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Numeri
al Simulation of Cavitation Bubbles byCompressible Two-Phase Fluids �Siegfried M�ullery, Philippe Helluyz, Josef BallmannxFebruary 14, 2007Abstra
tThe present work deals with the numeri
al investigation of 
ollapsing
avitation bubbles in 
ompressible 
uids. Here the 
uid of a two-phasevapor-liquid mixture is modeled by a single 
ompressible medium. This is
hara
terized by the sti�ened gas law using di�erent material parametersfor the two phases.For the dis
retization of the sti�ened gas model the approa
h of Ab-grall and Saurel is employed where the 
ow equations, here the Eulerequations, for the 
onserved quantities are approximated by a �nite vol-ume s
heme and an upwind dis
retization is used for the non-
onservativetransport equations of the pressure law 
oeÆ
ients. The original 1st or-der dis
retization is extended to higher order applying 2nd order ENOre
onstru
tion to the primitive variables. The derivation of the non-
onservative upwind dis
retization for the phase indi
ator, here the gasfra
tion, is presented for arbitrary unstru
tured grids.The eÆ
ien
y of the numeri
al s
heme is signi�
antly improved byemploying lo
al grid adaptation. For this purpose multis
ale-based gridadaptation is used in 
ombination with a multilevel time stepping strategyto avoid small time steps for 
oarse 
ells. The resulting numeri
al s
hemeis then applied to the numeri
al investigation of the 
ollapse of a vaporbubble in a free 
ow �eld and near to a rigid wall.Contents1 Introdu
tion 22 Mathemati
al Model 5�This work has been performed with funding by the Deuts
he Fors
hungsgemeins
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tionThe formation of vapor bubbles in a liquid is 
alled 
avitation. The bubblesmay grow or 
ollapse. Lord Rayleigh dis
overed that pressure waves emittedduring pro
esses of 
avitation [Ray17℄ may damage solids, e.g., ship propellers.However, the me
hanisms 
ausing the damage of the solid are far from being
ompletely understood.Cavitation is indu
ed by a pressure drop in the liquid below vapor pressure.Su
h a pressure de
rease may o

ur due to lo
al a

eleration of the liquid 
ow
aused by geometri
al 
onstraints, e.g., if the liquid 
ows through a narrowori�
e or around an obsta
le. In this 
ase, the pressure drops below vaporpressure, the liquid bursts and 
reates a free surfa
e �lled with gas and vapor{ the bubble. Due to 
hanges in the 
ow �eld, the pressure in the liquid mayin
rease again 
ausing the bubble to 
ollapse. The 
ollapse is a

ompanied bystrong sho
k and rarefa
tion waves running into the bubble and the surroundingliquid. The inwards running sho
k wave fo
uses in the 
enter of the bubble. Thisleads to extreme physi
al states in the interior. In addition, the shrinking of thebubble leads to a strong 
ompression of the vapor. Both e�e
ts evoke an in
reaseof pressure whi
h bulges the bubble. Hereby, a dynami
 os
illation pro
ess isinitiated whi
h �nally leads to the 
ollapse of the bubble. If the 
ollapse takespla
e next to a boundary, 
ow and pressure �elds be
ome asymmetri
 and aliquid jet develops whi
h is either dire
ted towards or away from the boundary,depending on its 
omplian
e.The investigation of the dynami
s of 
avitation bubbles is of spe
ial interestin di�erent real world appli
ations arising, for instan
e, in engineering, medi
alappli
ations and biology su
h as (i) 
avitation erosion of under water stru
tures,see [NE61, BE66, PL98℄, (ii) lithotripsy and sonoporation, see [OI03, OW03℄,and (iii) 
avitation{enhan
ed ablation of materials e.g. biologi
al tissues, see[BNSV01a, BNSV01b, OW03℄. In this regard, the investigation of 
avitation
an be helpful (i) to improve the resistibility of under water stru
tures su
h as2



ship propellers and ship walls against strong pressure waves and (ii) to optimizemedi
al laser or lithotripter appli
ations with regard to 
ollateral damage tosensitive tissue stru
tures in the vi
inity of the laser fo
us or to its sonoporation
apabilities for drug delivery.The pro
esses taking pla
e in the interior and exterior of the 
ollapsing andos
illating bubble and the predi
tion of onset and extent of 
avitation damageare still subje
t of theoreti
al and experimental resear
h. However, small timeand spa
e s
ales as well as the 
ompli
ated dynami
s make any theoreti
al andexperimental approa
h a 
hallenge. Therefore, advan
ed numeri
al investiga-tions are needed to reveal further information about the highly unsteady 
owdynami
s in the 
uid.Here we will fo
us on the modeling and numeri
al simulation of the 
ollapseof a single bubble in a nonstationary, invis
id 
ompressible two{phase 
ow.In 
ase of spheri
al symmetry this has been studied by Westenberger [Wes87℄.There the Euler equations for 
ompressible liquids (Tait equation of state) anda homogenized bubbly 
uid, respe
tively, have been 
onsidered. Investigationsveri�ed that the 
uid state inside the bubble does not stay homogeneous duringthe 
ollapse. Moreover, sho
k waves develop if the smallest bubble radius is al-most obtained or the bubble growth just started again. These wave phenomenao

ur preferably in the liquid but they also 
an develop inside the bubble andthere they intera
t with the phase boundary due to the small radius. Thereby,the frequently made assumption of in
ompressibility of the liquid and the ho-mogeneity of the vapor are quali�ed as inappropriate. In order to validate theextreme states that may o

ur due to fo
using e�e
ts in liquids as well as in va-por an expli
it �nite volume method for the spheri
al bubble 
ollapse has beendeveloped based on the Navier-Stokes equations using di�erent equations ofstate, e.g., van der Waals and others, [HB98, Han98℄. It 
ould be veri�ed thatthe modeling of the bubble inside by a perfe
t gas is only valid at moderate
hanges in volume.For the numeri
al simulation of two{phase immis
ible 
ows in 
ompressible
uids, it is distinguished in the literature between the Lagrangian and the Eu-lerian approa
h. In the Lagrangian framework the interfa
e is typi
ally tra
kedduring the time evolution. There are mainly three types of te
hniques: (i) par-ti
le methods, e.g., Smooth Parti
le Hydrodynami
s, where the movement ofparti
les is simulated, 
f. [Mon94, DGP98℄, (ii) front tra
king methods wherethe underlying dis
retization undergoes a deformation due to the movement ofthe interfa
e, 
f. [Hym86, CGM+86, KP91, Di
97℄, and (iii) marker methods,e.g., Marker and Cells [WHSD℄, Volume of Fluid [HN79℄, where the dis
retiza-tion is �xed. Typi
ally diÆ
ulties arise if the interfa
e 
hanges topologi
ally orbe
omes 
ompli
ated. To over
ome this diÆ
ulty te
hniques have been devel-oped based on an Eulerian formulation wherby the interfa
e is 
aptured. Todistinguish the two 
uid phases in this formulation the underlying equationsof motion are supplemented with an additional s
alar equation approximatingthe position of the interfa
e, for instan
e, a 
olor fun
tion [BKZ92℄ or a levelset fun
tion [OF01, Set96℄. For in
ompressible two{phase 
uid 
ow this hasbeen applied with great su

ess, see [SSO94, SAB+99℄. In 
ase of 
ompress-ible two{phase 
ow, diÆ
ulties arise at the phase boundary 
aused by pressureos
illations in the numeri
al simulation. In order to suppress these pressureos
illations, di�erent approa
hes have been 
onsidered in the literature. Ab-grall et al. proposed a quasi-
onservative formulation [Abg96, SA99, AK01a℄.3



Another approa
h, the ghost 
uid method, has been developed by Fedkiw etal. [FAMO99, FAX01℄. A modi�
ation of their ansatz has been introdu
ed byAbgrall and Karni [AK01a, AK01b℄ based on a two-
ux method. Re
ently, Suss-man [Sus03℄ suggested a di�erent strategy for 
omputing growth and 
ollapseof vapor bubbles where a level set method is 
oupled with a volume-of-
uidmethod. However, the liquid is assumed to be in
ompressible. These methodsturn out to give good results in 
ase of wave pro
esses in 
ows of two immis
ible
ompressible gases. For instan
e, in [ABM05, And06℄ the two-
ux method issu

essfully used in 
ombination with a level set method to investigate waveintera
tions with gas-gas interfa
es. However, these methods in general fail for
ompressible liquid-gas 
ow. In the Eulerian approa
h the material interfa
eis 
aptured rather than tra
ked. Therefore the two phases undergo a numer-i
al phase transition due to the smearing of the material interfa
e. Sin
e thepressure laws for liquids and gases typi
ally are not valid in the same regimeof phase spa
e the numeri
al mixture of the phases leads to non-physi
al val-ues in the numeri
al phase transition regime. This typi
ally 
auses the 
rashof the 
omputation. Among the aforementioned approa
hes, the sti�ened gasapproa
h of Saurel and Abgrall [SA99℄ seems to be presently the only methodthat is 
apable to deal with 
ompressible liquid-gas 
ow.In addition to an adequate mathemati
al model highly eÆ
ient numeri
alalgorithms are required, whi
h allow for a high resolution of the waves pro-du
ed by the bubble os
illation and their intera
tion and provide qualitativeand quantitative results on the dynami
s of these waves. In re
ent years, anew adaptive 
on
ept for �nite volume s
hemes has been developed based onmultis
ale te
hniques. First work in this regard has been published by Harten[Har94, Har95℄ where by means of a multis
ale sequen
e the 
ux evaluation isperformed. This results in a hybrid s
heme working on a uniform grid. Re
ently,a fully adaptive 
on
ept for multis
ale �nite volume s
hemes has been developedand investigated [M�ul02, CKMP03℄. This new 
on
ept turns out to be highlyeÆ
ient and reliable. By now, the new adaptive multiresolution 
on
ept hasbeen applied with great su

ess to di�erent appli
ations, e.g., 2D/3D{steadyand unsteady 
omputations of 
ompressible 
uids about airfoils modeled by theEuler and Navier{Stokes equations, respe
tively, on blo
k{stru
tured 
urvilin-ear grid pat
hes [BLM04℄, ba
kward{fa
ing step on 2D triangulations [CKP01℄and simulation of a 
ame ball modeled by rea
tion{di�usion equations on 3DCartesian grids [RS02, RSTB03℄. These appli
ations have been performed for
ompressible single-phase 
uids. More re
ently, this 
on
ept has been extendedto two-phase 
uid 
ow of 
ompressible gases, and applied to the investigation ofnon{stationary sho
k{bubble intera
tions on 2D Cartesian grids for the Eulerequations [ABM05, And06℄.In the present work the fo
us is on the numeri
al investigation of 
ollapsingvapor bubbles in 
ompressible 
uids. Here the 
uid of a two-phase vapor-liquidmixture is modeled by a single 
ompressible medium. For the two phases weemploy the sti�ened gas law with di�erent material parameters for the twophases, see Se
tion 2. In Se
tion 3 the sti�ened gas model is dis
retized bythe approa
h of Saurel and Abgrall [SA99℄ where the 
ow equations for the
onserved quantities are approximated by a �nite volume s
heme and an up-wind dis
retization is used for the non-
onservative transport equations of thephase indi
ator (gas fra
tion). The eÆ
ien
y of the resulting s
heme is im-proved by applying multis
ale-based grid adaptation te
hniques. Note that the4



dis
retization is presented in the multi-dimensional 
ase on arbitrary grids wherewe employ a higher order re
onstru
tion for the primitive variables. Due to thenonstationary behavior of the 
ow time integration is performed expli
itly. TheCFL 
ondition of the highest resolution level is lo
ally relaxed by employingthe re
ent multilevel time stepping strategy, 
f. [MS06, LMS05, LMMS06℄. Theresulting numeri
al s
heme is then applied to the numeri
al investigation of the
ollapse of a vapor bubble, see Se
tion 4.2 Mathemati
al ModelCompressible 
uid 
ow is 
hara
terized in 
ontinuum me
hani
s by the �eldsof density %, velo
ity v, internal energy e and pressure p distributions. Thebalan
es of mass, momentum and energy for invis
id 
ow lead to the Eulerequations in 
onservation form%t + div(%v) = 0;(%v)t + div(%v 
 v + pI) = 0;(%E)t + div(%v(E + p=%)) = 0; (1)where E = e + 0:5v2 is the total energy. In order to take into a

ount thetwo di�erent 
uids (a gas and a liquid) we introdu
e a new unknown ' thatwe 
all the fra
tion of gas. We make the 
onvention that ' = 0 and ' = 1
orrespond to pure liquid and vapor, respe
tively. Be
ause we are interestedin very high speed 
ows and very short observation times we suppose that thephase transition 
an be negle
ted so that there is no mass transfer between thetwo 
uids. Thus the fra
tion satis�es a homogeneous transport equation, i.e.,its material derivative is vanishing,'t + v � r' = 0: (2)If at the initial time t = 0 the fra
tion ' takes only the values 1 or 0, it willremain true for t > 0. Thus there is no physi
al mixing in the 
ontinuous model.However, the numeri
al model will introdu
e arti�
ial mixture zones where 0 <' < 1. This 
auses some diÆ
ulties that are dis
ussed below. Anyway, with agood numeri
al approximation, the size of the mixture region will tend to zerowith the size of the 
ells in the mesh.Using the mass 
onservation law, equation (2) 
an be written in an equivalent
onservative form (%')t + div(%'v) = 0; (3)whi
h expresses the mass 
onservation of ea
h 
uid.In order to 
lose the system, we have to provide a pressure lawp = p(%; e; '): (4)In this work, we 
onsider a relatively simple pressure law: the sti�ened gaspressure law suggested in [CS97℄ and [Abg96℄. It readsp(%; e; ') = (
(')� 1)%e� 
(')�('): (5)If we were only studying the 
ontinuous model, it would be suÆ
ient to pro-vide the values of the pressure law 
oeÆ
ients 
 and � for ' = 0 or ' = 1.5



But be
ause of the numeri
al mixture, it is ne
essary to interpolate 
 and �for 0 < ' < 1. An arbitrary 
hoi
e of interpolation would lead to numeri
aldiÆ
ulties that are studied in many works [Abg96℄, [BHR03℄, [GHS03℄, et
. and
ommented below.It appears that a good 
hoi
e 
onsists in a linear interpolation of the twospe
ial quantities �1 and �2 de�ned by8><>:�1 = 1
 � 1�2 = 
�
 � 1 , 8>><>>: 
 = 1 + 1�1� = �21 + �1 : (6)The pressure law in the numeri
al mixture zone is then 
onstru
ted as fol-lows. First, 
 and � are dedu
ed from measurements in the pure 
uids. Apossible pro
edure is explained in [CS97℄. For water and air the material 
oef-�
ients for the pure phases are listed in Table 1. This gives 
(0), �(0) for thepure liquid and 
(1), �(1) for the pure vapor. We dedu
e then from (6) thequantities �1(0), �2(0), �1(1), �2(1) and, by a linear interpolation�1(') = '�1(1) + (1� ')�1(0);�2(') = '�2(1) + (1� ')�2(0): (7)The mixture pressure law 
oeÆ
ients 
(') and �(') are then obtained from thereverse relation in (6). Vapor (Air) Liquid (Water)
 [-℄ 1.4 7.15� [Pa℄ 0 3.e+8
v [J/kg K℄ 717.5 201.1Table 1: Material 
oeÆ
ientsTo the sti�ened gas pressure law (5) we 
an asso
iate a temperature s
aleT . The temperature s
ale is 
ompatible with thermodynami
s if it is possibleto �nd an entropy fun
tion s su
h thatTds = de+ pd(1=%): (8)Several 
hoi
es are possible. The simplest 
orresponds to
vT = e� �% ; (9)where the 
onstant 
v is the spe
i�
 heat at 
onstant volume, 
f. [BH05℄. Thetemperature law has no physi
al meaning in the arti�
ial mixture region be
auseour mixture pressure law has been sele
ted for numeri
al reasons and not fromphysi
al arguments. Sin
e 
 = 1 +R=
v holds in the pure phases, interpolatedvalues for the heat 
apa
ity 
v and the spe
i�
 gas 
onstant R in the mixtureregion are 
omputed by
v(') = 
v(0) 
v(1)(
(1)� 
(0))
v(0)(
(')� 
(0)) + 
v(1)(
(1)� 
(')) ;R(') = 
v(1)R(0)(
(1)� 
(')) + 
v(0)R(1)(
(') � 
(0))
v(0)(
(')� 
(0)) + 
v(1)(
(1)� 
(')) :6



These interpolated values have no 
lear physi
al meaning but will be used for anumeri
al study of the temperature in the mixture region. They are motivatedby [BH05℄.Finally, we remark that instead of (2) we might equivalently solve the evo-lution equations for the material parameters � = (�1; �2), whi
h have vanishingmaterial derivatives as they depend only on ' a

ording to eq. (7)�t + v � r� = 0: (10)3 Numeri
al Dis
retizationThe numeri
al dis
retization of 
ompressible two-phase 
uid 
ow is still a 
hal-lenge. The naive approa
h to apply a standard �nite volume dis
retization tothe 
oupled system in 
onservation form (1) and (3) fails to work be
ause ofpressure os
illations at the material interfa
e. Cures have been proposed inre
ent years [Kar94℄, [FAMO99℄, [Abg88℄, [SA99℄, [WK05℄. They are based onnon-
onservative s
hemes and are su

essful for gas-gas interfa
es. For liquid-gas interfa
es the 
omputations will typi
ally 
rash after a few time steps. Onetypi
ally observes severe pressure os
illations at the phase interfa
e due to thenumeri
al di�usion of the density. For the sti�ened gas model as summarizedin Se
tion 2 the approa
h of Saurel and Abgrall [SA99℄ is working robustlyalso for liquid-gas interfa
es. The basi
 idea is to apply a �nite volume s
hemeto the 
ow equations (1) and to employ an upwind dis
retization of the non-
onservative transport equations for the pressure law 
oeÆ
ients (10). Here wesummarize the dis
retization in the multi-dimensional 
ase on arbitrary gridswhere we employ a higher order re
onstru
tion for the 
onserved variables. TheeÆ
ien
y of the resulting s
heme is improved by applying re
entmultis
ale-basedgrid adaptation te
hniques and a multilevel time stepping strategy.3.1 Finite Volume Dis
retization of Conserved VariablesThe Euler equations (1) are solved approximately by a �nite volume method.For this purpose the �nite 
uid domain 
 � Rd is split into a �nite set ofsubdomains, the 
ells Vi, su
h that all Vi are disjoint at ea
h instant of timeand that their union gives 
. Furthermore let N (i) be the set of 
ells that havea 
ommon edge with the 
ell i, and for j 2 N (i) let �ij := �Vi \ �Vj be theinterfa
e between the 
ells i and j and nij the outer normal of �ij 
orrespondingto 
ell i. The time interval is dis
retized by tn+1 = tn+� t assuming a 
onstanttime step size. On this parti
ular dis
retization the �nite volume s
heme 
anbe written as un+1i = uni � � tjVij Xj2N (i) j�ij jF (unij ;unji;nij) (11)using an expli
it time dis
retization to 
ompute the approximated 
ell averagesun+1i of the 
onserved variables u = (%; %v; %E) on the new time level. Herethe numeri
al 
ux fun
tion F (u;w;n) is an approximation for the 
uxf(u;n) := 0� %v%v 
 v + p I%v (E + p=%) 1A � n = 0� % vn% vn v + pn% vn (E + p=%) 1A (12)7



in outer normal dire
tion nij on the edge �ij . Here vn = v n is the normalvelo
ity 
omponent. The numeri
al 
ux is assumed to be 
onsistent, i.e.,F (u;u;n) := f (u;n): (13)For simpli
ity of presentation we negle
t that due to higher order re
onstru
tionof the values unij and unji at the 
ell interfa
e �ij it usually depends on anenlarged sten
il of 
ell averages. Furthermore, the pressure law is applied when
omputing the numeri
al 
ux. Therefore it also depends on the fra
tion ve
torY or the ve
tor of pressure law 
oeÆ
ients �, respe
tively, asso
iated to thestates unij and unji.Sin
e a reasonable numeri
al method should at least be able to maintaina 
onstant 
ow �eld, i.e., if u(x; t) = u1 for all (x; t), we require that thenumeri
al solution ful�lls uni = u1 for all index pairs (i; n), too. From the
onsisten
y of the numeri
al 
uxes (13) and the dis
retizations (11) we thenobtain for ea
h 
ell Vi the geometri
 
onsisten
y 
onditionXj2N(i) j�ij jnij = 0: (14)In order to �x the numeri
al 
ux we have to 
hoose the Riemann solver andthe re
onstru
tion method. A

ording to Saurel and Abgrall [SA99℄ these haveto be 
hosen su
h that a moving 
onta
t dis
ontinuity is preserved in one spatialdimension. In higher dimensions we therefore require that the 
onditionvni = v = 
onst; pni = p = 
onst =) vn+1i = v; pn+1i = p (15)holds for all 
ells i in the 
omputational domain, i.e., 
onstant pressure andvelo
ity �elds are preserved. Note that this 
ondition 
hara
terizes a 
onta
tdis
ontinuity only in 1D. In higher dimensions the s
heme does not ne
essarilypreserve the normal velo
ity if there is a jump in the tangential 
omponent ofthe velo
ity.For this purpose, in our 
omputations the Riemann problem at the 
ellinterfa
e is solved exa
tly by the Riemann solver of Colella and Glaz [CG85℄originally developed for real gases. Here we apply it to sti�ened gases where wemodify the implementation of the solver as des
ribed in [M�ul93℄.Furthermore, we use a higher order re
onstru
tion whi
h is applied 
ompo-nentwise to the primitive variables (%;v; p;�). The re
onstru
tion of 
onservedvariables or 
hara
teristi
 variables violates the 
onsisten
y 
ondition (15) andwill 
ause os
illations at the material interfa
e.In our 
omputations the underlying dis
retization is always a hierar
hy ofCartesian grids. Therefore we employ a quasi one-dimensional se
ond-orderENO re
onstru
tion and Taylor expansion a

ording to [HEOC87℄ to improveboth the spatial and temporal a

ura
y. See also [M�ul93℄ for details on theimplementation.3.2 Upwind Dis
retization of Non-Conservative TransportEquations for Pressure Law CoeÆ
ientsBy (11) the 
onserved quantities 
an be evolved time. In addition, we also haveto update the fra
tions before we 
an pro
eed with the next time step. However8



dis
retizing the evolution equations (2) or (3), respe
tively, will lead to os
il-lations at the material interfa
e and spoils the 
omputation. Therefore Saureland Abgrall in [SA99℄ suggested to use an upwind dis
retization of the non-
onservative transport equations (10) for the ve
tor of pressure law 
oeÆ
ients.This is motivated by the requirement that the s
heme has to preserve a 
onta
twave for whi
h the tangential 
omponent of the velo
ity is 
ontinuous in thesense of (15). A detailed derivation of the dis
retization in 1D 
an be foundin [Bar02℄. This 
an be extended to the multi-dimensional 
ase on arbitrarygrids as shall be summarized in the following. For this purpose, we assume thatvni = v and pni = p holds for all 
ells i. Sin
e the re
onstru
tion is performedon the primitive variables we obtain pnij = pnji = p and vnij = vnji = v whereasthe re
onstru
tion of the density % and the material parameters � may jumpa
ross the 
ell interfa
e, i.e., %nij 6= %nji and �nij 6= �nji. Then the numeri
al 
ux
omputed by the exa
t Riemann solver is determined byF (unij ;unji;nij) = 0� %ij vn;ij%ij vn;ij v + pnij%ij vn;ij (Eij + p=%ij) 1A (16)where %ij , vn;ij and Eij are the density, normal velo
ity and total energy 
om-puted by the Riemann solver. Sin
e the underlying velo
ity �eld is homogeneousvn;ij = v nij (17)holds. The material parameters jump only a
ross the material interfa
e, i.e.,vn;ij �ij = �nij max(vn;ij ; 0) + �nji min(vn;ij ; 0): (18)We now plug in (16) into (11). Then we obtain for the dis
rete 
ontinuityequation %n+1i = %ni � � tjVij Xj2N (i) j�ij j %ij vn;ij : (19)The dis
rete momentum equation reads(%v)n+1i = (%v)ni � � tjVij Xj2N (i) j�ij j (%ij vn;ij v + pnij): (20)From (19) and (14) we then 
on
lude (%v)n+1i = v %n+1i and, hen
e, vn+1i = v.Finally, the dis
rete energy equation reads(%E)n+1i = (%E)ni � � tjVij Xj2N (i) j�ij j %ij vn;ij (Eij + p=%ij): (21)Sin
e E = e + 0:5v2 we dedu
e a dis
rete evolution equation for the internalenergy. Using (20) and (14) it is given by(% e)n+1i = (% e)ni � � tjVij Xj2N (i) j�ij j %ij vn;ij eij : (22)
9



From the pressure law (5) and equation (22) we then 
on
lude that pn+1i = pni =p holds provided that the pressure law 
oeÆ
ients satisfy the dis
rete evolutionequations �n+1i = �ni � � tjVij Xj2N (i) j�ij j vn;ij �ij : (23)These are suÆ
ient but not ne
essary 
onditions. Note that (23) is a non-
onservative upwind dis
retization for the evolution equations (10) of the ma-terial parameters be
ause vn;ij �ij 6= �vn;ji �ji. Furthermore, we remark that(23) 
oin
ides with the 1D dis
retization in [SA99, Bar02℄. To see this we rewritethe sum in (23) by means of (14) and (17), (18) asXj2N (i) j�ij j vn;ij �ij = Xj2N (i) j�ij j vn;ij (�ij � �ni ) (24)Finally we obtain the upwind dis
retization of the pressure law 
oeÆ
ients�n+1i = �ni � � tjVij Xj2N (i) j�ij j vn;ij (�ij � �ni ) (25)where in general the velo
ity of the material interfa
e in normal dire
tion vn;ijis not given by (17) but results from solving the Riemann problem.Then the numeri
al dis
retization of the two-phase 
uid model 
onsists ofthe following steps in ea
h time step:1) 
ompute the re
onstru
tion of the primitive variables,2) solve the Riemann problem for ea
h 
ell interfa
e,3) evolve density, momentum and energy in time by (11) where the numeri
al
uxes at the 
ell interfa
es are determined by (12) with u the solution ofthe Riemann problem;4) evolve the pressure law 
oeÆ
ients in time by (25) where the transportvelo
ities at ea
h 
ell interfa
e are determined by the velo
ities of theRiemann solution.Sin
e the transport s
heme (23) and (25), respe
tively, is linear in ' anddue to the linear interpolation (7) of �, it is equivalent to solve the evolutionequation for the fra
tion ', i.e.,'n+1i = 'ni � � tjVij Xj2N (i) j�ij j vn;ij 'ij = 'ni � � tjVij Xj2N (i) j�ij j vn;ij ('ij � 'ni ):(26)3.3 Multis
ale-Based Grid AdaptationThe numeri
al simulation of 
ollapsing bubbles is a highly dynami
al pro
essof 
ompression and rarefa
tion waves and their intera
tion with the materialboundary and solid walls, 
f. [ABM05℄. In order to 
at
h properly all thesee�e
ts high resolution dis
retizations are needed. However, uniform dis
retiza-tions are too mu
h time- and memory-
onsuming. Therefore highly eÆ
ient10



s
hemes are needed that adapt the grid to the 
ow solution su
h that a highresolution is only lo
ally a

essed where strong variations in the 
ow �eld o

ur.In order to improve the eÆ
ien
y of the numeri
al s
heme presented in Se
tion3.1 and 3.2 we employ re
ent multis
ale-based grid adaptation te
hniques. Bymany appli
ations these have been proven to be very eÆ
ient and reliable. Herewe brie
y summarize the basi
 
on
eptual ideas. For te
hni
al details we referthe reader to [M�ul02℄, [CKMP03℄ and[BLM04℄.Step 1: Multis
ale analysis. The fundamental idea is to present the
ell averages ûL representing the dis
retized 
ow �eld at �xed time level tn ona given uniform highest level of resolution l = L (referen
e mesh) asso
iatedwith a given �nite volume dis
retization (referen
e s
heme) as 
ell averages onsome 
oarsest level l = 0 where the �ne s
ale information is en
oded in arraysof detail 
oeÆ
ients dl, l = 0; : : : ; L � 1 of as
ending resolution, see Figure 2.For this purpose one might use Harten's dis
rete 
on
ept of re
onstru
tion andpredi
tion, 
f. [ADH98℄, or biorthogonal wavelets, 
f. [CDP96℄.The multis
ale de
omposition is performed on a hierar
hy of nested gridsGl with in
reasing resolution l = 0; : : : ; L, see Figure 1. In our 
omputationspresented here we 
on�ne to stru
tured 
urvilinear grids though the generalframework is not restri
ted to this 
on�guration but 
an also be applied tounstru
tured grids and irregular grid re�nements in arbitrary spa
e dimensions.
l = 0 - l = 1 - l = 2Figure 1: Sequen
e of nested grids ûL ûL�1dL�1 : : :: : : û1d1 û0d0- - - -� � � ���R ��R ��R ��R��I ��I ��I ��IFigure 2: Multis
ale transformationStep 2: Thresholding. It 
an be shown that the detail 
oeÆ
ients be-
ome small with in
reasing re�nement level when the underlying fun
tion islo
ally smooth. In order to 
ompress the original data this motivates us to dis-
ard all detail 
oeÆ
ients dl;� whose absolute values fall below a level-dependentthreshold value "l = 2l�L". Let DL;" be the set of signi�
ant details. The idealstrategy would be to determine the threshold value � su
h that the dis
retiza-tion error of the referen
e s
heme, i.e., di�eren
e between exa
t solution andreferen
e s
heme, and the perturbation error, i.e., the di�eren
e between thereferen
e s
heme and the adaptive s
heme, are balan
ed, see [CKMP03℄.Step 3: Predi
tion and grading. Sin
e the 
ow �eld evolves in time,grid adaptation is performed after ea
h evolution step to provide the adaptivegrid at the new time level. In order to guarantee the adaptive s
heme to bereliable in the sense that no signi�
ant future feature of the solution is missed,we have to predi
t all signi�
ant details at the new time level n+1 by means ofthe details at the old time level n. Let ~Dn+1L;" � DnL;"[Dn+1L;" be the predi
tion set.The predi
tion strategy is detailed in [CKMP03℄. In view of the grid adaptationstep this set is additionally in
ated su
h that it 
orresponds to graded tree.Step 4: Grid adaptation. By means of the set ~Dn+1L;" a lo
ally re�nedgrid is determined. For this purpose, we re
ursively 
he
k pro
eeding levelwise11



from 
oarse to �ne whether there exists a signi�
ant detail to a 
ell. If thereis one, then we re�ne the respe
tive 
ell. We �nally obtain the lo
ally re�nedgrid with hanging nodes represented by the index set GL;". This pro
edureis graphi
ally sket
hed in Figure 3. To ea
h shaded 
ell there is at least onesigni�
ant detail. These 
ells are removed and repla
ed by their 
hildren on thenext higher level. This results in a grid with hanging nodes.
Figure 3: Grid adaptation: re�nement tree (left) and 
orresponding adaptivegrid (right)Sin
e the 
on
ept of multis
ale-based grid adaptation has been presentedand dis
ussed in detail in previous publi
ations we omit the te
hni
al detailsneeded to realize it. However, we 
omment on some aspe
ts that were not ad-dressed in single-phase 
omputations. Note, that the grid adaptation 
on
epthas been developed and investigated originally for �nite volume s
hemes. Herethe numeri
al dis
retization is a hybrid s
heme where the 
onserved variablesu of mass, momentum and energy are dis
retized by a �nite volume s
heme(11) and the pressure law 
oeÆ
ients � by an upwind dis
retization (25) innon-
onservative form. Nevertheless, we 
an apply the grid adaptation to the
onserved and non-
onserved variables although two 
hanges have to be made toa

ount for the extension to two-phase 
uid 
ow and the non-
onservative dis-
retization of the pressure law 
oeÆ
ients. These 
on
ern the threshold pro
essand the 
ux 
omputation at hanging nodes.Threshold pro
ess. Sin
e the physi
al states in liquid and vapor di�er ex-tremely in s
ale it turned out in our 
omputations that we had to modify slightlythe threshold pro
ess. In previous single-phase 
omputations, 
f. [BLM04℄, thedetails for ea
h physi
al quantity was s
aled by its maximum in the entire 
om-putational domain. This has been useful to adjust the s
ales of the di�erentquantities. Otherwise, di�erent threshold values " have to be used for the dif-ferent quantities that usually di�er by several orders of magnitude. In thepresent two-phase 
omputations, this turned out to be inadequate. Due to thehuge values in the liquid the maximum for ea
h quantity is large and s
alingby it would make the details 
orresponding to the vapor phase very small andthey would be dis
arded in the threshold pro
ess. Hen
e waves in the vaporphase would not be properly resolved. Therefore we had to repla
e the globalmaximum by a lo
al maximum where only the 
ells in the sten
il of the detailare taken into a

ount.Flux 
omputation at hanging nodes. Another issue that had to beadjusted 
on
erns the 
omputation of the gradients in (25) at interfa
es withhanging nodes. For the numeri
al 
uxes in (11) the strategy was un
hanged.12
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Figure 4: Flux evaluation at interfa
e with hanging node: adaptive grid (right),virtually re�ned grid (left)First the numeri
al 
uxes on the higher s
ale are 
omputed by values on thesame re�nement level. In 
ase the neighboring 
ells 
orrespond to higher or lowers
ales the data are proje
ted to the respe
tive level by means of the multi-s
aletransformation. Then the numeri
al 
ux on the 
oarser s
ale is the sum of all
uxes on higher s
ale by whi
h the 
oarse interfa
e is 
omposed. This is shownin Figure 4. This pro
edure is motivated by applying the multis
ale de
om-
Figure 5: Flux 
omputation: �ne grid (left), 
an
ellation due to 
onservation(middle), 
oarse grid (right)position to the evolution equations (11). Then by the 
onservation propertythe 
uxes 
orresponding to internal 
uxes 
an
el and only the �ne-grid 
uxes
ontribute to the edges of the 
oarse-grid 
ells, see Figure 5. Similarly, we pro-
eed with the evolution equations (25). However, due to the non-
onservativedis
retization, the gradients at the internal interfa
es do not 
an
el. Thus,negle
ting these terms will introdu
e some additional error to the threshold er-ror resulting from higher re�nement levels. Nevertheless, to add the �ne-gridgradients 
orresponding to a 
oarse-grid edge give satisfa
tory results and thenon-
onservation error does not spoil the overall a

ura
y of the 
omputation.3.4 Multilevel Time SteppingSin
e the referen
e s
heme (11) is assumed to use an expli
it time dis
retiza-tion, the time step size is bounded due to the CFL 
ondition by the smallest
ell in the grid. Hen
e �t is determined by the highest re�nement level L, i.e.,�t = �L. However, for 
ells on the 
oarser s
ales l = 0; : : : ; L � 1 we may use�t = �l = 2L�l �L to satisfy lo
ally the CFL 
ondition. In [MS06℄ a multileveltime stepping strategy has been in
orporated re
ently to the adaptive multi-s
ale �nite volume s
heme as proposed in [M�ul02℄. It has been extended tomultidimensional problems in [LMS05, LMMS06℄. The basi
 idea is to save 
ux13



tntn + �ltn + �l�1tn + 3 �ltn + �l�2
Figure 6: Syn
hronized time evolution on spa
e-time gridevaluations where the lo
al CFL 
ondition allows a large time step. The pre
isetime evolution algorithm is s
hemati
ally des
ribed by Fig. 6: In a global timestepping, i.e., using �t = �L for all 
ells, ea
h verti
al line se
tion appearingin Fig. 6 (left) represents a 
ux evaluation and ea
h horizontal line (dashed orsolid) represents a 
ell update of u due to the 
uxes. In the multilevel time step-ping a 
ux evaluation is only performed at verti
al line se
tions that emanatefrom a point where at least one solid horizontal line se
tion emanates from.If a verti
al line se
tion emanates from a point, where two dashed horizontalse
tions emanate from, then we do not re
ompute the 
ux, but keep the 
uxvalue from the pre
eeding verti
al line se
tion. Hen
e 
uxes are only 
omputedfor the verti
al edges in Fig. 6 (right).Note, that on ea
h intermediate time level (horizontal lines) u is updated forall 
ells and that grid adaptation is performed at ea
h even intermediate timelevel, i.e., at tn + k �L for k even. Hen
e it is possible to tra
k, for instan
e, asho
k movement on the intermediate time levels instead of a{priori re�ning thewhole range of in
uen
e, see Fig. 6 (right).However, the update of u for the 
onserved quantities and the material 
oeÆ-
ients makes it ne
essary to modify the 
omputation of the 
uxes 
orrespondingto a 
oarse 
ell at grid interfa
e points, i.e., a dashed and a drawn horizontalline emanate from this point. Here the non-
onservative 
uxes for the mate-rial 
oeÆ
ients are not updated to a

ount for the 
onsisten
y 
ondition (15)whereas the 
onservative 
uxes for the 
onserved quantities are updated by thenew values on the intermediate time level.4 Numeri
al ResultsWe are interested in the numeri
al investigation of the 
ollapse of a vapor bubblefar away from and next to a rigid wall, see Figure 7. These are modeled by thesti�ened gas approa
h in Se
tion 2 where the liquid phase is 
hara
terized by asti�ened gas law and the vapor phase by a perfe
t gas law whi
h 
an both bewritten in the form (5) where the material 
oeÆ
ients for the pure phases arelisted in Table 1.The governing equations are the Euler equations (1) and the non-
onservativetransport equations (10) for the pressure law 
oeÆ
ients. These are dis
retizedby the �nite volume s
heme (11) and the non-
onservative upwind dis
retiza-tion (25). The eÆ
ien
y of the numeri
al dis
retization is signi�
antly improvedby the multis
ale-based grid adaptation employing multilevel time stepping assummarized in Se
tion 3.3.Three 
on�gurations have been investigated, namely, (i) a two-phase Rie-mann problem (1D) to validate the numeri
al dis
retization with respe
t to a
-14
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ura
y, eÆ
ien
y, reliability and robustness, (ii) a vapor-�lled 
ylindri
al bubblesurrounded by water (2D) where we are interested in the in
uen
e on the stabil-ity of the bubble surfa
e and (iii) the 
ollapse of a vapor-�lled 
ylindri
al bubblenext to a rigid wall (2D).All 
omputations have been performed with the 
ode QuadCon
ept wherewe employ multis
ale-based grid adaptation. This solver is based on the im-plementation of the adaptive �nite volume solver originally developed for 
om-pressible single-phase 
uids, 
f. [M�ul02℄. It has been extended by the upwinddis
retization of the pressure law 
oeÆ
ients, see Se
tion 3.2.4.1 Two-Phase Riemann ProblemWe 
onsider a sho
k tube problem where initially two states 
orresponding topure liquid (left) and vapor (right) are separated by a diaphragm shown inFigure 8 (left). The initial data 
orresponding to state L and R taken from
Liquid Gas

X_D = 0

R

X_C X_SX_R

L L* R*Figure 8: Sho
k tube problem: Initial 
on�guration (left) and solution at somelater instant (right)[Han98℄, p. 41, are listed in Table 2. They are 
hara
terized by high pressureand density values in the liquid and low pressure and density values in the vaporwhere the temperature is 
hosen to be in equilibrium. These are 
hara
teristi
for inje
tion nozzles of diesel engines, 
f. [DB06℄.Removing instantaneously the membrane a fast expansion wave is runninginto the liquid phase and a sho
k wave is moving into the vapor phase followed15



State L State L* State R* State RLiquid Liquid Gas Gas% [kg/m3℄ 1000 978.672 0.028728 0.026077vx [m/s℄ 0 32.998 32.998 0p [Pa℄ 5e+07 2425.7 2425.7 2118% 
 [kg/m2s℄ 1.58193e+06 1.44889e+06 9.87723 8.79338� [m3/kg℄ 0.001 0.00102179 34.8092 38.348Ma [-℄ 0 0.022288994 0.095975086 0T [K℄ 283 247.86 294.2 283Table 2: Sho
k tube problem: Initial and intermediate statesby the material interfa
e, see Figure 8 (right). The 
onstant intermediate statesare given in Table 2. The velo
ities of the three waves are listed in Table 3. Wenote that the sho
k speed is only about 25 % of the velo
ity of the rarefa
tionwave. v�R = vR� � 
R� v+R = vR+ � 
R+ vC vS-1581.93 -1447.46 32.998 357.588Table 3: Sho
k tube problem: Wave speedsFor this simple 
on�guration we performed several 
omputations. The pur-pose of these 
omputations is twofold, namely, (i) to validate the implementationand the numeri
al dis
retization with respe
t to a

ura
y, robustness and re-liability and (ii) to investigate the e�e
t of higher order re
onstru
tion, gridadaptation and multilevel time stepping on the numeri
al results.The 
omputational domain is 
 = [�2; 0:5℄ and the �nal time is t = 1:001984�10�3 [s℄. The 
oarse grid dis
retization 
onsists of N0 = 50 
ells. The numberof re�nement levels is always L = 8. From this we infer that the (uniform)referen
e grid on level L is 
omposed of NL = 12800 
ells. The time step size isdetermined by � t = 3:1312� 10�8 [s℄ 
orresponding to a CFL number of 0.25with respe
t to the initial data. Hen
e, we perform n = 32000 time steps. Ifnot stated otherwise the threshold value is " = 0:0001 and we use the se
ondorder re
onstru
tion of the primitive variables %, v and p. The 
omputationsare performed employing multilevel time stepping.Validation. In Figures 9, 10, 11, 12, 13, 14, 15, 16 the numeri
al resultsand the exa
t solution are shown for the �nal time. The exa
t solution ofthe Riemann problem was 
omputed by the iterative solver of Colella/Glaz[CG85℄. We note that the numeri
al results are in good agreement with theexa
t solution ex
ept for the temperature at the material interfa
e. The problemon the temperature has already been reported in [SCB99℄.Nevertheless there are some de�
ien
ies that be
ome visible only if one zoomsinto the solution. First of all, we observe that the numeri
al dis
retization of thepressure law 
oeÆ
ients leads to a smearing of the mass and volume fra
tion,see Figure 23 and 24, though the underlying mathemati
al model in Se
tion 2 isbased on the assumption of immis
ibility. This numeri
al mass di�usion 
ausesan overheating in the liquid and vapor phase next to the material interfa
e,16



see Figure 21. In addition, we observe some e�e
t due to the numeri
al massdi�usion on the Ma
h number in the vapor phase, see Figure 22.Another de�
ien
y 
an be observed in the pressure in the liquid phase, seeFigures 31 and 37, 38, respe
tively. When the rarefa
tion wave passes we ob-serve an over-expansion of the liquid. This e�e
t be
omes stronger with highernumeri
al dissipation introdu
ed by a �rst order dis
retization, see Figure 31.For the 1st order re
onstru
tion this numeri
al overheating 
an be observed inthe entire regime between rarefa
tion wave and the material interfa
e whereasfor 2nd order re
onstru
tion it only takes pla
e near the rarefa
tion wave. Wenote that this e�e
t be
omes stronger the more 
ells are re�ned, i.e., the thresh-old value " de
reases. It be
omes the strongest if we perform no grid adaptationat all, i.e., " = 0, see Figures 37, 38. Hen
e this e�e
t is 
aused by the numeri-
al dis
retization itself rather than by grid adaptation. These observations havebeen 
on�rmed by 
omputations with the non-adaptive 1st order 
ode developedin [Bar02, BH05℄.Furthermore we note that the position of the material interfa
e, see Figures18, 19, 21, 22, 23, 24, and the position of the sho
k wave, see Figures 25,26, 27, 28, 29, 30, di�er slightly between the numeri
al results and the exa
tsolution. Most signi�
ant is the di�eren
e for the spe
i�
 volume at the materialinterfa
e displayed in Figure 19. This is 
aused by the dis
retization of the non-
onservative transport equations for the pressure law 
oeÆ
ients. In return,we note that pressure and velo
ity are 
onstant a
ross the material interfa
eand no os
illations are introdu
ed a

ording to the 
onstru
tion of the upwinddis
retization (25), see Figures 17 and 20.Although there are some de�
ien
ies we want to emphasize that these e�e
tsare lo
al and 
an only be observed on very small s
ales.In
uen
e of thresholding, time stepping and re
onstru
tion. Nextwe investigate the in
uen
e of the higher order re
onstru
tion on the numeri
alresults. For this purpose we performed 
omputations using 1st order and 2ndorder re
onstru
tion, respe
tively, and 
ompared these with the exa
t solution.As we may 
on
lude from Figures 25, 26, 27, 28, 29, 30 the sho
k wave is mu
hsharper resolved for 2nd order re
onstru
tion. For 1st order re
onstru
tion it issigni�
antly smeared. This is important to note be
ause we want parti
ularlyto investigate the behavior of a 
ollapsing vapor bubble. For this purpose, it isimportant to well-resolve the dynami
s inside the bubble. For the rarefa
tionwave in the liquid the in
uen
e of the higher order re
onstru
tion is in generalnot as severe as for the sho
k wave in the vapor phase, see Figures 31, 32, 33,34, 35, 36. There are slight improvements at the edges of the rarefa
tion fan.As already dis
ussed above, the 2nd order re
onstru
tion strongly improves thesolution between the rarefa
tion wave and the material interfa
e, see Figure31. Furthermore we note that the higher order re
onstru
tion also improves thesolution at the material interfa
e, see Figures 18, 19, 21, 22 23, 24. Here againthe pressure is ex
eptional, see Figure 17.Due to the strong smearing for the 1st order s
heme the eÆ
ien
y of theadaptive s
heme is signi�
antly redu
ed. To show this we performed several
omputations for 1st and 2nd order where we vary the threshold value ". FromTables 4 and 5 we 
on
lude that the number of 
ells is always higher for the 1storder 
omputation. With smaller threshold value " the number of grid 
ells isin
reasing but less strong for the 2nd order s
heme. Therefore the 
omputationaltimes are always lower for these 
omputations.17



These observations hold true for global and multilevel time stepping. How-ever, 
omparing the results in Tables 4 and 5 we note that the 
omputational
osts are always less for multilevel time stepping. As has been observed in pre-vious investigations, 
f. [MS06℄, less numeri
al di�usion is introdu
ed be
ausethe number of time steps is redu
ed for the 
ells on 
oarser s
ales. In addition,thresholding is performed less frequently on all s
ales redu
ing the thresholderror introdu
ed in ea
h grid adaptation step.From the above dis
ussion we �nally 
on
lude that grid adaptation, mul-tilevel time stepping and higher order re
onstru
tion signi�
antly improve theeÆ
ien
y and the a

ura
y of the solution." # 
ells adapt. grid# 
ells ref. grid Cpu adapt. s
hemeCpu ref. s
heme1st order 2nd order 1st order 2nd order10�2 0.030 0.024 0.008 0.06010�3 0.056 0.032 0.002 0.01310�4 0.098 0.047 0.054 0.02010�5 0.133 0.072 0.075 0.03410�6 0.119 0.090 0.081 0.043Table 4: Parameter study w.r.t. threshold value and re
onstru
tion order in
ase of multilevel time stepping" # 
ells adapt. grid# 
ells ref. grid Cpu adapt. s
hemeCpu ref. s
heme1st order 2nd order 1st order 2nd order10�2 0.036 0.026 0.031 0.02510�3 0.067 0.033 0.057 0.03110�4 0.111 0.044 0.085 0.05710�5 0.140 0.055 0.103 0.04710�6 0.166 0.078 0.114 0.059Table 5: Parameter study w.r.t. threshold value and re
onstru
tion order in
ase of global time stepping4.2 Planar Bubble CollapseNext we investigate the 
ollapse of a vapor-�lled bubble embedded in a liquidsurrounding far from the external boundary of the liquid, see Figure 7 (left).Here we 
on�ne to a 2D 
on�guration that 
an be 
onsidered a 
ross-se
tion ofthe radial 
ollapse of a 
ylindri
al bubble of in�nite length. The initial states forthe pure phases are the same as for the sho
k tube problem, see Table 2. Theradius of the bubble is R = 0:001 [m℄. The midpoint of the bubble is lo
ated inthe origin x = (0; 0) of the 
oordinate system.For the numeri
al simulation we employ rotational symmetry and performthe 
omputation only in the domain 
 = [0; 0:01℄ � [0; 0:01℄. The 
oarse griddis
retization 
onsists of N0 = 25 � 25 
ells. The number of re�nement levelsis L = 8. From this we infer that the (uniform) referen
e grid on level L is18




omposed of NL = 6400 � 6400 
ells. The time step size is determined by a�xed CFL number of 0.5. Performing n = 230 ma
ro time steps this 
orrespondsto a �nal time of about t = 7:26 � 10�6 [s℄. The threshold value is " = 0:001and we use the se
ond order re
onstru
tion of the primitive variables %, v andp. The 
omputational domain is 
hosen 10 times larger than the bubble radiusto avoid unphysi
al re
e
tions from the boundary. Sin
e we are not interestedin the expansion wave in the water phase we do not perform grid adaptationoutside a domain of radius larger than 0.002 [m℄. This signi�
antly redu
esthe number of 
ells in the far �eld without spoiling the a

ura
y of the wavepro
esses inside the vapor bubble. The 
omputations are performed employingmultilevel time stepping. The CPU time was about 22.22 hours on a PC withAMD pro
essor Opteron 250.The wave stru
ture emanating at the phase boundary is the same as forthe sho
k tube problem, see Se
tion 4.1, i.e., a very fast rarefa
tion wave isrunning into the water and a less fast sho
k wave is running into the vapor,respe
tively. The phase boundary is following the sho
k wave �rstly at low speedthat leads to a shrinking of the vapor bubble. At the same time the shrinkingis 
ontinuously a

elerated and 
auses 
ompression waves in the bubble. Toillustrate the dynami
 behavior of the bubble 
ollapse we extra
t for ea
h ma
rotime step the data along the x-axis and store them in one �le. From this wethen visualize the 
ow along this axis in time, see Figures 39, 40, 41, 42, 43, 44.The sho
k wave is fo
using in the bubble 
enter at time 2:65�10�6 [s℄ whereit is re
e
ted. The average speed of the sho
k wave is about 377 [m/s℄. This isalmost the sound speed 
orresponding to the initial vapor data, i.e., there hasbeen no signi�
ant heating of the vapor by the �rst inwards running sho
k. Butduring the shrinking pro
ess temperature in
reases.The re
e
ted sho
k wave is running towards the phase boundary. At time4:27 � 10�6 [s℄ the sho
k wave is intera
ting with the phase boundary at ra-dial position r = 0:0006 [m℄. From this we dedu
e an average sho
k speed of373 [m/s℄. Due to the high di�eren
e in the a
ousti
 impedan
e, see Table 2state L� and R, a weak sho
k is transmitted into the water phase whereas astronger sho
k wave is re
e
ted and running ba
k again towards the bubble
enter 
f. [Hen70, Tho72℄. The bubble still 
ontinues shrinking.The pro
esses of sho
k fo
using and re
e
ting in the bubble 
enter and theintera
tion of the re
e
ted sho
k wave with the phase boundary is repeating atleast four times. Due to the shrinking pro
ess and 
ompression by the sho
kwaves the vapor is signi�
antly heated. Finally at time 6:67�10�6 [s℄ the bubblerea
hes its minimal radius of about Rmin = 3:93� 10�5 [m℄. Note that due tothe �nite resolution of the dis
retization not all e�e
ts 
an be resolved in detail.The number of sho
k fo
using pro
esses depends on the initial bubble radiusand the exterior pressure in the liquid.In Figure 39 the temporal variation of the Ma
h number distribution isshown. We note that the phase boundary is a

elerated from subsoni
 speedMa=0.01, see Table 2, to supersoni
 speed Ma = 1.22, i.e, vvapor > 555 [m/s℄.As 
an be dedu
ed from the zoom in Figures 41, 42, 43 and 44 another sho
k isforming at the bubble in the instant of the largest a

eleration and running intothe liquid. A

ording to Hanke, see [Han98℄, p. 41, this sho
k wave is 
ausedby the strong a

eleration of the phase boundary whi
h 
omes at rest when thebubble rea
hes its smallest radius and be
omes a

elerated later on in outwarddire
tion. 19



In Table 6 we summarize the extremal data of 
ertain physi
al quantitiesin the instant of the bubble 
ollapse. In many publi
ations 
on
erning bubblyunits Vaporminimal radius Rmin [m℄ 3:93� 10�5maximal pressure pmax [Pa℄ 1:09� 109maximal density %max [kg/m3℄ 2:32� 103maximal temperature Tmax [K℄ 8:27� 103maximal velo
ity vmax [m/s℄ 2000maximal Ma
h number Ma [-℄ 1.22of bubble 
ontourTable 6: Quasi-1D Bubble Collapse: Final states after 
ollapse inside vaporbubbleliquids the liquid is assumed to be in
ompressible. At the instant of the bubble
ollapse we �nd for the pressure in the liquid 1:09 � 109 [Pa℄. At these highvalues the in
ompressibility assumption is no longer justi�ed.Sin
e in our model the two phases are 
hara
terized by the volume and massfra
tion the phases are not stri
tly separated. Due to numeri
al dissipationintrodu
ed by the underlying �nite volume dis
retization the phases will bemixing near the phase boundary 
ausing some numeri
al phase transition. As
an be depi
ted from Figure 40 the numeri
al phase transition zone is small inthe bubble 
ollapse pro
ess. However when the bubble starts growing again asigni�
ant phase transition layer is forming. This does not o

ur in the resultsby Hanke due to the �tting of the phase boundary.We emphasize that the above observations and 
on
lusions are in agreementwith the results reported in [Han98℄ for the same 
on�guration. However therehave been di�eren
es in the physi
al modeling and the numeri
al dis
retization.Hanke developed the �nite volume 
ode BUB for the spheri
al and 
ylindri
albubble 
ollapse based on the Navier-Stokes equations using di�erent equationsof state for the vapor phase, e.g., perfe
t gas, van der Waals and others, [HB98,Han98℄. The material interfa
e is �tted separating the liquid and vapor phase,respe
tively. In ea
h subdomain the 
uid equations are solved where vis
osityand heat 
ondu
tion are taken into a

ount in the gas phase but negle
ted inthe liquid. The material interfa
e is numeri
ally treated a

ording to [CSL96℄using front tra
king. Thereby mixing of the phases near the phase boundary issuppressed.To validate the 2D 
omputations we have performed 
omputations with thequasi-onedimensional 
ode BUB using 200 
ells in the gas and 800 
ells in theliquid negle
ting dissipative e�e
ts as well as surfa
e tension. In Figure 45 we
ompare the Ma
h number distribution for both 
omputations. The wave pat-tern is identi
al. However, the bubble 
ollapse is faster in our 2D 
omputationdue to the higher a

eleration of the interfa
e after the �rst intera
tion with thesho
k wave, 
f. Mamax = 1:2 (2D) and Mamax = 0:8 (BUB). This is due to thehigher resolution of the gas phase by BUB whi
h is �xed be
ause the grid inthe two phases is atta
hed to the interfa
e and the grid points are redistributedafter ea
h time step. For our 2D 
omputation the number of 
ells is signi�
antlyredu
ed with shrinking bubble radius. Taking this into a

ount the results 
an20



be 
onsidered in qualitatively good agreement.The la
k of vis
osity and heat 
ondu
tion in the present paper may signif-i
antly a�e
t the states in the instant of sho
k fo
using in the bubble 
enter.A

ording to the similarity solution derived by Guderley [Gud42℄ for spheri-
al 
ompression waves where vis
osity is negle
ted the pressure might in
reaseasymptoti
ally to in�nity. Due to the �nite resolution in the dis
retization thepressure will be bounded in the 
omputation but it will further in
rease withhigher resolution. Taking into a

ount vis
osity the pressure will stay boundedeven with in
reasing resolution. This has been 
on�rmed numeri
ally in [Han98℄.4.3 Planar Bubble Collapse next to a Rigid WallFinally we investigate the bubble 
ollapse for initial 
onditions as in Se
tion 4.2,see Table 2, but next to a rigid plane wall, see Figure 7 (right), i.e., the axisof the 
ylindri
al bubble is parallel to the rigid wall and again it is possible to
onsider a plane problem. The bubble radius is R = 0:001 [m℄ and the bubble
enter is lo
ated at x = (3R=2; 0), i.e., the distan
e of the bubble to the planarwall (x = 0) is d = R=2.The 
omputational domain is determined by 
 = [0; 0:1℄ � [�0:05; 0:05℄.The 
oarse grid dis
retization 
onsists of N0 = 25 � 25 
ells. The number ofre�nement levels is L = 8. From this we infer that the (uniform) referen
egrid on level L is 
omposed of NL = 6400 � 6400 
ells. The time step size isdetermined by a �xed CFL number of 0.5. Performing n = 60 ma
ro time stepsthis 
orresponds to a �nal time of about t = 1:81 � 10�5 [s℄. The thresholdvalue is " = 0:001 and we use the se
ond order re
onstru
tion of the primitivevariables %, v and p. To avoid unphysi
al re
e
tions from the boundary of the
omputational domain its distan
e is 
hosen 100 times the bubble radius. Sin
ewe are not interested in the 
ow �eld far away from the wall we do not performgrid adaptation outside a radius larger than 0.002 [m℄ around the initial bubble
enter. The 
omputations are performed employing multilevel time steppingwith 60 ma
ro time steps. The CPU time was about 11.5 hours on a PC withAMD pro
essor Opteron 250.The dynami
s of the waves developing in the 
uid and their intera
tionwith the wall and the bubble interfa
e 
an be dedu
ed from the plots of thedensity gradient magnitude, see Figures 46; : : : ;51 and 52, 54; : : : ;110. Due tothe di�erent s
ales involved in the liquid and in the vapor these have to be s
aledlogarithmi
ally to show them simultaneously in one pi
ture, i.e., we presentlog(1 + jr%j) where the density gradient magnitude is shifted by 1 to a

ountfor vanishing gradients. Due to the waves and their intera
tions the 
uid isa

elerated. This highly dynami
 pro
ess is visualized by integral 
urves of thevelo
ity shown in Figures 53, 55; : : : ;111 
orresponding to the same times as forthe density gradient magnitude. The �gures for both quantities are superposedwith 
ontour lines of the vapor fra
tion to see how the phase interfa
e is a�e
tedby the wave intera
tion pro
ess.First of all, we fo
us on the waves in the liquid, see Figures 46; : : : ;51. Inthe early stage of the 
omputation the wave stru
ture developing at the phaseboundary is the same as for the bubble 
ollapse, see Se
tion 4.2. An expansionwave R1 is running into the liquid, see Figure 46. Sin
e the bubble is lo
atednext to a rigid wall the expansion wave R1 is re
e
ted as an expansion wave R2at the wall, see Figure 47. Due to the strong expansion the liquid behind the21



wave R2 the pressure drops below zero and a 
avitation is forming. The re
e
tedexpansion wave R2 again is re
e
ted at the phase boundary, see Figure 48. Dueto the low a
ousti
 impedan
e in the gas and the high a
ousti
 impedan
e inthe liquid, see [Hen70, Tho72℄, the re
e
ted wave is a 
ompression wave, i.e.,the phase is inverted. This pro
edure of re
e
tion at the wall and at the phaseboundary is 
ontinued, see Figures 49; : : : ;51 where the phase is maintained atthe wall but is inverted at the bubble.To see the e�e
t of the re
e
ted expansion and 
ompression waves on thevapor phase inside the bubble we zoom into the vapor bubble, see Figures52; : : : ;111. In the beginning, there is only a sho
k wave S running towardsthe bubble 
enter, see Figure 52. When the re
e
ted expansion wave R2 is in-tera
ting with the phase boundary, see Figure 54, then it is partially re
e
tedinto the liquid as dis
ussed before and partially transmitted into the vaporphase, see R3 and T1 in Figure 56. We note that the waves are running fasterin the liquid than in the vapor due to the higher sound speed in the liquid. Dueto the 
urvature of the bubble 
ontour, the transmitted waves in the vapor aredefra
ted, see Figures 56, 58; : : : ;68. Therefore the transmitted waves, see forinstan
e T1 in Figures 56, 58; : : : ;74, have the shape of a 
onvex lens �xed atthe phase boundary, see Figures 58 and 60. With in
reasing time the 
urva-ture of the lens be
omes stronger, see Figures 62, 64; : : : ;68, and, �nally, thelens 
loses to a 
ir
le, see Figure 70. The now 
ir
ular wave fo
uses inside thebubble at the symmetry line and is re
e
ted, see Figures 72 and 74. Note thatby the transmitted waves the distribution inside the bubble be
omes stronglyheterogeneous resulting in a pressure gradient of low pressure left to the bubble
enter and high pressure to the right.Simultaneously, the sho
k wave S is fo
using in the bubble 
enter, see Figure66, and is re
e
ted there. The re
e
ted sho
k wave RS1 is running in outwarddire
tion towards the bubble interfa
e, see Figures 68, 70; 72, 74. The sho
kwave is intera
ting with the transmitted waves. Sin
e in the vapor the di�eren
eof the a
ousti
 impedan
e is small these waves are transmitting without 
ausingre
e
tion waves. Due to the defra
tion of the expansion and 
ompression wavesthe initially 
ir
ular sho
k front 
attens at the top and the bottom side andbe
omes wavy, see Figure 74. The re
e
ted sho
k wave RS1 is intera
ting withthe bubble interfa
e. Due to the high di�eren
e in the a
ousti
 impedan
e inthe two phases it is being re
e
ted there and running inwards again, see RS2 inFigures 76 and 78. This sho
k wave fo
uses and is re
e
ted again as sho
k waveRS3, see Figure 80. This pro
ess of sho
k fo
using and sho
k re
e
tion at thephase boundary is 
ontinued. The details of this pro
ess 
an not be presentedhere.Due to the wave pro
esses in the liquid and in the vapor the 
ow �eld isa

elerated. The dynami
s of the a

eleration 
an be depi
ted from the integral
urves of the velo
ity presented in Figures 53, 55; : : : ;111. Starting from a 
owat rest the 
ow �eld is a

elerated towards the bubble 
enter when the expansionwave R1 and the sho
k wave S pass, see Figure 53. The velo
ity �eld is rotationalsymmetri
 as long as the expansion wave R1 has not been re
e
ted at the wall.The re
e
tion of wave R1 leads to a distortion of the symmetry. Behind there
e
ted expansion wave R2 a low pressure regime develops that extends within
reasing time into the far �eld. Therefore, the liquid is a

elerated in thedire
tion of the symmetry line and near the wall it is moving almost parallel tothe wall. At the symmetry line the liquid is then de
e
ted and dire
ted towards22



the vapor bubble, see Figures 55, 57; : : : ;89. While the 
ow is de
e
ted nearthe wall, the 
ow away from the wall is dire
ted towards the bubble 
enter, seeFigures 55, 57; : : : ;61. Inside the bubble the vapor is no longer moving towardsthe bubble 
enter when the transmitted waves, see for instan
e T1, pass butis de
e
ted towards the symmetry line. When the sho
k wave S fo
uses inthe bubble 
enter, see Figure 67, it is re
e
ted there and the 
ow behind there
e
ted sho
k wave RS1 is now a

elerated in outward dire
tion, see Figures69, 71, 73, 75. However, this a

eleration is not suÆ
ient to revert the 
owdire
tion due to the underlying velo
ity �eld 
aused by the inward runningsho
k S and due to the pressure gradient 
aused by the transmitted expansionwaves as dis
ussed above. Therefore the vapor in the right part of the bubble isstill moving inwards. On the other hand, behind the transmitted waves, see forinstan
e T1, the vapor is a

elerated towards the bubble 
enter, see Figures 65and 67. Due to the strong a

eleration of the vapor behind the re
e
ted sho
kwave RS1, the vapor behind the transmitted waves is repelled, see Figures 69,71, 73, 75. A front is forming where the vapor from both sides is de
e
tedtowards the symmetry line where the integral 
urves of the velo
ity 
oin
ide ina stagnation point. Sin
e the vapor is stronger a

elerated at the right side ofthe de
e
tion front than at the left side, the stagnation point is moving towardsthe wall, see Figures 77, 79, 81, 83, 85. Due to the ongoing pro
ess of sho
kwave fo
using in the bubble and sho
k re
e
tion at the phase boundary, theunderlying 
ow �eld is further a

elerated without 
hanging the overall 
owdire
tion in the regions left and right from the de
e
tion front. However, the
ow atta
hed to this front 
hanges its dire
tion. In the beginning, the atta
hed
ow is dire
ted towards the stagnation point, see Figures 71, 73; : : : ;83, whereasit is moving away from the stagnation point in outward dire
tion at some latertime, see Figure 85. Sin
e the vapor is stronger a

elerated to the right of thede
e
tion front than to the left, a velo
ity gradient develops a
ross the front.Due to this velo
ity gradient two vorti
es are forming inside the vapor bubbleabove and below the symmetry line, rotating 
lo
kwise and 
ounter-
lo
kwise,respe
tively, see Figures 83, 85, 87, 89, 91. The rotation of the vorti
es 
ausesthe vapor to 
on
entrate in the 
enter of the vorti
es. This results in a high
ompression of the vapor. In the 
ore of the vorti
es we 
ompute a pressureof about 300 [bar℄, a density of about 250 [kg/m3℄ and a temperature of about600 [K℄. When the vapor mass is 
on
entrating in the 
ore of the vorti
es, thevapor bubble splits into two parts and a liquid jet is forming, see Figures 91,93, 95, 97, 99. This jet is dire
ted towards the wall due to the 
lo
kwise and
ounter-
lo
kwise rotation of the vorti
es above and below the symmetry line,respe
tively, see Figure 93. The two vapor bubbles 
ause a bottlene
k for theliquid due to the high density of the vapor. Therefore the liquid is a

eleratedtowards the wall through this ori�
e, see Figures 113, 115; : : : ;123. The maximalspeed of about 900 [m/s℄ is rea
hed at time t = 9:07� 10�6 [s℄, see Figure 119,at the symmetry line between the two vorti
es. This value 
orresponds to aMa
h number of 1.6. At this instant, the vapor is at rest in the 
enter of thevorti
es whereas the velo
ity is about 300 [m/s℄ dire
ted away from the wall atthe farest point of the bubble 
ontours from the symmetry line.When the liquid is a

elerated through the ori�
e the pressure is in
reasingbefore the bottlene
k resulting in a high pressure region of about 2400 [bar℄, seeFigure 116. Sin
e the liquid is expanding behind the ori�
e the high pressureregion is squeezed through this bottlene
k and shot like a proje
tile towards the23



wall where it hits with high pressure that is about 5 times that of the undisturbedliquid, see Figures 116, 118, 120, 122. The impa
t of the high pressure might bethe 
ause of material damage as has been observed in experiments, 
f. [PL98,BNSV01a, BNSV01b℄.When the liquid jet hits the wall another stage in the bubble 
ollapse begins.The water supplied by the jet is de
e
ted to both sides of the symmetry axis dueto the resistan
e of the wall. Sin
e this liquid is moving at higher speed than theliquid supplied from the undisturbed 
ow, it represses the latter, see Figures 93,95, 97, 99. Be
ause of this pro
ess the two vorti
es and atta
hed to these thevapor bubbles start to move towards the wall where they are de
e
ted in upwardand downward dire
tion, see Figures 101, 103; : : : ;111. If the high temperaturevapor bubbles would 
ome into 
onta
t to the wall it might 
ause some materialdamage. However, in our 
omputations the vapor bubbles are surrounded by aphase transition zone where the temperature is de
reasing signi�
antly.We 
on
lude the numeri
al investigation by some 
omments on the phaseinterfa
e. Due to the sti�ened gas model, the phase boundary is not ne
essarilya sharp dis
ontinuity but may be
ome di�usive. In the beginning, the interfa
eis slightly a

elerated by the sho
k wave S resulting in a slow shrinking pro
essof the vapor bubble, see Figures 52, 54; : : : ;74. When the sho
k wave RS2 isre
e
ted at the phase interfa
e, the phase boundary is signi�
antly a

elerated,see Figures 76, 78, 80. Due to the inertia of the liquid a phase transition zonedevelops �lled with a mixture of gas and liquid, see Figures 82, 84; : : : ;110. Bythe vorti
es forming inside the vapor bubble, the pure vapor is transported tothe 
ore of these vorti
es. In Figures 84 and 86 we see that the vapor fra
tion
ontour 
orresponding to pure vapor starts bulging and is �nally penetrated bythe vapor-liquid mixture, see Figures 90 and 92. In the end, only two bubbles�lled with pure vapor remain, see Figures 94, 96; : : : ;110.5 Con
lusionThe sti�ened gas model of Saurel and Abgrall [SA99℄ has been su

essfullyextended to a higher order s
heme on lo
ally re�ned grids. Multis
ale-basedgrid adaptation te
hniques [M�ul02, CKMP03℄ have been employed to improvethe eÆ
ien
y of the s
heme. This allows for a lo
ally high resolution thatis needed to resolve a

urately the lo
al physi
al e�e
ts in the bubble 
ollapsepro
ess. Sin
e this pro
ess is highly dynami
al the time dis
retization is expli
it.Therefore the CFL 
ondition is very restri
tive be
ause of the small 
ells sittingon the high re�nement levels. For the 
ells on the 
oarser dis
retization levelswe use a multilevel time stepping strategy that allows for larger time stepson 
oarser s
ales. This has been re
ently developed in 
ombination with themultis
ale-grid adaptation, 
f. [MS06, LMS05, LMMS06℄. This strategy had tobe modi�ed taking into a

ount the non-
onservative upwind dis
retization ofthe evolution equations for the material parameters.The a

ura
y and the eÆ
ien
y of the resulting adaptive s
heme has beenvalidated by means of a two-phase Riemann problem. It turned out that thea

ura
y is signi�
antly improved by the 2nd order re
onstru
tion in 
ompari-son with the original s
heme of Saurel and Abgrall that is of 1st order only. Inaddition, the CPU time as well as the memory resour
es are tremendously re-du
ed be
ause of the grid adaptation and the multilevel time stepping strategy.24



However, the non-
onservative dis
retization of the evolution equations for thematerial parameters results in some slight deviation of the sho
k position fromthe exa
t position. Moreover, an additional temperature jump 
an be observedin the numeri
ally smeared 
onta
t dis
ontinuity. For invis
id 
omputations,this has no e�e
t on the 
omputation. But for 
omputations in
luding vis
os-ity it might be
ome signi�
ant in 
ase the vis
osity 
oeÆ
ient is temperaturedependent.The s
heme has then been applied to investigate the 
ollapse of a free planarvapor bubble at low pressure and density surrounded by water at high densityand pressure. A sho
k wave is running inside the vapor bubble between bubble
enter and phase boundary where it is fo
using and re
e
ted several times. Bythis pro
ess the gas undergoes a strong 
ompression resulting in a signi�
antheating. The phase boundary is a

elerated towards the bubble 
enter where it
ollapses and rea
hes a minimal radius that is about 25 times smaller than theoriginal bubble radius. In the instant of the 
ollapse a sho
k wave is runninginto the water that results in a signi�
ant 
ompression of the liquid. At thesehigh values the in
ompressibility assumption is no longer justi�ed. Due to the
ompression inside the bubble, density, pressure and temperature in
rease byseveral orders of magnitude. For more realisti
 values the gas should be modeledby a real gas equation of state rather than the perfe
t gas law. We emphasizethat these observations and 
on
lusions are in agreement with the results re-ported in [Han98, HB98℄ for the same 
on�guration but performing quasi-1D
omputations exploiting spheri
al symmetry.Finally we investigate the bubble 
ollapse next to a rigid wall. The dynami
sof the resulting 
ow �eld 
an be separated into three stages. In a �rst stage, alow pressure regime is developing between the wall and the vapor bubble. Thisis 
aused by expansion and 
ompression waves running between the wall andthe bubble where they are re
e
ted. Due to the low a
ousti
 impedan
e in thegas and the high a
ousti
 impedan
e in the liquid, the phase is inverted whenthe wave is re
e
ted at the bubble 
ontour but it remains un
hanged when it isre
e
ted at the wall. At the same time, a sho
k wave is running inside the bubbletowards the bubble 
enter. Due to transmitted expansion and 
ompressionwaves at the interfa
e, the pressure distribution be
omes asymmetri
 also insidethe bubble. When the sho
k wave fo
uses in the bubble 
enter a se
ond stagestarts where a liquid jet is forming that penetrates the bubble at the symmetryline and is dire
ted towards the wall. This pro
ess is 
aused by the formation oftwo vorti
es inside the vapor bubble by whi
h the vapor is 
on
entrating in twoalmost rotational symmetri
 vapor bubbles above and below the symmetry axis.The small distan
e between the two vorti
es 
auses a bottlene
k for the liquidwhi
h a
ts as a nozzle where the liquid is signi�
antly a

elerated. In front ofthis bottlene
k a high pressure zone is forming in the liquid where the pressureis about 5 times higher than in the undisturbed liquid. This high pressure liquidis then squeezing through the bottlene
k and dire
ted towards the wall whereit hits with high pressure. The impa
t of the high pressure might be the 
auseof material damage. But this analysis requires 
onsidering of the 
oupled 
uid-stru
ture problem with the appropriate modeling of elasti
-plasti
 stress wavesin the solid wall, see [Di
97, Spe00℄. When the jet hits the wall, the third stageof the 
ow pro
ess starts. The liquid supplied by the jet is de
e
ted at the wallto both sides of the symmetry axis and pushes away the water supplied fromthe free stream from above and below. In the wake of the jet the system of the25



splitted bubbles and the vorti
es start moving towards the wall where they arede
e
ted upward and downward the symmetry axis.The numeri
al investigation 
learly indi
ate that the bubble splitting andthe formation of the liquid jet is essentially 
aused by the a

eleration of thevapor inside the bubble due to the sho
k wave fo
using in the 
enter and itsre
e
tion at the phase interfa
e as well as its intera
tion with the transmitted
ompression and expansion waves. Therefore the frequently made assumptionof a homogeneous state inside the vapor bubble 
an no longer be 
onsidered tobe admissible.So far vis
osity and heat 
ondu
tion as well as surfa
e tension have not beentaken into a

ount. These might a�e
t the pro
esses of bubble 
ollapsing, jetformation and bubble splitting. Furthermore, the phase boundary is di�usivedue to the modeling of the two-phase 
uid by a single 
ompressible medium. Itwould be interesting to 
ompare the results with sharp interfa
e model usinglevel set methods, 
f. [NDT06℄. This, in parti
ular, would allow to use di�erentmodels for the gas and the liquid, respe
tively.A
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