of the bubbleollapse we �nd for the pressure in the liquid 1:09 � 109 [Pa℄. At these highvalues the inompressibility assumption is no longer justi�ed.Sine in our model the two phases are haraterized by the volume and massfration the phases are not stritly separated. Due to numerial dissipationintrodued by the underlying �nite volume disretization the phases will bemixing near the phase boundary ausing some numerial phase transition. Asan be depited from Figure 40 the numerial phase transition zone is small inthe bubble ollapse proess. However when the bubble starts growing again asigni�ant phase transition layer is forming. This does not our in the resultsby Hanke due to the �tting of the phase boundary.We emphasize that the above observations and onlusions are in agreementwith the results reported in [Han98℄ for the same on�guration. However therehave been di�erenes in the physial modeling and the numerial disretization.Hanke developed the �nite volume ode BUB for the spherial and ylindrialbubble ollapse based on the Navier-Stokes equations using di�erent equationsof state for the vapor phase, e.g., perfet gas, van der Waals and others, [HB98,Han98℄. The material interfae is �tted separating the liquid and vapor phase,respetively. In eah subdomain the uid equations are solved where visosityand heat ondution are taken into aount in the gas phase but negleted inthe liquid. The material interfae is numerially treated aording to [CSL96℄using front traking. Thereby mixing of the phases near the phase boundary issuppressed.To validate the 2D omputations we have performed omputations with thequasi-onedimensional ode BUB using 200 ells in the gas and 800 ells in theliquid negleting dissipative e�ets as well as surfae tension. In Figure 45 weompare the Mah number distribution for both omputations. The wave pat-tern is idential. However, the bubble ollapse is faster in our 2D omputationdue to the higher aeleration of the interfae after the �rst interation with theshok wave, f. Mamax = 1:2 (2D) and Mamax = 0:8 (BUB). This is due to thehigher resolution of the gas phase by BUB whih is �xed beause the grid inthe two phases is attahed to the interfae and the grid points are redistributedafter eah time step. For our 2D omputation the number of ells is signi�antlyredued with shrinking bubble radius. Taking this into aount the results an20



be onsidered in qualitatively good agreement.The lak of visosity and heat ondution in the present paper may signif-iantly a�et the states in the instant of shok fousing in the bubble enter.Aording to the similarity solution derived by Guderley [Gud42℄ for spheri-al ompression waves where visosity is negleted the pressure might inreaseasymptotially to in�nity. Due to the �nite resolution in the disretization thepressure will be bounded in the omputation but it will further inrease withhigher resolution. Taking into aount visosity the pressure will stay boundedeven with inreasing resolution. This has been on�rmed numerially in [Han98℄.4.3 Planar Bubble Collapse next to a Rigid WallFinally we investigate the bubble ollapse for initial onditions as in Setion 4.2,see Table 2, but next to a rigid plane wall, see Figure 7 (right), i.e., the axisof the ylindrial bubble is parallel to the rigid wall and again it is possible toonsider a plane problem. The bubble radius is R = 0:001 [m℄ and the bubbleenter is loated at x = (3R=2; 0), i.e., the distane of the bubble to the planarwall (x = 0) is d = R=2.The omputational domain is determined by 
 = [0; 0:1℄ � [�0:05; 0:05℄.The oarse grid disretization onsists of N0 = 25 � 25 ells. The number ofre�nement levels is L = 8. From this we infer that the (uniform) referenegrid on level L is omposed of NL = 6400 � 6400 ells. The time step size isdetermined by a �xed CFL number of 0.5. Performing n = 60 maro time stepsthis orresponds to a �nal time of about t = 1:81 � 10�5 [s℄. The thresholdvalue is " = 0:001 and we use the seond order reonstrution of the primitivevariables %, v and p. To avoid unphysial reetions from the boundary of theomputational domain its distane is hosen 100 times the bubble radius. Sinewe are not interested in the ow �eld far away from the wall we do not performgrid adaptation outside a radius larger than 0.002 [m℄ around the initial bubbleenter. The omputations are performed employing multilevel time steppingwith 60 maro time steps. The CPU time was about 11.5 hours on a PC withAMD proessor Opteron 250.The dynamis of the waves developing in the uid and their interationwith the wall and the bubble interfae an be dedued from the plots of thedensity gradient magnitude, see Figures 46; : : : ;51 and 52, 54; : : : ;110. Due tothe di�erent sales involved in the liquid and in the vapor these have to be saledlogarithmially to show them simultaneously in one piture, i.e., we presentlog(1 + jr%j) where the density gradient magnitude is shifted by 1 to aountfor vanishing gradients. Due to the waves and their interations the uid isaelerated. This highly dynami proess is visualized by integral urves of theveloity shown in Figures 53, 55; : : : ;111 orresponding to the same times as forthe density gradient magnitude. The �gures for both quantities are superposedwith ontour lines of the vapor fration to see how the phase interfae is a�etedby the wave interation proess.First of all, we fous on the waves in the liquid, see Figures 46; : : : ;51. Inthe early stage of the omputation the wave struture developing at the phaseboundary is the same as for the bubble ollapse, see Setion 4.2. An expansionwave R1 is running into the liquid, see Figure 46. Sine the bubble is loatednext to a rigid wall the expansion wave R1 is reeted as an expansion wave R2at the wall, see Figure 47. Due to the strong expansion the liquid behind the21



wave R2 the pressure drops below zero and a avitation is forming. The reetedexpansion wave R2 again is reeted at the phase boundary, see Figure 48. Dueto the low aousti impedane in the gas and the high aousti impedane inthe liquid, see [Hen70, Tho72℄, the reeted wave is a ompression wave, i.e.,the phase is inverted. This proedure of reetion at the wall and at the phaseboundary is ontinued, see Figures 49; : : : ;51 where the phase is maintained atthe wall but is inverted at the bubble.To see the e�et of the reeted expansion and ompression waves on thevapor phase inside the bubble we zoom into the vapor bubble, see Figures52; : : : ;111. In the beginning, there is only a shok wave S running towardsthe bubble enter, see Figure 52. When the reeted expansion wave R2 is in-terating with the phase boundary, see Figure 54, then it is partially reetedinto the liquid as disussed before and partially transmitted into the vaporphase, see R3 and T1 in Figure 56. We note that the waves are running fasterin the liquid than in the vapor due to the higher sound speed in the liquid. Dueto the urvature of the bubble ontour, the transmitted waves in the vapor aredefrated, see Figures 56, 58; : : : ;68. Therefore the transmitted waves, see forinstane T1 in Figures 56, 58; : : : ;74, have the shape of a onvex lens �xed atthe phase boundary, see Figures 58 and 60. With inreasing time the urva-ture of the lens beomes stronger, see Figures 62, 64; : : : ;68, and, �nally, thelens loses to a irle, see Figure 70. The now irular wave fouses inside thebubble at the symmetry line and is reeted, see Figures 72 and 74. Note thatby the transmitted waves the distribution inside the bubble beomes stronglyheterogeneous resulting in a pressure gradient of low pressure left to the bubbleenter and high pressure to the right.Simultaneously, the shok wave S is fousing in the bubble enter, see Figure66, and is reeted there. The reeted shok wave RS1 is running in outwarddiretion towards the bubble interfae, see Figures 68, 70; 72, 74. The shokwave is interating with the transmitted waves. Sine in the vapor the di�ereneof the aousti impedane is small these waves are transmitting without ausingreetion waves. Due to the defration of the expansion and ompression wavesthe initially irular shok front attens at the top and the bottom side andbeomes wavy, see Figure 74. The reeted shok wave RS1 is interating withthe bubble interfae. Due to the high di�erene in the aousti impedane inthe two phases it is being reeted there and running inwards again, see RS2 inFigures 76 and 78. This shok wave fouses and is reeted again as shok waveRS3, see Figure 80. This proess of shok fousing and shok reetion at thephase boundary is ontinued. The details of this proess an not be presentedhere.Due to the wave proesses in the liquid and in the vapor the ow �eld isaelerated. The dynamis of the aeleration an be depited from the integralurves of the veloity presented in Figures 53, 55; : : : ;111. Starting from a owat rest the ow �eld is aelerated towards the bubble enter when the expansionwave R1 and the shok wave S pass, see Figure 53. The veloity �eld is rotationalsymmetri as long as the expansion wave R1 has not been reeted at the wall.The reetion of wave R1 leads to a distortion of the symmetry. Behind thereeted expansion wave R2 a low pressure regime develops that extends withinreasing time into the far �eld. Therefore, the liquid is aelerated in thediretion of the symmetry line and near the wall it is moving almost parallel tothe wall. At the symmetry line the liquid is then deeted and direted towards22



the vapor bubble, see Figures 55, 57; : : : ;89. While the ow is deeted nearthe wall, the ow away from the wall is direted towards the bubble enter, seeFigures 55, 57; : : : ;61. Inside the bubble the vapor is no longer moving towardsthe bubble enter when the transmitted waves, see for instane T1, pass butis deeted towards the symmetry line. When the shok wave S fouses inthe bubble enter, see Figure 67, it is reeted there and the ow behind thereeted shok wave RS1 is now aelerated in outward diretion, see Figures69, 71, 73, 75. However, this aeleration is not suÆient to revert the owdiretion due to the underlying veloity �eld aused by the inward runningshok S and due to the pressure gradient aused by the transmitted expansionwaves as disussed above. Therefore the vapor in the right part of the bubble isstill moving inwards. On the other hand, behind the transmitted waves, see forinstane T1, the vapor is aelerated towards the bubble enter, see Figures 65and 67. Due to the strong aeleration of the vapor behind the reeted shokwave RS1, the vapor behind the transmitted waves is repelled, see Figures 69,71, 73, 75. A front is forming where the vapor from both sides is deetedtowards the symmetry line where the integral urves of the veloity oinide ina stagnation point. Sine the vapor is stronger aelerated at the right side ofthe deetion front than at the left side, the stagnation point is moving towardsthe wall, see Figures 77, 79, 81, 83, 85. Due to the ongoing proess of shokwave fousing in the bubble and shok reetion at the phase boundary, theunderlying ow �eld is further aelerated without hanging the overall owdiretion in the regions left and right from the deetion front. However, theow attahed to this front hanges its diretion. In the beginning, the attahedow is direted towards the stagnation point, see Figures 71, 73; : : : ;83, whereasit is moving away from the stagnation point in outward diretion at some latertime, see Figure 85. Sine the vapor is stronger aelerated to the right of thedeetion front than to the left, a veloity gradient develops aross the front.Due to this veloity gradient two vorties are forming inside the vapor bubbleabove and below the symmetry line, rotating lokwise and ounter-lokwise,respetively, see Figures 83, 85, 87, 89, 91. The rotation of the vorties ausesthe vapor to onentrate in the enter of the vorties. This results in a highompression of the vapor. In the ore of the vorties we ompute a pressureof about 300 [bar℄, a density of about 250 [kg/m3℄ and a temperature of about600 [K℄. When the vapor mass is onentrating in the ore of the vorties, thevapor bubble splits into two parts and a liquid jet is forming, see Figures 91,93, 95, 97, 99. This jet is direted towards the wall due to the lokwise andounter-lokwise rotation of the vorties above and below the symmetry line,respetively, see Figure 93. The two vapor bubbles ause a bottlenek for theliquid due to the high density of the vapor. Therefore the liquid is aeleratedtowards the wall through this ori�e, see Figures 113, 115; : : : ;123. The maximalspeed of about 900 [m/s℄ is reahed at time t = 9:07� 10�6 [s℄, see Figure 119,at the symmetry line between the two vorties. This value orresponds to aMah number of 1.6. At this instant, the vapor is at rest in the enter of thevorties whereas the veloity is about 300 [m/s℄ direted away from the wall atthe farest point of the bubble ontours from the symmetry line.When the liquid is aelerated through the ori�e the pressure is inreasingbefore the bottlenek resulting in a high pressure region of about 2400 [bar℄, seeFigure 116. Sine the liquid is expanding behind the ori�e the high pressureregion is squeezed through this bottlenek and shot like a projetile towards the23



wall where it hits with high pressure that is about 5 times that of the undisturbedliquid, see Figures 116, 118, 120, 122. The impat of the high pressure might bethe ause of material damage as has been observed in experiments, f. [PL98,BNSV01a, BNSV01b℄.When the liquid jet hits the wall another stage in the bubble ollapse begins.The water supplied by the jet is deeted to both sides of the symmetry axis dueto the resistane of the wall. Sine this liquid is moving at higher speed than theliquid supplied from the undisturbed ow, it represses the latter, see Figures 93,95, 97, 99. Beause of this proess the two vorties and attahed to these thevapor bubbles start to move towards the wall where they are deeted in upwardand downward diretion, see Figures 101, 103; : : : ;111. If the high temperaturevapor bubbles would ome into ontat to the wall it might ause some materialdamage. However, in our omputations the vapor bubbles are surrounded by aphase transition zone where the temperature is dereasing signi�antly.We onlude the numerial investigation by some omments on the phaseinterfae. Due to the sti�ened gas model, the phase boundary is not neessarilya sharp disontinuity but may beome di�usive. In the beginning, the interfaeis slightly aelerated by the shok wave S resulting in a slow shrinking proessof the vapor bubble, see Figures 52, 54; : : : ;74. When the shok wave RS2 isreeted at the phase interfae, the phase boundary is signi�antly aelerated,see Figures 76, 78, 80. Due to the inertia of the liquid a phase transition zonedevelops �lled with a mixture of gas and liquid, see Figures 82, 84; : : : ;110. Bythe vorties forming inside the vapor bubble, the pure vapor is transported tothe ore of these vorties. In Figures 84 and 86 we see that the vapor frationontour orresponding to pure vapor starts bulging and is �nally penetrated bythe vapor-liquid mixture, see Figures 90 and 92. In the end, only two bubbles�lled with pure vapor remain, see Figures 94, 96; : : : ;110.5 ConlusionThe sti�ened gas model of Saurel and Abgrall [SA99℄ has been suessfullyextended to a higher order sheme on loally re�ned grids. Multisale-basedgrid adaptation tehniques [M�ul02, CKMP03℄ have been employed to improvethe eÆieny of the sheme. This allows for a loally high resolution thatis needed to resolve aurately the loal physial e�ets in the bubble ollapseproess. Sine this proess is highly dynamial the time disretization is expliit.Therefore the CFL ondition is very restritive beause of the small ells sittingon the high re�nement levels. For the ells on the oarser disretization levelswe use a multilevel time stepping strategy that allows for larger time stepson oarser sales. This has been reently developed in ombination with themultisale-grid adaptation, f. [MS06, LMS05, LMMS06℄. This strategy had tobe modi�ed taking into aount the non-onservative upwind disretization ofthe evolution equations for the material parameters.The auray and the eÆieny of the resulting adaptive sheme has beenvalidated by means of a two-phase Riemann problem. It turned out that theauray is signi�antly improved by the 2nd order reonstrution in ompari-son with the original sheme of Saurel and Abgrall that is of 1st order only. Inaddition, the CPU time as well as the memory resoures are tremendously re-dued beause of the grid adaptation and the multilevel time stepping strategy.24



However, the non-onservative disretization of the evolution equations for thematerial parameters results in some slight deviation of the shok position fromthe exat position. Moreover, an additional temperature jump an be observedin the numerially smeared ontat disontinuity. For invisid omputations,this has no e�et on the omputation. But for omputations inluding visos-ity it might beome signi�ant in ase the visosity oeÆient is temperaturedependent.The sheme has then been applied to investigate the ollapse of a free planarvapor bubble at low pressure and density surrounded by water at high densityand pressure. A shok wave is running inside the vapor bubble between bubbleenter and phase boundary where it is fousing and reeted several times. Bythis proess the gas undergoes a strong ompression resulting in a signi�antheating. The phase boundary is aelerated towards the bubble enter where itollapses and reahes a minimal radius that is about 25 times smaller than theoriginal bubble radius. In the instant of the ollapse a shok wave is runninginto the water that results in a signi�ant ompression of the liquid. At thesehigh values the inompressibility assumption is no longer justi�ed. Due to theompression inside the bubble, density, pressure and temperature inrease byseveral orders of magnitude. For more realisti values the gas should be modeledby a real gas equation of state rather than the perfet gas law. We emphasizethat these observations and onlusions are in agreement with the results re-ported in [Han98, HB98℄ for the same on�guration but performing quasi-1Domputations exploiting spherial symmetry.Finally we investigate the bubble ollapse next to a rigid wall. The dynamisof the resulting ow �eld an be separated into three stages. In a �rst stage, alow pressure regime is developing between the wall and the vapor bubble. Thisis aused by expansion and ompression waves running between the wall andthe bubble where they are reeted. Due to the low aousti impedane in thegas and the high aousti impedane in the liquid, the phase is inverted whenthe wave is reeted at the bubble ontour but it remains unhanged when it isreeted at the wall. At the same time, a shok wave is running inside the bubbletowards the bubble enter. Due to transmitted expansion and ompressionwaves at the interfae, the pressure distribution beomes asymmetri also insidethe bubble. When the shok wave fouses in the bubble enter a seond stagestarts where a liquid jet is forming that penetrates the bubble at the symmetryline and is direted towards the wall. This proess is aused by the formation oftwo vorties inside the vapor bubble by whih the vapor is onentrating in twoalmost rotational symmetri vapor bubbles above and below the symmetry axis.The small distane between the two vorties auses a bottlenek for the liquidwhih ats as a nozzle where the liquid is signi�antly aelerated. In front ofthis bottlenek a high pressure zone is forming in the liquid where the pressureis about 5 times higher than in the undisturbed liquid. This high pressure liquidis then squeezing through the bottlenek and direted towards the wall whereit hits with high pressure. The impat of the high pressure might be the auseof material damage. But this analysis requires onsidering of the oupled uid-struture problem with the appropriate modeling of elasti-plasti stress wavesin the solid wall, see [Di97, Spe00℄. When the jet hits the wall, the third stageof the ow proess starts. The liquid supplied by the jet is deeted at the wallto both sides of the symmetry axis and pushes away the water supplied fromthe free stream from above and below. In the wake of the jet the system of the25
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