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Siegfried Miiller! Philippe Helluy! Josef Ballmann$
February 14, 2007

Abstract

The present work deals with the numerical investigation of collapsing
cavitation bubbles in compressible fluids. Here the fluid of a two-phase
vapor-liquid mixture is modeled by a single compressible medium. This is
characterized by the stiffened gas law using different material parameters
for the two phases.

For the discretization of the stiffened gas model the approach of Ab-
grall and Saurel is employed where the flow equations, here the Euler
equations, for the conserved quantities are approximated by a finite vol-
ume scheme and an upwind discretization is used for the non-conservative
transport equations of the pressure law coefficients. The original 1st or-
der discretization is extended to higher order applying 2nd order ENO
reconstruction to the primitive variables. The derivation of the non-
conservative upwind discretization for the phase indicator, here the gas
fraction, is presented for arbitrary unstructured grids.

The efficiency of the numerical scheme is significantly improved by
employing local grid adaptation. For this purpose multiscale-based grid
adaptation is used in combination with a multilevel time stepping strategy
to avoid small time steps for coarse cells. The resulting numerical scheme
is then applied to the numerical investigation of the collapse of a vapor
bubble in a free flow field and near to a rigid wall.
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1 Introduction

The formation of vapor bubbles in a liquid is called cavitation. The bubbles
may grow or collapse. Lord Rayleigh discovered that pressure waves emitted
during processes of cavitation [Ray17] may damage solids, e.g., ship propellers.
However, the mechanisms causing the damage of the solid are far from being
completely understood.

Cavitation is induced by a pressure drop in the liquid below vapor pressure.
Such a pressure decrease may occur due to local acceleration of the liquid flow
caused by geometrical constraints, e.g., if the liquid flows through a narrow
orifice or around an obstacle. In this case, the pressure drops below vapor
pressure, the liquid bursts and creates a free surface filled with gas and vapor
— the bubble. Due to changes in the flow field, the pressure in the liquid may
increase again causing the bubble to collapse. The collapse is accompanied by
strong shock and rarefaction waves running into the bubble and the surrounding
liquid. The inwards running shock wave focuses in the center of the bubble. This
leads to extreme physical states in the interior. In addition, the shrinking of the
bubble leads to a strong compression of the vapor. Both effects evoke an increase
of pressure which bulges the bubble. Hereby, a dynamic oscillation process is
initiated which finally leads to the collapse of the bubble. If the collapse takes
place next to a boundary, flow and pressure fields become asymmetric and a
liquid jet develops which is either directed towards or away from the boundary,
depending on its compliance.

The investigation of the dynamics of cavitation bubbles is of special interest
in different real world applications arising, for instance, in engineering, medical
applications and biology such as (i) cavitation erosion of under water structures,
see [NE61, BE66, PL98], (ii) lithotripsy and sonoporation, see [0103, OW03],
and (iii) cavitation—enhanced ablation of materials e.g. biological tissues, see
[BNSV01a, BNSV0O1b, OWO03]. In this regard, the investigation of cavitation
can be helpful (i) to improve the resistibility of under water structures such as



ship propellers and ship walls against strong pressure waves and (ii) to optimize
medical laser or lithotripter applications with regard to collateral damage to
sensitive tissue structures in the vicinity of the laser focus or to its sonoporation
capabilities for drug delivery.

The processes taking place in the interior and exterior of the collapsing and
oscillating bubble and the prediction of onset and extent of cavitation damage
are still subject of theoretical and experimental research. However, small time
and space scales as well as the complicated dynamics make any theoretical and
experimental approach a challenge. Therefore, advanced numerical investiga-
tions are needed to reveal further information about the highly unsteady flow
dynamics in the fluid.

Here we will focus on the modeling and numerical simulation of the collapse
of a single bubble in a nonstationary, inviscid compressible two—phase flow.
In case of spherical symmetry this has been studied by Westenberger [Wes87].
There the Euler equations for compressible liquids (Tait equation of state) and
a homogenized bubbly fluid, respectively, have been considered. Investigations
verified that the fluid state inside the bubble does not stay homogeneous during
the collapse. Moreover, shock waves develop if the smallest bubble radius is al-
most obtained or the bubble growth just started again. These wave phenomena
occur preferably in the liquid but they also can develop inside the bubble and
there they interact with the phase boundary due to the small radius. Thereby,
the frequently made assumption of incompressibility of the liquid and the ho-
mogeneity of the vapor are qualified as inappropriate. In order to validate the
extreme states that may occur due to focusing effects in liquids as well as in va-
por an explicit finite volume method for the spherical bubble collapse has been
developed based on the Navier-Stokes equations using different equations of
state, e.g., van der Waals and others, [HB98, Han98]. It could be verified that
the modeling of the bubble inside by a perfect gas is only valid at moderate
changes in volume.

For the numerical simulation of two—phase immiscible flows in compressible
fluids, it is distinguished in the literature between the Lagrangian and the Eu-
lerian approach. In the Lagrangian framework the interface is typically tracked
during the time evolution. There are mainly three types of techniques: (i) par-
ticle methods, e.g., Smooth Particle Hydrodynamics, where the movement of
particles is simulated, cf. [Mon94, DGP98], (ii) front tracking methods where
the underlying discretization undergoes a deformation due to the movement of
the interface, cf. [Hym86, CGM*86, KP91, Dic97], and (iii) marker methods,
e.g., Marker and Cells [WHSD], Volume of Fluid [HN79], where the discretiza-
tion is fixed. Typically difficulties arise if the interface changes topologically or
becomes complicated. To overcome this difficulty techniques have been devel-
oped based on an Eulerian formulation wherby the interface is captured. To
distinguish the two fluid phases in this formulation the underlying equations
of motion are supplemented with an additional scalar equation approximating
the position of the interface, for instance, a color function [BKZ92] or a level
set function [OF01, Set96]. For incompressible two—phase fluid flow this has
been applied with great success, see [SS094, SABT99]. In case of compress-
ible two—phase flow, difficulties arise at the phase boundary caused by pressure
oscillations in the numerical simulation. In order to suppress these pressure
oscillations, different approaches have been considered in the literature. Ab-
grall et al. proposed a quasi-conservative formulation [Abg96, SA99, AKO01a].



Another approach, the ghost fluid method, has been developed by Fedkiw et
al. [FAMO99, FAX01]. A modification of their ansatz has been introduced by
Abgrall and Karni [AKOla, AKO1b] based on a two-flux method. Recently, Suss-
man [Sus03] suggested a different strategy for computing growth and collapse
of vapor bubbles where a level set method is coupled with a volume-of-fluid
method. However, the liquid is assumed to be incompressible. These methods
turn out to give good results in case of wave processes in flows of two immiscible
compressible gases. For instance, in [ABMO05, And06] the two-flux method is
successfully used in combination with a level set method to investigate wave
interactions with gas-gas interfaces. However, these methods in general fail for
compressible liquid-gas flow. In the Eulerian approach the material interface
is captured rather than tracked. Therefore the two phases undergo a numer-
ical phase transition due to the smearing of the material interface. Since the
pressure laws for liquids and gases typically are not valid in the same regime
of phase space the numerical mixture of the phases leads to non-physical val-
ues in the numerical phase transition regime. This typically causes the crash
of the computation. Among the aforementioned approaches, the stiffened gas
approach of Saurel and Abgrall [SA99] seems to be presently the only method
that is capable to deal with compressible liquid-gas flow.

In addition to an adequate mathematical model highly efficient numerical
algorithms are required, which allow for a high resolution of the waves pro-
duced by the bubble oscillation and their interaction and provide qualitative
and quantitative results on the dynamics of these waves. In recent years, a
new adaptive concept for finite volume schemes has been developed based on
multiscale techniques. First work in this regard has been published by Harten
[Har94, Har95] where by means of a multiscale sequence the flux evaluation is
performed. This results in a hybrid scheme working on a uniform grid. Recently,
a fully adaptive concept for multiscale finite volume schemes has been developed
and investigated [Miil02, CKMP03]. This new concept turns out to be highly
efficient and reliable. By now, the new adaptive multiresolution concept has
been applied with great success to different applications, e.g., 2D/3D-steady
and unsteady computations of compressible fluids about airfoils modeled by the
Euler and Navier—Stokes equations, respectively, on block—structured curvilin-
ear grid patches [BLM04], backward-facing step on 2D triangulations [CKPO01]
and simulation of a flame ball modeled by reaction—diffusion equations on 3D
Cartesian grids [RS02, RSTB03]. These applications have been performed for
compressible single-phase fluids. More recently, this concept has been extended
to two-phase fluid flow of compressible gases, and applied to the investigation of
non-stationary shock-bubble interactions on 2D Cartesian grids for the Euler
equations [ABMO05, And06].

In the present work the focus is on the numerical investigation of collapsing
vapor bubbles in compressible fluids. Here the fluid of a two-phase vapor-liquid
mixture is modeled by a single compressible medium. For the two phases we
employ the stiffened gas law with different material parameters for the two
phases, see Section 2. In Section 3 the stiffened gas model is discretized by
the approach of Saurel and Abgrall [SA99] where the flow equations for the
conserved quantities are approximated by a finite volume scheme and an up-
wind discretization is used for the non-conservative transport equations of the
phase indicator (gas fraction). The efficiency of the resulting scheme is im-
proved by applying multiscale-based grid adaptation techniques. Note that the



discretization is presented in the multi-dimensional case on arbitrary grids where
we employ a higher order reconstruction for the primitive variables. Due to the
nonstationary behavior of the flow time integration is performed explicitly. The
CFL condition of the highest resolution level is locally relaxed by employing
the recent multilevel time stepping strategy, cf. [MS06, LMS05, LMMS06]. The
resulting numerical scheme is then applied to the numerical investigation of the
collapse of a vapor bubble, see Section 4.

2 Mathematical Model

Compressible fluid flow is characterized in continuum mechanics by the fields
of density p, velocity v, internal energy e and pressure p distributions. The
balances of mass, momentum and energy for inviscid flow lead to the Euler
equations in conservation form

0t + le(QV) = 07
(ov): + div(ev ®@ v + pI) = 0, (1)
(oE)¢ + div(ev(E +p/o)) = 0,

where E = e + 0.5v2 is the total energy. In order to take into account the
two different fluids (a gas and a liquid) we introduce a new unknown ¢ that
we call the fraction of gas. We make the convention that ¢ = 0 and ¢ =1
correspond to pure liquid and vapor, respectively. Because we are interested
in very high speed flows and very short observation times we suppose that the
phase transition can be neglected so that there is no mass transfer between the
two fluids. Thus the fraction satisfies a homogeneous transport equation, i.e.,
its material derivative is vanishing,

pr+v-Vo=0. (2)

If at the initial time ¢ = 0 the fraction ¢ takes only the values 1 or 0, it will
remain true for £ > 0. Thus there is no physical mixing in the continuous model.
However, the numerical model will introduce artificial mixture zones where 0 <
¢ < 1. This causes some difficulties that are discussed below. Anyway, with a
good numerical approximation, the size of the mixture region will tend to zero
with the size of the cells in the mesh.
Using the mass conservation law, equation (2) can be written in an equivalent
conservative form
(0p)¢ + div(ppv) =0, (3)

which expresses the mass conservation of each fluid.
In order to close the system, we have to provide a pressure law

p=plo,e,p). (4)

In this work, we consider a relatively simple pressure law: the stiffened gas
pressure law suggested in [CS97] and [Abg96]. It reads

plo,e, ) = (v(p) — Loe — (@) (p). (5)

If we were only studying the continuous model, it would be sufficient to pro-
vide the values of the pressure law coefficients v and 7 for ¢ = 0 or p = 1.



But because of the numerical mixture, it is necessary to interpolate v and 7
for 0 < ¢ < 1. An arbitrary choice of interpolation would lead to numerical
difficulties that are studied in many works [Abg96], [BHRO03], [GHS03], etc. and
commented below.

It appears that a good choice consists in a linear interpolation of the two
special quantities 8; and (35 defined by

1 1
,31=—_1 7:1+ﬁ_
v & b (6)
B2 = ki ™= Pz
'7_1 1-|—,31

The pressure law in the numerical mixture zone is then constructed as fol-
lows. First, v and 7 are deduced from measurements in the pure fluids. A
possible procedure is explained in [CS97]. For water and air the material coef-
ficients for the pure phases are listed in Table 1. This gives v(0), w(0) for the
pure liquid and ~(1), m(1) for the pure vapor. We deduce then from (6) the
quantities 31 (0), 82(0), B1(1), B2(1) and, by a linear interpolation

Bi(p) = @B (1) + (1 — ¢)B31(0),
Ba(p) = pB2(1) + (1 — ) B2(0).

The mixture pressure law coefficients v(¢) and 7(p) are then obtained from the
reverse relation in (6).

(7)

Vapor (Air) | Liquid (Water)
Y 1A 14 7.15
7w | [Pa] 0 3.e+8
co | [I/kg K] | 7175 201.1

Table 1: Material coefficients

To the stiffened gas pressure law (5) we can associate a temperature scale
T. The temperature scale is compatible with thermodynamics if it is possible
to find an entropy function s such that

Tds = de + pd(1/ o). (8)
Several choices are possible. The simplest corresponds to
7r
T =e— —, 9
) 9)

where the constant ¢, is the specific heat at constant volume, cf. [BH05]. The
temperature law has no physical meaning in the artificial mixture region because
our mixture pressure law has been selected for numerical reasons and not from
physical arguments. Since v = 1+ R/¢, holds in the pure phases, interpolated
values for the heat capacity ¢, and the specific gas constant R in the mixture
region are computed by

(o) = cv(0) ¢y (1)(7(1) —~(0))
’ co(0)(7(0) = 7(0)) + o (D)(v(1) — ()’
R(p) = e (D) R0)(y(1) = y(¢)) + ¢ (0) R(1) (y(¢) — 7(0))
cu(0)(7() = 7(0)) + co(1)(v(1) = v(0))

(=)



These interpolated values have no clear physical meaning but will be used for a
numerical study of the temperature in the mixture region. They are motivated
by [BHO5].

Finally, we remark that instead of (2) we might equivalently solve the evo-
lution equations for the material parameters 3 = (51, 32), which have vanishing
material derivatives as they depend only on ¢ according to eq. (7)

B, +v-VB=0. (10)

3 Numerical Discretization

The numerical discretization of compressible two-phase fluid flow is still a chal-
lenge. The naive approach to apply a standard finite volume discretization to
the coupled system in conservation form (1) and (3) fails to work because of
pressure oscillations at the material interface. Cures have been proposed in
recent years [Kar94], [FAMO99], [Abg88], [SA99], [WKO05]. They are based on
non-conservative schemes and are successful for gas-gas interfaces. For liquid-
gas interfaces the computations will typically crash after a few time steps. One
typically observes severe pressure oscillations at the phase interface due to the
numerical diffusion of the density. For the stiffened gas model as summarized
in Section 2 the approach of Saurel and Abgrall [SA99] is working robustly
also for liquid-gas interfaces. The basic idea is to apply a finite volume scheme
to the flow equations (1) and to employ an upwind discretization of the non-
conservative transport equations for the pressure law coefficients (10). Here we
summarize the discretization in the multi-dimensional case on arbitrary grids
where we employ a higher order reconstruction for the conserved variables. The
efficiency of the resulting scheme is improved by applying recent multiscale-based
grid adaptation techniques and a multilevel time stepping strategy.

3.1 Finite Volume Discretization of Conserved Variables

The Euler equations (1) are solved approximately by a finite volume method.
For this purpose the finite fluid domain Q C R? is split into a finite set of
subdomains, the cells V;, such that all V; are disjoint at each instant of time
and that their union gives Q. Furthermore let A/(7) be the set of cells that have
a common edge with the cell i, and for j € N(i) let T';; := 0V; N 9V} be the
interface between the cells ¢ and j and n;; the outer normal of I';; corresponding
to cell i. The time interval is discretized by ¢"+! = " + A t assuming a constant
time step size. On this particular discretization the finite volume scheme can
be written as

. At
uftt =uf — v > T | Fuf, uf,nig) (11)
Vil &~
JEN (i)

using an explicit time discretization to compute the approximated cell averages
u?“ of the conserved variables u = (g, pv, 0 E) on the new time level. Here
the numerical flux function F(u,w,n) is an approximation for the flux

ov QUn
flu,n):=| ovev+pl -n = QULV + PN (12)
ov (E+p/o) ovn (E+p/o)



in outer normal direction n;; on the edge I';;. Here v, = vmn is the normal
velocity component. The numerical flux is assumed to be consistent, i.e.,

F(u,u,n) := f(u,n). (13)

For simplicity of presentation we neglect that due to higher order reconstruction
of the values u;; and uj; at the cell interface I';; it usually depends on an
enlarged stencil of cell averages. Furthermore, the pressure law is applied when
computing the numerical flux. Therefore it also depends on the fraction vector
Y or the vector of pressure law coefficients 3, respectively, associated to the
states uj; and uf;.

Since a reasonable numerical method should at least be able to maintain
a constant flow field, i.e., if u(x,t) = uq for all (z,t), we require that the
numerical solution fulfills u} = s, for all index pairs (i,n), too. From the
consistency of the numerical fluxes (13) and the discretizations (11) we then
obtain for each cell V; the geometric consistency condition

Z |I‘”|n” =0. (].4)

JEN(D)

In order to fix the numerical flux we have to choose the Riemann solver and
the reconstruction method. According to Saurel and Abgrall [SA99] these have
to be chosen such that a moving contact discontinuity is preserved in one spatial
dimension. In higher dimensions we therefore require that the condition

vy =wv = const, pi' =p=const — 'U?H =, p?“ =p (15)
holds for all cells 7 in the computational domain, i.c., constant pressure and
velocity fields are preserved. Note that this condition characterizes a contact

discontinuity only in 1D. In higher dimensions the scheme does not necessarily
preserve the normal velocity if there is a jump in the tangential component of
the velocity.

For this purpose, in our computations the Riemann problem at the cell
interface is solved exactly by the Riemann solver of Colella and Glaz [CG85]
originally developed for real gases. Here we apply it to stiffened gases where we
modify the implementation of the solver as described in [Miil93].

Furthermore, we use a higher order reconstruction which is applied compo-
nentwise to the primitive variables (o, v, p,3). The reconstruction of conserved
variables or characteristic variables violates the consistency condition (15) and
will cause oscillations at the material interface.

In our computations the underlying discretization is always a hierarchy of
Cartesian grids. Therefore we employ a quasi one-dimensional second-order
ENO reconstruction and Taylor expansion according to [HEOCS87] to improve
both the spatial and temporal accuracy. See also [Miil93] for details on the
implementation.

3.2 Upwind Discretization of Non-Conservative Transport
Equations for Pressure Law Coefficients

By (11) the conserved quantities can be evolved time. In addition, we also have
to update the fractions before we can proceed with the next time step. However



discretizing the evolution equations (2) or (3), respectively, will lead to oscil-
lations at the material interface and spoils the computation. Therefore Saurel
and Abgrall in [SA99] suggested to use an upwind discretization of the non-
conservative transport equations (10) for the vector of pressure law coefficients.
This is motivated by the requirement that the scheme has to preserve a contact
wave for which the tangential component of the velocity is continuous in the
sense of (15). A detailed derivation of the discretization in 1D can be found
in [Bar02]. This can be extended to the multi-dimensional case on arbitrary
grids as shall be summarized in the following. For this purpose, we assume that
v} = v and p} = p holds for all cells ¢. Since the reconstruction is performed
on the primitive variables we obtain pj; = pJ; = p and v}; = v}; = v whereas
the reconstruction of the density ¢ and the material parameters 8 may jump
across the cell interface, i.e., o} # 0}; and ,6?] # ,6;12 Then the numerical flux
computed by the exact Riemann solver is determined by

0;j Un,ij
F(UZ, u;’i, nij) = 05 5n,ij_v + pmn; (16)
05 Un.ij (Eij +p/0:5)

where ©;;, Un,i; and E;; are the density, normal velocity and total energy com-
puted by the Riemann solver. Since the underlying velocity field is homogeneous

Un,ij = U Nij (17)
holds. The material parameters jump only across the material interface, i.e.,
Un,ij Eij = Z max(ﬁn,ij, 0) + ﬂ;ll min(imij, 0) (18)

We now plug in (16) into (11). Then we obtain for the discrete continuity
equation

N _
ot =0 - V] Z L1 055 Vnij - (19)
YjEN (i)

The discrete momentum equation reads

At
()" = (ov)} -
Vil

> Tl (@55 0n,ij v + pmij). (20)
JEN(d)

From (19) and (14) we then conclude (ov)?™" = v "' and, hence, v = v.

Finally, the discrete energy equation reads

At
Vil

(0E)!!' = (0E)} — Z T3] 55 On.ij (Eij + p/0;5)- (21)

JEN(4)

Since E = e + 0.5v? we deduce a discrete evolution equation for the internal
energy. Using (20) and (14) it is given by

N L
(ee)™ = (0e)} - Vi Z Tij| 0ij n.ij €ij- (22)
" jeN()



From the pressure law (5) and equation (22) we then conclude that p!'*' = p =

p holds provided that the pressure law coefficients satisfy the discrete evolution
equations
Bt =" — At
2

T E 731 On,ij Bij- (23)
J

eN (i)

These are sufficient but not necessary conditions. Note that (23) is a non-
conservative upwind discretization for the evolution equations (10) of the ma-
terial parameters because vy, ;; Bij F —Unji Bﬂ Furthermore, we remark that
(23) coincides with the 1D discretization in [SA99, Bar02]. To see this we rewrite
the sum in (23) by means of (14) and (17), (18) as

> il Tni By = Y, Tl Onij By — BY) (24)
JEN (1) JEN (i)
Finally we obtain the upwind discretization of the pressure law coefficients
n+1 n At — a2 n
BT =8 > T3l Bnij (Bi; — BY) (25)

Vil &t

where in general the velocity of the material interface in normal direction vy, ;;
is not given by (17) but results from solving the Riemann problem.

Then the numerical discretization of the two-phase fluid model consists of
the following steps in each time step:

1) compute the reconstruction of the primitive variables,
2) solve the Riemann problem for each cell interface,

3) evolve density, momentum and energy in time by (11) where the numerical
fluxes at the cell interfaces are determined by (12) with u the solution of
the Riemann problem;

4) evolve the pressure law coefficients in time by (25) where the transport
velocities at each cell interface are determined by the velocities of the
Riemann solution.

Since the transport scheme (23) and (25), respectively, is linear in ¢ and
due to the linear interpolation (7) of B, it is equivalent to solve the evolution
equation for the fraction ¢, i.e.,

. At o _ . n_ At
G =gl m e X Dyl By = -
| z| jEN(Z) | z|

> AT Tnij (@i — €11
JEN(4)
(26)

3.3 Multiscale-Based Grid Adaptation

The numerical simulation of collapsing bubbles is a highly dynamical process
of compression and rarefaction waves and their interaction with the material
boundary and solid walls, cf. [ABMO05]. In order to catch properly all these
effects high resolution discretizations are needed. However, uniform discretiza-
tions are too much time- and memory-consuming. Therefore highly efficient

10



schemes are needed that adapt the grid to the flow solution such that a high
resolution is only locally accessed where strong variations in the flow field occur.
In order to improve the efficiency of the numerical scheme presented in Section
3.1 and 3.2 we employ recent multiscale-based grid adaptation techniques. By
many applications these have been proven to be very efficient and reliable. Here
we briefly summarize the basic conceptual ideas. For technical details we refer
the reader to [Miil02], [CKMP03] and[BLM04].

Step 1: Multiscale analysis. The fundamental idea is to present the
cell averages u, representing the discretized flow field at fixed time level " on
a given uniform highest level of resolution | = L (reference mesh) associated
with a given finite volume discretization (reference scheme) as cell averages on
some coarsest level [ = 0 where the fine scale information is encoded in arrays
of detail coefficients dy, | = 0,...,L — 1 of ascending resolution, see Figure 2.
For this purpose one might use Harten’s discrete concept of reconstruction and
prediction, cf. [ADH98], or biorthogonal wavelets, cf. [CDP96].

The multiscale decomposition is performed on a hierarchy of nested grids
G, with increasing resolution I = 0, ..., L, see Figure 1. In our computations
presented here we confine to structured curvilinear grids though the general
framework is not restricted to this configuration but can also be applied to
unstructured grids and irregular grid refinements in arbitrary space dimensions.

U <~ U <~ -+ ~— 03 ~— Q9

R NN NN

1=0 1=1 1=2

Figure 1: Sequence of nested grids Figure 2: Multiscale transformation

Step 2: Thresholding. It can be shown that the detail coefficients be-
come small with increasing refinement level when the underlying function is
locally smooth. In order to compress the original data this motivates us to dis-
card all detail coefficients d; , whose absolute values fall below a level-dependent
threshold value g; = 2! Le. Let Dr.- be the set of significant details. The ideal
strategy would be to determine the threshold value e such that the discretiza-
tion error of the reference scheme, i.e., difference between exact solution and
reference scheme, and the perturbation error, i.e., the difference between the
reference scheme and the adaptive scheme, are balanced, see [CKMPO03].

Step 3: Prediction and grading. Since the flow field evolves in time,
grid adaptation is performed after each evolution step to provide the adaptive
grid at the new time level. In order to guarantee the adaptive scheme to be
reliable in the sense that no significant future feature of the solution is missed,
we have to predict all significant details at the new time level n + 1 by means of
the details at the old time level n. Let D"Jrl D DY UD"+1 be the prediction set.
The prediction strategy is detailed in [CKMP03] In view of the grid adaptation
step this set is additionally inflated such that it corresponds to graded tree.

Step 4: Grid adaptation. By means of the set D”H a locally refined
grid is determined. For this purpose, we recursively check proceedlng levelwise
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from coarse to fine whether there exists a significant detail to a cell. If there
is one, then we refine the respective cell. We finally obtain the locally refined
grid with hanging nodes represented by the index set G .. This procedure
is graphically sketched in Figure 3. To each shaded cell there is at least one
significant detail. These cells are removed and replaced by their children on the
next higher level. This results in a grid with hanging nodes.

Figure 3: Grid adaptation: refinement tree (left) and corresponding adaptive
grid (right)

Since the concept of multiscale-based grid adaptation has been presented
and discussed in detail in previous publications we omit the technical details
needed to realize it. However, we comment on some aspects that were not ad-
dressed in single-phase computations. Note, that the grid adaptation concept
has been developed and investigated originally for finite volume schemes. Here
the numerical discretization is a hybrid scheme where the conserved variables
u of mass, momentum and energy are discretized by a finite volume scheme
(11) and the pressure law coefficients B by an upwind discretization (25) in
non-conservative form. Nevertheless, we can apply the grid adaptation to the
conserved and non-conserved variables although two changes have to be made to
account for the extension to two-phase fluid flow and the non-conservative dis-
cretization of the pressure law coefficients. These concern the threshold process
and the flux computation at hanging nodes.

Threshold process. Since the physical states in liquid and vapor differ ex-
tremely in scale it turned out in our computations that we had to modify slightly
the threshold process. In previous single-phase computations, cf. [BLMO04], the
details for each physical quantity was scaled by its maximum in the entire com-
putational domain. This has been useful to adjust the scales of the different
quantities. Otherwise, different threshold values £ have to be used for the dif-
ferent quantities that usually differ by several orders of magnitude. In the
present two-phase computations, this turned out to be inadequate. Due to the
huge values in the liquid the maximum for each quantity is large and scaling
by it would make the details corresponding to the vapor phase very small and
they would be discarded in the threshold process. Hence waves in the vapor
phase would not be properly resolved. Therefore we had to replace the global
maximum by a local maximum where only the cells in the stencil of the detail
are taken into account.

Flux computation at hanging nodes. Another issue that had to be
adjusted concerns the computation of the gradients in (25) at interfaces with
hanging nodes. For the numerical fluxes in (11) the strategy was unchanged.
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Figure 4: Flux evaluation at interface with hanging node: adaptive grid (right),
virtually refined grid (left)

First the numerical fluxes on the higher scale are computed by values on the
same refinement level. In case the neighboring cells correspond to higher or lower
scales the data are projected to the respective level by means of the multi-scale
transformation. Then the numerical flux on the coarser scale is the sum of all
fluxes on higher scale by which the coarse interface is composed. This is shown
in Figure 4. This procedure is motivated by applying the multiscale decom-

o o
@ A4

Figure 5: Flux computation: fine grid (left), cancellation due to conservation
(middle), coarse grid (right)

position to the evolution equations (11). Then by the conservation property
the fluxes corresponding to internal fluxes cancel and only the fine-grid fluxes
contribute to the edges of the coarse-grid cells, see Figure 5. Similarly, we pro-
ceed with the evolution equations (25). However, due to the non-conservative
discretization, the gradients at the internal interfaces do not cancel. Thus,
neglecting these terms will introduce some additional error to the threshold er-
ror resulting from higher refinement levels. Nevertheless, to add the fine-grid
gradients corresponding to a coarse-grid edge give satisfactory results and the
non-conservation error does not spoil the overall accuracy of the computation.

3.4 Multilevel Time Stepping

Since the reference scheme (11) is assumed to use an explicit time discretiza-
tion, the time step size is bounded due to the CFL condition by the smallest
cell in the grid. Hence At is determined by the highest refinement level L, i.e.,
At = 1. However, for cells on the coarser scales [ = 0,...,L —1 we may use
At = 7 = 21711 to satisfy locally the CFL condition. In [MS06] a multilevel
time stepping strategy has been incorporated recently to the adaptive multi-
scale finite volume scheme as proposed in [Miil02]. It has been extended to
multidimensional problems in [LMS05, LMMS06]. The basic idea is to save flux
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Figure 6: Synchronized time evolution on space-time grid

evaluations where the local CFL condition allows a large time step. The precise
time evolution algorithm is schematically described by Fig. 6: In a global time
stepping, i.e., using At = 71 for all cells, each vertical line section appearing
in Fig. 6 (left) represents a flux evaluation and each horizontal line (dashed or
solid) represents a cell update of u due to the fluxes. In the multilevel time step-
ping a flux evaluation is only performed at vertical line sections that emanate
from a point where at least one solid horizontal line section emanates from.
If a vertical line section emanates from a point, where two dashed horizontal
sections emanate from, then we do not recompute the flux, but keep the flux
value from the preceeding vertical line section. Hence fluxes are only computed
for the vertical edges in Fig. 6 (right).

Note, that on each intermediate time level (horizontal lines) u is updated for
all cells and that grid adaptation is performed at each even intermediate time
level, i.e., at t" + k7, for k even. Hence it is possible to track, for instance, a
shock movement on the intermediate time levels instead of a—priori refining the
whole range of influence, see Fig. 6 (right).

However, the update of u for the conserved quantities and the material coeffi-
cients makes it necessary to modify the computation of the fluxes corresponding
to a coarse cell at grid interface points, i.e., a dashed and a drawn horizontal
line emanate from this point. Here the non-conservative fluxes for the mate-
rial coefficients are not updated to account for the consistency condition (15)
whereas the conservative fluxes for the conserved quantities are updated by the
new values on the intermediate time level.

4 Numerical Results

We are interested in the numerical investigation of the collapse of a vapor bubble
far away from and next to a rigid wall, see Figure 7. These are modeled by the
stiffened gas approach in Section 2 where the liquid phase is characterized by a
stiffened gas law and the vapor phase by a perfect gas law which can both be
written in the form (5) where the material coefficients for the pure phases are
listed in Table 1.

The governing equations are the Euler equations (1) and the non-conservative
transport equations (10) for the pressure law coefficients. These are discretized
by the finite volume scheme (11) and the non-conservative upwind discretiza-
tion (25). The efficiency of the numerical discretization is significantly improved
by the multiscale-based grid adaptation employing multilevel time stepping as
summarized in Section 3.3.

Three configurations have been investigated, namely, (i) a two-phase Rie-
mann problem (1D) to validate the numerical discretization with respect to ac-
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Figure 7: Bubble away (left) and next (right) to a rigid wall

curacy, efficiency, reliability and robustness, (ii) a vapor-filled cylindrical bubble
surrounded by water (2D) where we are interested in the influence on the stabil-
ity of the bubble surface and (iii) the collapse of a vapor-filled cylindrical bubble
next to a rigid wall (2D).

All computations have been performed with the code QuadConcept where
we employ multiscale-based grid adaptation. This solver is based on the im-
plementation of the adaptive finite volume solver originally developed for com-
pressible single-phase fluids, cf. [Miil02]. Tt has been extended by the upwind
discretization of the pressure law coefficients, see Section 3.2.

4.1 Two-Phase Riemann Problem

We consider a shock tube problem where initially two states corresponding to
pure liquid (left) and vapor (right) are separated by a diaphragm shown in
Figure 8 (left). The initial data corresponding to state L and R taken from

Liquid Gas L L* R* R

|

Figure 8: Shock tube problem: Initial configuration (left) and solution at some
later instant (right)

[Han98], p. 41, are listed in Table 2. They are characterized by high pressure
and density values in the liquid and low pressure and density values in the vapor
where the temperature is chosen to be in equilibrium. These are characteristic
for injection nozzles of diesel engines, cf. [DB06].

Removing instantaneously the membrane a fast expansion wave is running
into the liquid phase and a shock wave is moving into the vapor phase followed
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State L State L* State R* State R
Liquid Liquid Gas Gas
0 [kg/m?®] | 1000 978.672 0.028728 0.026077
Vg [m/s] 0 32.998 32.998 0
» | [Pa] 5e+07 2425.7 2425.7 2118
oc | [kg/m?s] | 1.58193e+06 | 1.44889e+06 | 9.87723 8.79338
T [m?/kg] | 0.001 0.00102179 34.8092 38.348
Ma | [-] 0 0.022288994 | 0.095975086 | O
T | [K] 283 247.86 294.2 283

Table 2: Shock tube problem: Initial and intermediate states

by the material interface, see Figure 8 (right). The constant intermediate states
are given in Table 2. The velocities of the three waves are listed in Table 3. We
note that the shock speed is only about 25 % of the velocity of the rarefaction
wave.

— _ + _
Up = VR—- — CR— Up = VR4 — CR4 vo vs

-1581.93 -1447.46 32.998 | 357.588

Table 3: Shock tube problem: Wave speeds

For this simple configuration we performed several computations. The pur-
pose of these computations is twofold, namely, (i) to validate the implementation
and the numerical discretization with respect to accuracy, robustness and re-
liability and (ii) to investigate the effect of higher order reconstruction, grid
adaptation and multilevel time stepping on the numerical results.

The computational domain is Q = [—2,0.5] and the final time is t = 1.001984 x
1073 [s]. The coarse grid discretization consists of Ng = 50 cells. The number
of refinement levels is always L = 8. From this we infer that the (uniform)
reference grid on level L is composed of N = 12800 cells. The time step size is
determined by At = 3.1312 x 108 [s] corresponding to a CFL number of 0.25
with respect to the initial data. Hence, we perform n = 32000 time steps. If
not stated otherwise the threshold value is ¢ = 0.0001 and we use the second
order reconstruction of the primitive variables ¢, v and p. The computations
are performed employing multilevel time stepping.

Validation. In Figures 9, 10, 11, 12, 13, 14, 15, 16 the numerical results
and the exact solution are shown for the final time. The exact solution of
the Riemann problem was computed by the iterative solver of Colella/Glaz
[CG85]. We note that the numerical results are in good agreement with the
exact solution except for the temperature at the material interface. The problem
on the temperature has already been reported in [SCB99].

Nevertheless there are some deficiencies that become visible only if one zooms
into the solution. First of all, we observe that the numerical discretization of the
pressure law coefficients leads to a smearing of the mass and volume fraction,
see Figure 23 and 24, though the underlying mathematical model in Section 2 is
based on the assumption of immiscibility. This numerical mass diffusion causes
an overheating in the liquid and vapor phase next to the material interface,
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see Figure 21. In addition, we observe some effect due to the numerical mass
diffusion on the Mach number in the vapor phase, see Figure 22.

Another deficiency can be observed in the pressure in the liquid phase, see
Figures 31 and 37, 38, respectively. When the rarefaction wave passes we ob-
serve an over-expansion of the liquid. This effect becomes stronger with higher
numerical dissipation introduced by a first order discretization, see Figure 31.
For the 1st order reconstruction this numerical overheating can be observed in
the entire regime between rarefaction wave and the material interface whereas
for 2nd order reconstruction it only takes place near the rarefaction wave. We
note that this effect becomes stronger the more cells are refined, i.e., the thresh-
old value ¢ decreases. It becomes the strongest if we perform no grid adaptation
at all, i.e., e = 0, see Figures 37, 38. Hence this effect is caused by the numeri-
cal discretization itself rather than by grid adaptation. These observations have
been confirmed by computations with the non-adaptive 1st order code developed
in [Bar02, BHO5].

Furthermore we note that the position of the material interface, see Figures
18, 19, 21, 22, 23, 24, and the position of the shock wave, see Figures 25,
26, 27, 28, 29, 30, differ slightly between the numerical results and the exact
solution. Most significant is the difference for the specific volume at the material
interface displayed in Figure 19. This is caused by the discretization of the non-
conservative transport equations for the pressure law coefficients. In return,
we note that pressure and velocity are constant across the material interface
and no oscillations are introduced according to the construction of the upwind
discretization (25), see Figures 17 and 20.

Although there are some deficiencies we want to emphasize that these effects
are local and can only be observed on very small scales.

Influence of thresholding, time stepping and reconstruction. Next
we investigate the influence of the higher order reconstruction on the numerical
results. For this purpose we performed computations using 1st order and 2nd
order reconstruction, respectively, and compared these with the exact solution.
As we may conclude from Figures 25, 26, 27, 28, 29, 30 the shock wave is much
sharper resolved for 2nd order reconstruction. For 1st order reconstruction it is
significantly smeared. This is important to note because we want particularly
to investigate the behavior of a collapsing vapor bubble. For this purpose, it is
important to well-resolve the dynamics inside the bubble. For the rarefaction
wave in the liquid the influence of the higher order reconstruction is in general
not as severe as for the shock wave in the vapor phase, see Figures 31, 32, 33,
34, 35, 36. There are slight improvements at the edges of the rarefaction fan.
As already discussed above, the 2nd order reconstruction strongly improves the
solution between the rarefaction wave and the material interface, see Figure
31. Furthermore we note that the higher order reconstruction also improves the
solution at the material interface, see Figures 18, 19, 21, 22 23, 24. Here again
the pressure is exceptional, see Figure 17.

Due to the strong smearing for the 1st order scheme the efficiency of the
adaptive scheme is significantly reduced. To show this we performed several
computations for 1st and 2nd order where we vary the threshold value e. From
Tables 4 and 5 we conclude that the number of cells is always higher for the 1st
order computation. With smaller threshold value € the number of grid cells is
increasing but less strong for the 2nd order scheme. Therefore the computational
times are always lower for these computations.
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These observations hold true for global and multilevel time stepping. How-
ever, comparing the results in Tables 4 and 5 we note that the computational
costs are always less for multilevel time stepping. As has been observed in pre-
vious investigations, cf. [MS06], less numerical diffusion is introduced because
the number of time steps is reduced for the cells on coarser scales. In addition,
thresholding is performed less frequently on all scales reducing the threshold
error introduced in each grid adaptation step.

From the above discussion we finally conclude that grid adaptation, mul-
tilevel time stepping and higher order reconstruction significantly improve the
efficiency and the accuracy of the solution.

- # cells adapt. grid Cpu adapt. scheme
# cells ref. grid Cpu ref. scheme

1st order | 2nd order | 1st order | 2nd order
10~2 0.030 0.024 0.008 0.060
10—3 0.056 0.032 0.002 0.013
1074 0.098 0.047 0.054 0.020
10—° 0.133 0.072 0.075 0.034
10~6 0.119 0.090 0.081 0.043

Table 4: Parameter study w.r.t. threshold value and reconstruction order in
case of multilevel time stepping

# cells adapt. grid Cpu adapt. scheme
£ # cells ref. grid Cpu ref. scheme

1st order | 2nd order | 1st order | 2nd order
102 0.036 0.026 0.031 0.025
1073 0.067 0.033 0.057 0.031
10~4 0.111 0.044 0.085 0.057
107° 0.140 0.055 0.103 0.047
106 0.166 0.078 0.114 0.059

Table 5: Parameter study w.r.t. threshold value and reconstruction order in
case of global time stepping

4.2 Planar Bubble Collapse

Next we investigate the collapse of a vapor-filled bubble embedded in a liquid
surrounding far from the external boundary of the liquid, see Figure 7 (left).
Here we confine to a 2D configuration that can be considered a cross-section of
the radial collapse of a cylindrical bubble of infinite length. The initial states for
the pure phases are the same as for the shock tube problem, see Table 2. The
radius of the bubble is R = 0.001 [m]. The midpoint of the bubble is located in
the origin = (0,0) of the coordinate system.

For the numerical simulation we employ rotational symmetry and perform
the computation only in the domain Q = [0,0.01] x [0,0.01]. The coarse grid
discretization consists of Ny = 25 x 25 cells. The number of refinement levels
is L = 8. From this we infer that the (uniform) reference grid on level L is
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composed of N = 6400 x 6400 cells. The time step size is determined by a
fixed CFL number of 0.5. Performing n = 230 macro time steps this corresponds
to a final time of about ¢ = 7.26 x 107° [s]. The threshold value is ¢ = 0.001
and we use the second order reconstruction of the primitive variables o, v and
p. The computational domain is chosen 10 times larger than the bubble radius
to avoid unphysical reflections from the boundary. Since we are not interested
in the expansion wave in the water phase we do not perform grid adaptation
outside a domain of radius larger than 0.002 [m]. This significantly reduces
the number of cells in the far field without spoiling the accuracy of the wave
processes inside the vapor bubble. The computations are performed employing
multilevel time stepping. The CPU time was about 22.22 hours on a PC with
AMD processor Opteron 250.

The wave structure emanating at the phase boundary is the same as for
the shock tube problem, see Section 4.1, i.e., a very fast rarefaction wave is
running into the water and a less fast shock wave is running into the vapor,
respectively. The phase boundary is following the shock wave firstly at low speed
that leads to a shrinking of the vapor bubble. At the same time the shrinking
is continuously accelerated and causes compression waves in the bubble. To
illustrate the dynamic behavior of the bubble collapse we extract for each macro
time step the data along the z-axis and store them in one file. From this we
then visualize the flow along this axis in time, see Figures 39, 40, 41, 42, 43, 44.

The shock wave is focusing in the bubble center at time 2.65 x 107% [s] where
it is reflected. The average speed of the shock wave is about 377 [m/s]. This is
almost the sound speed corresponding to the initial vapor data, i.e., there has
been no significant heating of the vapor by the first inwards running shock. But
during the shrinking process temperature increases.

The reflected shock wave is running towards the phase boundary. At time
4.27 x 1079 [s] the shock wave is interacting with the phase boundary at ra-
dial position r = 0.0006 [m]. From this we deduce an average shock speed of
373 [m/s]. Due to the high difference in the acoustic impedance, see Table 2
state L* and R, a weak shock is transmitted into the water phase whereas a
stronger shock wave is reflected and running back again towards the bubble
center cf. [Hen70, Tho72]. The bubble still continues shrinking.

The processes of shock focusing and reflecting in the bubble center and the
interaction of the reflected shock wave with the phase boundary is repeating at
least four times. Due to the shrinking process and compression by the shock
waves the vapor is significantly heated. Finally at time 6.67 x 107° [s] the bubble
reaches its minimal radius of about R, = 3.93 x 107° [m]. Note that due to
the finite resolution of the discretization not all effects can be resolved in detail.
The number of shock focusing processes depends on the initial bubble radius
and the exterior pressure in the liquid.

In Figure 39 the temporal variation of the Mach number distribution is
shown. We note that the phase boundary is accelerated from subsonic speed
Ma=0.01, see Table 2, to supersonic speed Ma = 1.22, i.e, Vyapor > 555 [m/s].
As can be deduced from the zoom in Figures 41, 42, 43 and 44 another shock is
forming at the bubble in the instant of the largest acceleration and running into
the liquid. According to Hanke, see [Han98], p. 41, this shock wave is caused
by the strong acceleration of the phase boundary which comes at rest when the
bubble reaches its smallest radius and becomes accelerated later on in outward
direction.
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In Table 6 we summarize the extremal data of certain physical quantities
in the instant of the bubble collapse. In many publications concerning bubbly

units Vapor
minimal radius Ryin | [m] 3.93x10°°
maximal pressure Pmaz | [Pa] 1.09 x 10°
maximal density Omaz | [kg/m3] | 2.32 x 103
maximal temperature | Tpas | [K] 8.27 x 10?
maximal velocity Umaz | [M/9] 2000
maximal Mach number | Ma [-] 1.22
of bubble contour

Table 6: Quasi-1D Bubble Collapse: Final states after collapse inside vapor
bubble

liquids the liquid is assumed to be incompressible. At the instant of the bubble
collapse we find for the pressure in the liquid 1.09 x 10° [Pa]. At these high
values the incompressibility assumption is no longer justified.

Since in our model the two phases are characterized by the volume and mass
fraction the phases are not strictly separated. Due to numerical dissipation
introduced by the underlying finite volume discretization the phases will be
mixing near the phase boundary causing some numerical phase transition. As
can be depicted from Figure 40 the numerical phase transition zone is small in
the bubble collapse process. However when the bubble starts growing again a
significant phase transition layer is forming. This does not occur in the results
by Hanke due to the fitting of the phase boundary.

We emphasize that the above observations and conclusions are in agreement
with the results reported in [Han98] for the same configuration. However there
have been differences in the physical modeling and the numerical discretization.
Hanke developed the finite volume code BUB for the spherical and cylindrical
bubble collapse based on the Navier-Stokes equations using different equations
of state for the vapor phase, e.g., perfect gas, van der Waals and others, [HB9S,
Han98]. The material interface is fitted separating the liquid and vapor phase,
respectively. In each subdomain the fluid equations are solved where viscosity
and heat conduction are taken into account in the gas phase but neglected in
the liquid. The material interface is numerically treated according to [CSL96]
using front tracking. Thereby mixing of the phases near the phase boundary is
suppressed.

To validate the 2D computations we have performed computations with the
quasi-onedimensional code BUB using 200 cells in the gas and 800 cells in the
liquid neglecting dissipative effects as well as surface tension. In Figure 45 we
compare the Mach number distribution for both computations. The wave pat-
tern is identical. However, the bubble collapse is faster in our 2D computation
due to the higher acceleration of the interface after the first interaction with the
shock wave, c¢f. Mamq: = 1.2 (2D) and M a,q, = 0.8 (BUB). This is due to the
higher resolution of the gas phase by BUB which is fixed because the grid in
the two phases is attached to the interface and the grid points are redistributed
after each time step. For our 2D computation the number of cells is significantly
reduced with shrinking bubble radius. Taking this into account the results can

20



be considered in qualitatively good agreement.

The lack of viscosity and heat conduction in the present paper may signif-
icantly affect the states in the instant of shock focusing in the bubble center.
According to the similarity solution derived by Guderley [Gud42] for spheri-
cal compression waves where viscosity is neglected the pressure might increase
asymptotically to infinity. Due to the finite resolution in the discretization the
pressure will be bounded in the computation but it will further increase with
higher resolution. Taking into account viscosity the pressure will stay bounded
even with increasing resolution. This has been confirmed numerically in [Han98].

4.3 Planar Bubble Collapse next to a Rigid Wall

Finally we investigate the bubble collapse for initial conditions as in Section 4.2,
see Table 2, but next to a rigid plane wall, see Figure 7 (right), i.e., the axis
of the cylindrical bubble is parallel to the rigid wall and again it is possible to
consider a plane problem. The bubble radius is R = 0.001 [m] and the bubble
center is located at « = (3/7/2.0), i.c., the distance of the bubble to the planar
wall (z =0)is d = R/2.

The computational domain is determined by 1 = [0.0.1] x [-0.05,0.05].
The coarse grid discretization consists of Ny = 25 x 25 cells. The number of
refinement levels is L = 8. From this we infer that the (uniform) reference
grid on level L is composed of Ny = 6400 x 6400 cells. The time step size is
determined by a fixed CFL number of 0.5. Performing n = 60 macro time steps
this corresponds to a final time of about ¢ = 1.81 x 107° [s]. The threshold
value is ¢ = 0.001 and we use the second order reconstruction of the primitive
variables p, v and p. To avoid unphysical reflections from the boundary of the
computational domain its distance is chosen 100 times the bubble radius. Since
we are not interested in the flow field far away from the wall we do not perform
grid adaptation outside a radius larger than 0.002 [m] around the initial bubble
center. The computations are performed employing multilevel time stepping
with 60 macro time steps. The CPU time was about 11.5 hours on a PC with
AMD processor Opteron 250.

The dynamics of the waves developing in the fluid and their interaction
with the wall and the bubble interface can be deduced from the plots of the
density gradient magnitude, see Figures 46, ..., 51 and 52, 54, ..., 110. Due to
the different scales involved in the liquid and in the vapor these have to be scaled
logarithmically to show them simultaneously in one picture, i.e., we present
log(1 + |Vol|) where the density gradient magnitude is shifted by 1 to account
for vanishing gradients. Due to the waves and their interactions the fluid is
accelerated. This highly dynamic process is visualized by integral curves of the
velocity shown in Figures 53, 55,...,111 corresponding to the same times as for
the density gradient magnitude. The figures for both quantities are superposed
with contour lines of the vapor fraction to see how the phase interface is affected
by the wave interaction process.

First of all, we focus on the waves in the liquid, see Figures 46, ..., 51, In
the early stage of the computation the wave structure developing at the phase
boundary is the same as for the bubble collapse, see Section 4.2. An expansion
wave R1 is running into the liquid, see Figure 46. Since the bubble is located
next to a rigid wall the expansion wave R1 is reflected as an expansion wave R2
at the wall, see Figure 47. Due to the strong expansion the liquid behind the
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wave R2 the pressure drops below zero and a cavitation is forming. The reflected
expansion wave R2 again is reflected at the phase boundary, see Figure 48. Due
to the low acoustic impedance in the gas and the high acoustic impedance in
the liquid, see [Hen70, Tho72], the reflected wave is a compression wave, i.e.,
the phase is inverted. This procedure of reflection at the wall and at the phase
boundary is continued, see Figures 49,...,51 where the phase is maintained at
the wall but is inverted at the bubble.

To see the effect of the reflected expansion and compression waves on the
vapor phase inside the bubble we zoom into the vapor bubble, see Figures
52,...,111. In the beginning, there is only a shock wave S running towards
the bubble center, see Figure 52. When the reflected expansion wave R2 is in-
teracting with the phase boundary, see Figure 54, then it is partially reflected
into the liquid as discussed before and partially transmitted into the vapor
phase, see R3 and T1 in Figure 56. We note that the waves are running faster
in the liquid than in the vapor due to the higher sound speed in the liquid. Due
to the curvature of the bubble contour, the transmitted waves in the vapor are
defracted, see Figures 56, 58,...,68. Therefore the transmitted waves, see for
instance T1 in Figures 56, 58, ...,74, have the shape of a convex lens fixed at
the phase boundary, see Figures 58 and 60. With increasing time the curva-
ture of the lens becomes stronger, see Figures 62, 64,...,68, and, finally, the
lens closes to a circle, see Figure 70. The now circular wave focuses inside the
bubble at the symmetry line and is reflected, see Figures 72 and 74. Note that
by the transmitted waves the distribution inside the bubble becomes strongly
heterogeneous resulting in a pressure gradient of low pressure left to the bubble
center and high pressure to the right.

Simultaneously, the shock wave S is focusing in the bubble center, see Figure
66, and is reflected there. The reflected shock wave RS1 is running in outward
direction towards the bubble interface, see Figures 68, 70,72, 74. The shock
wave is interacting with the transmitted waves. Since in the vapor the difference
of the acoustic impedance is small these waves are transmitting without causing
reflection waves. Due to the defraction of the expansion and compression waves
the initially circular shock front flattens at the top and the bottom side and
becomes wavy, see Figure 74. The reflected shock wave RS1 is interacting with
the bubble interface. Due to the high difference in the acoustic impedance in
the two phases it is being reflected there and running inwards again, see RS2 in
Figures 76 and 78. This shock wave focuses and is reflected again as shock wave
RS3, see Figure 80. This process of shock focusing and shock reflection at the
phase boundary is continued. The details of this process can not be presented
here.

Due to the wave processes in the liquid and in the vapor the flow field is
accelerated. The dynamics of the acceleration can be depicted from the integral
curves of the velocity presented in Figures 53, 55,...,111. Starting from a flow
at rest the flow field is accelerated towards the bubble center when the expansion
wave R1 and the shock wave S pass, see Figure 53. The velocity field is rotational
symmetric as long as the expansion wave R1 has not been reflected at the wall.
The reflection of wave R1 leads to a distortion of the symmetry. Behind the
reflected expansion wave R2 a low pressure regime develops that extends with
increasing time into the far field. Therefore, the liquid is accelerated in the
direction of the symmetry line and near the wall it is moving almost parallel to
the wall. At the symmetry line the liquid is then deflected and directed towards
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the vapor bubble, see Figures 55, 57,...,89. While the flow is deflected near
the wall, the flow away from the wall is directed towards the bubble center, see
Figures 55, 57,...,61. Inside the bubble the vapor is no longer moving towards
the bubble center when the transmitted waves, see for instance T1, pass but
is deflected towards the symmetry line.  When the shock wave S focuses in
the bubble center, see Figure 67, it is reflected there and the flow behind the
reflected shock wave RS1 is now accelerated in outward direction, see Figures
69, 71, 73, 75. However, this acceleration is not sufficient to revert the flow
direction due to the underlying velocity field caused by the inward running
shock S and due to the pressure gradient caused by the transmitted expansion
waves as discussed above. Therefore the vapor in the right part of the bubble is
still moving inwards. On the other hand, behind the transmitted waves, see for
instance T1, the vapor is accelerated towards the bubble center, see Figures 65
and 67. Due to the strong acceleration of the vapor behind the reflected shock
wave RS1, the vapor behind the transmitted waves is repelled, see Figures 69,
71, 73, 75. A front is forming where the vapor from both sides is deflected
towards the symmetry line where the integral curves of the velocity coincide in
a stagnation point. Since the vapor is stronger accelerated at the right side of
the deflection front than at the left side, the stagnation point is moving towards
the wall, see Figures 77, 79, 81, 83, 85. Due to the ongoing process of shock
wave focusing in the bubble and shock reflection at the phase boundary, the
underlying flow field is further accelerated without changing the overall flow
direction in the regions left and right from the deflection front. However, the
flow attached to this front changes its direction. In the beginning, the attached
flow is directed towards the stagnation point, see Figures 71, 73, ...,83, whereas
it is moving away from the stagnation point in outward direction at some later
time, see Figure 85. Since the vapor is stronger accelerated to the right of the
deflection front than to the left, a velocity gradient develops across the front.
Due to this velocity gradient two vortices are forming inside the vapor bubble
above and below the symmetry line, rotating clockwise and counter-clockwise,
respectively, see Figures 83, 85, 87, 89, 91. The rotation of the vortices causes
the vapor to concentrate in the center of the vortices. This results in a high
compression of the vapor. In the core of the vortices we compute a pressure
of about 300 [bar], a density of about 250 [kg/m®] and a temperature of about
600 [K]. When the vapor mass is concentrating in the core of the vortices, the
vapor bubble splits into two parts and a liquid jet is forming, see Figures 91,
93, 95, 97, 99. This jet is directed towards the wall due to the clockwise and
counter-clockwise rotation of the vortices above and below the symmetry line,
respectively, see Figure 93. The two vapor bubbles cause a bottleneck for the
liquid due to the high density of the vapor. Therefore the liquid is accelerated
towards the wall through this orifice, see Figures 113, 115, ...,123. The maximal
speed of about 900 [m/s] is reached at time t = 9.07 x 107° [s], see Figure 119,
at the symmetry line between the two vortices. This value corresponds to a
Mach number of 1.6. At this instant, the vapor is at rest in the center of the
vortices whereas the velocity is about 300 [m/s] directed away from the wall at
the farest point of the bubble contours from the symmetry line.

When the liquid is accelerated through the orifice the pressure is increasing
before the bottleneck resulting in a high pressure region of about 2400 [bar], see
Figure 116. Since the liquid is expanding behind the orifice the high pressure
region is squeezed through this bottleneck and shot like a projectile towards the
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wall where it hits with high pressure that is about 5 times that of the undisturbed
liquid, see Figures 116, 118, 120, 122. The impact of the high pressure might be
the cause of material damage as has been observed in experiments, cf. [PL98,
BNSVO01a, BNSVO01b].

When the liquid jet hits the wall another stage in the bubble collapse begins.
The water supplied by the jet is deflected to both sides of the symmetry axis due
to the resistance of the wall. Since this liquid is moving at higher speed than the
liquid supplied from the undisturbed flow, it represses the latter, see Figures 93,
95, 97, 99. Because of this process the two vortices and attached to these the
vapor bubbles start to move towards the wall where they are deflected in upward
and downward direction, see Figures 101, 103, ...,111. If the high temperature
vapor bubbles would come into contact to the wall it might cause some material
damage. However, in our computations the vapor bubbles are surrounded by a
phase transition zone where the temperature is decreasing significantly.

We conclude the numerical investigation by some comments on the phase
interface. Due to the stiffened gas model, the phase boundary is not necessarily
a sharp discontinuity but may become diffusive. In the beginning, the interface
is slightly accelerated by the shock wave S resulting in a slow shrinking process
of the vapor bubble, see Figures 52, 54, ..., 74. When the shock wave RS2 is
reflected at the phase interface, the phase boundary is significantly accelerated,
see Figures 76, 78, 80. Due to the inertia of the liquid a phase transition zone
develops filled with a mixture of gas and liquid, see Figures 82, 84,...,110. By
the vortices forming inside the vapor bubble, the pure vapor is transported to
the core of these vortices. In Figures 84 and 86 we see that the vapor fraction
contour corresponding to pure vapor starts bulging and is finally penetrated by
the vapor-liquid mixture, see Figures 90 and 92. In the end, only two bubbles
filled with pure vapor remain, see Figures 94, 96, .. ., 110.

5 Conclusion

The stiffened gas model of Saurel and Abgrall [SA99] has been successfully
extended to a higher order scheme on locally refined grids. Multiscale-based
grid adaptation techniques [Miil02, CKMPO03] have been employed to improve
the efficiency of the scheme. This allows for a locally high resolution that
is needed to resolve accurately the local physical effects in the bubble collapse
process. Since this process is highly dynamical the time discretization is explicit.
Therefore the CFL condition is very restrictive because of the small cells sitting
on the high refinement levels. For the cells on the coarser discretization levels
we use a multilevel time stepping strategy that allows for larger time steps
on coarser scales. This has been recently developed in combination with the
multiscale-grid adaptation, cf. [MS06, LMS05, LMMS06]. This strategy had to
be modified taking into account the non-conservative upwind discretization of
the evolution equations for the material parameters.

The accuracy and the efficiency of the resulting adaptive scheme has been
validated by means of a two-phase Riemann problem. It turned out that the
accuracy is significantly improved by the 2nd order reconstruction in compari-
son with the original scheme of Saurel and Abgrall that is of 1st order only. In
addition, the CPU time as well as the memory resources are tremendously re-
duced because of the grid adaptation and the multilevel time stepping strategy.
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However, the non-conservative discretization of the evolution equations for the
material parameters results in some slight deviation of the shock position from
the exact position. Moreover, an additional temperature jump can be observed
in the numerically smeared contact discontinuity. For inviscid computations,
this has no effect on the computation. But for computations including viscos-
ity it might become significant in case the viscosity coefficient is temperature
dependent.

The scheme has then been applied to investigate the collapse of a free planar
vapor bubble at low pressure and density surrounded by water at high density
and pressure. A shock wave is running inside the vapor bubble between bubble
center and phase boundary where it is focusing and reflected several times. By
this process the gas undergoes a strong compression resulting in a significant
heating. The phase boundary is accelerated towards the bubble center where it
collapses and reaches a minimal radius that is about 25 times smaller than the
original bubble radius. In the instant of the collapse a shock wave is running
into the water that results in a significant compression of the liquid. At these
high values the incompressibility assumption is no longer justified. Due to the
compression inside the bubble, density, pressure and temperature increase by
several orders of magnitude. For more realistic values the gas should be modeled
by a real gas equation of state rather than the perfect gas law. We emphasize
that these observations and conclusions are in agreement with the results re-
ported in [Han98, HB9S8] for the same configuration but performing quasi-1D
computations exploiting spherical symmetry.

Finally we investigate the bubble collapse next to a rigid wall. The dynamics
of the resulting flow field can be separated into three stages. In a first stage, a
low pressure regime is developing between the wall and the vapor bubble. This
is caused by expansion and compression waves running between the wall and
the bubble where they are reflected. Due to the low acoustic impedance in the
gas and the high acoustic impedance in the liquid, the phase is inverted when
the wave is reflected at the bubble contour but it remains unchanged when it is
reflected at the wall. At the same time, a shock wave is running inside the bubble
towards the bubble center. Due to transmitted expansion and compression
waves at the interface, the pressure distribution becomes asymmetric also inside
the bubble. When the shock wave focuses in the bubble center a second stage
starts where a liquid jet is forming that penetrates the bubble at the symmetry
line and is directed towards the wall. This process is caused by the formation of
two vortices inside the vapor bubble by which the vapor is concentrating in two
almost rotational symmetric vapor bubbles above and below the symmetry axis.
The small distance between the two vortices causes a bottleneck for the liquid
which acts as a nozzle where the liquid is significantly accelerated. In front of
this bottleneck a high pressure zone is forming in the liquid where the pressure
is about 5 times higher than in the undisturbed liquid. This high pressure liquid
is then squeezing through the bottleneck and directed towards the wall where
it hits with high pressure. The impact of the high pressure might be the cause
of material damage. But this analysis requires considering of the coupled fluid-
structure problem with the appropriate modeling of elastic-plastic stress waves
in the solid wall, see [Dic97, Spe00]. When the jet hits the wall, the third stage
of the flow process starts. The liquid supplied by the jet is deflected at the wall
to both sides of the symmetry axis and pushes away the water supplied from
the free stream from above and below. In the wake of the jet the system of the

25



splitted bubbles and the vortices start moving towards the wall where they are
deflected upward and downward the symmetry axis.

The numerical investigation clearly indicate that the bubble splitting and
the formation of the liquid jet is essentially caused by the acceleration of the
vapor inside the bubble due to the shock wave focusing in the center and its
reflection at the phase interface as well as its interaction with the transmitted
compression and expansion waves. Therefore the frequently made assumption
of a homogeneous state inside the vapor bubble can no longer be considered to
be admissible.

So far viscosity and heat conduction as well as surface tension have not been
taken into account. These might affect the processes of bubble collapsing, jet
formation and bubble splitting. Furthermore, the phase boundary is diffusive
due to the modeling of the two-phase fluid by a single compressible medium. It
would be interesting to compare the results with sharp interface model using
level set methods, cf. [NDTO06]. This, in particular, would allow to use different
models for the gas and the liquid, respectively.
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