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NUMERICAL SCHEMES FOR LOW MACH WAVE BREAKING

FRÉDÉRIC GOLAY AND PHILIPPE HELLUY

Abstract. In this work, we describe a finite volume scheme for the compu-
tation of incompressible air-water flows. We use an artificial compressibility
approach that permits us to use a completely explicit scheme. We describe suc-
cessively the low Mach preconditioning of the scheme, the Riemann solver and
the non-conservative approach that is used to suppress velocity-pressure oscil-
lations, the second order extensions and the parallel implementation. Then it
is applied to the simulation of the breaking of a wave on a 15% slope.

Introduction

The numerical simulation of wave breaking has a long history (for a survey by
S. Grilli, see [17]). There are mainly two methods of approximation:

• The Boundary Integral Elements Method (BIEM) relies on a hypothesis
of potential flow. The Poisson equation on the potential under the free
surface is transformed into a non-linear, time-dependant integral equation
thanks to the Green function. The method is quite efficient and permits a
computation up to the reconnection of the jet with high precision [14].

• The other method relies on the resolution of the complete incompressible
Navier-Stokes equations coupled with a special treatment at the free surface.
It is more general and also valid after the reconnection. If the treatment
of the air-water interface is based on moving mesh techniques (Lagrangian
approach), it is called a front tracking method. If the computation is per-
formed on a fixed grid, it falls in the category of front capturing methods.
Examples of front capturing methods for this king of flows can be found in
many papers as, for examples, [28], [15], [5], etc.

In this paper, we study an original front capturing method for computing general
incompressible air-water flows and apply it to a 2D wave breaking over a reef. The
main idea is to take into account compressibility effects in the model, even if the
flow is clearly incompressible. The main advantage of this approach is that it is
possible to avoid implicit schemes in the computation of the pressure, as it is usual
in classical incompressible approaches. We have already tested successfully the
method in a previous paper [17], including comparisons with experiments and other
methods. Artificial compressibility methods have been already widely employed
in wave breaking simulation [15], [6], etc. The two novelties are: a physical low
Mach number preconditioning and the use of a non-conservative scheme in order to
improve the precision.
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wave breaking.
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We concentrate here on several improvements of the method in order to envisage
realistic 3D computations. In [17] the mesh was regular, we use here curvilinear
meshes. The finite volume Godunov scheme that is implemented would be conve-
nient for arbitrary unstructured meshes but we use here the Cartesian topology of
the mesh to avoid the storage of the gradients of the unknowns at the centroids of
the control volumes. The Cartesian mesh also permits an easier parallel implemen-
tation of the scheme. In [17], we also solved the energy conservation law. We will
try to avoid this computation by employing an isothermal model.

The paper is then organized as follows:

• In Section 1, we first state two mathematical models for compressible air-
water flows: an isothermal Euler model (”isothermal model”) and a com-
plete Euler model with an energy conservation law (”energy model”). We
show how it is possible to compute low Mach flows by an adequate tuning
of the pressure law coefficients. This physical ”preconditioning” is crucial
to avoid too constraining CFL conditions and to achieve acceptable preci-
sion. We show that the two models lead to a well-posedness of the Riemann
problem that is at the heart of the Godunov finite volume method.

• In Section 2 we recall, thanks to 1D experiments, that the classical con-
servative finite volume schemes have a very bad behavior at the air-water
interface (pressure oscillations). We adapt a trick by Abgrall and Saurel
(described in [1], [2], [3], [9]) in order to avoid these oscillations in the en-
ergy model. The trick is based on a non-conservative resolution of the air
fraction evolution. We show that the trick also works with our isothermal
model, thanks to the linearity of the pressure law.

• Section 3 is devoted to the presentation of the finite volume scheme. We
first present the first order version, together with the non-conservative cor-
rection. We also introduce several second order extensions based on the
MUSCL1 Van Leer approach [27]. Two slope limiters are tested: the Barth
limiter described in many textbooks (as [10]) and the WLSQR 2 limiter.
The WLSQR limiter is a variant of the WENO 3 limiter. It is described in
[7] and included references. For the time integration we propose to test two
techniques: the MUSCL-Hancock approach [24] and the classical midpoint
Euler approach.

• Section 4 is devoted to several 1D and 2D experiments: ”shock tube” test
cases, the propagation of a stable solitary wave over a flat bottom and
finally the wave breaking of a solitary wave arriving on a 15% slope.

1. Mathematical model

1.1. Compressible model for two-fluid flows. We wish to compute a two-fluid
air-water flow in a three-dimensional box Ω defined by

(1) x = (x1, x2, x3) = (x, y, z) ∈ Ω ⇔





xmin < x < xmax,
ymin < y < ymax,

zmin + b(x, y) < z < zmax.

1MUSCL stands for Monotonic Upwind Scheme for Conservation Laws
2WLSQR stands for Weighted Least SQUare
3WENO stands for Weighted Essentially Non Oscillatory
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The unknowns are the density ρ, the velocity vector

(2) u = (u1, u2, u3) = (u, v, w),

the pressure p and the air fraction ϕ of the two-fluid flow. The unknowns depend
on the position x ∈ Ω and the time t ∈ [0, T ].

The air fraction ϕ satisfies

0 6 ϕ 6 1,

ϕ(x, t) = 1 if x is in the air at time t,

ϕ(x, t) = 0 if x is in the water at time t.

We consider two compressible Euler models with gravity. The first model as-
sumes that the flow is isothermal. Considering the conservation laws for the mass
and the momentum and the convection of the fraction, it reads

(3)

ρt + (ρu)x + (ρv)y + (ρw)z = 0,

(ρu)t + (ρu2 + p)x + (ρuv)y + (ρuw)z = 0,

(ρv)t + (ρvu)x + (ρv2 + p)y + (ρvw)z = 0,

(ρw)t + (ρwu)x + (ρwv)y + (ρw2 + p)z = −ρg,

ϕt + uϕx + vϕy + wϕz = 0,

p = p(ρ, ϕ).

where g denotes the gravity (g = 9.81 m · s−2). The pressure p = p(ρ, ϕ) is a
function of the density ρ and the fraction ϕ that will be discussed in Section 1.2.

The second model also considers the energy conservation law. It reads

(4)

ρt + (ρu)x + (ρv)y + (ρw)z = 0,

(ρu)t + (ρu2 + p)x + (ρuv)y + (ρuw)z = 0,

(ρv)t + (ρvu)x + (ρv2 + p)y + (ρvw)z = 0,

(ρw)t + (ρwu)x + (ρwv)y + (ρw2 + p)z = −ρg,

(ρE)t + ((ρE + p)u)x + ((ρE + p)v)x + ((ρE + p)w)x = −ρgw,

ϕt + uϕx + vϕy + wϕz = 0,

E = ε +
1

2
(u2 + v2 + w2), p = p(ρ, ε, ϕ).

The total specific energy E is the sum of the internal specific energy ε and the
specific kinetic energy. The pressure law p = p(ρ, ε, ϕ) will be discussed in Section
1.2. The two above models can be written in a unified way

(5) Wt + F(W)x + G(W)y + H(W)z = S(W).
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In the first case, the conservative variables vector W, the fluxes F, G, H and
the source S are defined by

(6)

W = (ρ, ρu, ρv, ρw, ρϕ)T ,

F = (ρu, ρu2 + p, ρvu, ρwu, ρϕu)T ,

G = (ρv, ρvu, ρv2 + p, ρvw, ρϕv)T ,

H = (ρw, ρwu, ρwv, ρw2 + p, ρϕw)T ,

S = (0, 0, 0,−ρg, 0)T ,

p = p(ρ, ϕ).

In the second case, they are defined by

(7)

W = (ρ, ρu, ρv, ρw, ρE, ρϕ)T ,

F = (ρu, ρu2 + p, ρvu, ρwu, (ρE + p)u, ρϕu)T ,

G = (ρv, ρvu, ρv2 + p, ρvw, (ρE + p)v, ρϕv)T ,

H = (ρw, ρwu, ρwv, ρw2 + p, (ρE + p)w, ρϕw)T ,

S = (0, 0, 0,−ρg,−ρgw, 0)T ,

p = p(ρ, ε, ϕ).

Very few theoretical results are established for the general system of conservation
law (5). It is generally admitted (and proved in very particular situations) that
existence, uniqueness and stability hold if the system is hyperbolic. We introduce
the notation

(8)
n = (n1, n2, n3),

F(V,n) := F(V) · n1 + G(V) · n2 + H(V) · n3

The hyperbolicity condition states that for any unit vector n = (n1, n2, n3) the
matrix

(9)
DF

DW
(W,n) = A(W,n)

is diagonalizable, with real eigenvalues. In the two above models (3) and (4), the
computation of the eigenvalues is a very classical exercise (see for example [10]).
The eigenvalues are u · n − c , u · n and u · n + c where c is the sound speed of
the two-fluid mixture. Even when the pressure law depends on the fraction ϕ, the
sound speed is defined by the usual formula (where, as before, pρ and pε denote the
partial derivatives of p with respect to ρ and ε)

(10) c2 = pρ +
p

ρ2
pε.

For the isothermal model (3), where the pressure law does not depend on ε, it
becomes

c2 = pρ(ρ, ϕ).

According to (10), the hyperbolicity condition can also be written

(11) pρ +
p

ρ2
pε > 0.

Finally, the Partial Differential Equations (PDE) system has to be supplemented
by boundary conditions. In the two cases here, we consider perfect wall conditions
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on the boundary ∂Ω. Considering the outwards unit normal vector n = (n1, n2, n3)
to Ω on ∂Ω, this wall condition reads

(12) u · n = 0.

1.2. Pressure law. The flows that we wish to simulate are low Mach number flows.
The local Mach number M of the flow is the ratio

(13)
M =

|u|
c

,

|u| =
√

u2 + v2 + w2,

where c is the local sound speed defined by (10).
When the Mach number is uniformly small, the flow is almost incompressible.

In physics, one usually considers that a flow is incompressible if the Mach M < 0.3.
There will not be big differences between a flow at Mach M ≃ 1/10 and a flow at
Mach M ≃ 1/1000. In our configurations the material velocity |u| will be of the
order of 1 m/s. The real sound speed in air is around 400 m/s and the real sound
speed in water is around 1600 m/s. If one is interested only in the incompressible
flow, it is allowed to set an artificial sound speed in the two fluids. This fact will
be used in the sequel for two main reasons:

• avoid too constraining CFL stability condition;
• limit the numerical viscosity and the bad low Mach behavior of the finite

volume schemes as described in [16] or [25].

Typically, we will set the sound speed c to the value

(14) c0 = 20 m/s

for air and water at a reference pressure and density. The reference states are for
the water

(15) ρW = 1000 kg/m3, p0 = 105 Pa,

and for the air

(16) ρA = 1 kg/m3, p0 = 105 Pa.

Remark 1. Let us note that in our computations the material velocity will typically
be of the order of 1 m/s. Thus it is dangerous to take a smaller sound speed that
could exaggerate the compressibility effects. On the other hand a higher sound speed
would dramatically increase the numerical diffusion and the CFL constrain.

In the case of the isothermal flow, we choose the pressure law

(17) p = c2
0(ρ − (ϕρA + (1 − ϕ)ρW )) + p0.

In the case ϕ = 0 (or ϕ = 1), we recover a classical isothermal pressure law for the
water (or the air).

Remark 2. Let us note that our pressure law has no physical meaning in the
mixture zone 0 < ϕ < 1. If we were able to solve exactly the PDE, ϕ would only
take the values 0 or 1. Because of the numerical diffusion, an artificial mixture will
appear in the simulations. In the artificial mixture region, the pressures of the two
fluids will not equilibrate.
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Remark 3. Several authors (as in [6]) use a more physical approach in the mixture
region. By imposing the pressure equilibrium of the two components, they construct
a pressure law with a more complex analytical expression.

In the second case, with the energy equation, the pressure law is a so-called
stiffened gas equation

(18) p = (γ(ϕ) − 1)ρε − γ(ϕ)π(ϕ).

The stiffened gas pressure law is a simple generalization of the perfect gas pressure
law. Indeed, when π(ϕ) = 0, we recover a perfect gas law. The pressure law
coefficients have a particular form, proposed by Abgrall and Saurel in [22]

(19)

1

γ(ϕ) − 1
= ϕ

1

γA − 1
+ (1 − ϕ)

1

γW − 1
,

γ(ϕ)π(ϕ)

γ(ϕ) − 1
= ϕ

γAπA

γA − 1
+ (1 − ϕ)

γW πW

γW − 1
.

The parameters γA, γW , πA and πW are determined in such a way that the sound
speed c = c0 = 20 m/s for the reference states (15) and (16). Using (10), the sound
speed is given here by the formula

(20) c =

√
γ(ϕ)(p + π(ϕ))

ρ
.

In practice, we choose γW = γA = 1.1 and the sound speed equation written for
ϕ = 0 and ϕ = 1 gives the two missing parameters πA and πW (πA = −99636 Pa,
πW = 263636 Pa).

Remark 4. In order to obtain the uniqueness of the solution, the system (4) or
(3) has to be supplemented with an entropy condition (see [19], [10]). Now that we
have chosen the pressure laws, it is possible to state precisely the entropy condition,
which reads

(21) (S)t + div(T) 6 0

in a weak sense. Several choices are possible for the entropy S and the entropy flux
T. For the energy model (4), we can take

(22)
S = −ρ ln

(
ε − π(ϕ)/ρ

ργ(ϕ)−1

)
,

T = Su.

For the isothermal model, we can take

(23)
S =

1

2
ρ(u2 + v2 + w2) + c2

0ρ ln ρ,

T = Su + c2
0ρu.

1.3. Riemann problem. The Riemann problem consists in solving the following
one-dimensional problem

(24)

Wt + F(W)x = 0,

W(x, t) =

{
WL if x < 0,
WR if x > 0.
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This solution is supposed to be self-similar

W(t, x) = R
(x

t
,WL,WR

)
.

The resolution of the Riemann problem for the compressible Euler equations is
described in many references. We can cite [24] or [10] for example. It appears that
the computation of the solution in the case of a two-fluid flow is very similar. The
details are given for example in [3].

As usual, the solution of the Riemann problem is made up of constant states
separated by shock waves, rarefaction waves or a contact discontinuity. It is thus
of the form

R(ξ,WL,WR) =





WL if ξ < λ−
1 ,

WI if λ+
1 < ξ < λ2,

WII if λ2 < ξ < λ−
3 ,

WR if λ+
3 < ξ.

The unknowns are:

• the two intermediate states WI and WII ;
• the velocities λ−

1 6 λ+
1 < λ2 < λ−

3 6 λ+
3 .

The situation is depicted on Figure 1.

Figure 1. Riemann solution in the (x, t) plane.

Furthermore, if λ−
i < λ+

i (resp. if λ−
i = λ+

i ) then the i-wave is a rarefaction wave
(resp. a shock of velocity σ = λ−

i = λ+
i ). When the i-wave is a rarefaction, the

computation of W = R(ξ,WL,WR) , for λ−
i < ξ < λ+

i is classically carried out
by expressing that the three Riemann invariants are constant in the i-rarefaction
(see [10]).

On the other hand, we have pI = pII = p⋆. If no vacuum occurs, we can also
write uI = uII = u⋆. Moreover, it can be verified that the fraction ϕ does not jump
in the 1-wave and the 3-wave. It gives ϕI = ϕL and ϕII = ϕR. It is then classical to
compute the 1- and 3-waves from the pressure p⋆ common to the two intermediate
states WI et WII .

We have now to distinguish between the isothermal model (3) and the energy
model (4).
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1.3.1. Isothermal case. In the case of the model (3), we introduce the function

(25) H(ρa, ρb) =

{
c0

ρa−ρb√
ρaρb

if ρa < ρb,

c0 ln
(

ρa

ρb

)
if ρa > ρb,

in such a way that the velocities ua and ub on the two sides of a 1-wave (shock or
rarefaction) satisfy

(26) ub = ua + H(ρa, ρb).

In a 3-wave they have to satisfy a similar relation

(27) ub = ua − H(ρa, ρb).

The density can be expressed as a linear function of the pressure p and the fraction
ϕ

(28) ρ(p, ϕ) =
p − p0

c2
0

+ ϕρA + (1 − ϕ)ρW .

And in the two intermediate states, the pressure is constant equal to p∗, thus

ρI = ρ(p∗, ϕL),

ρII = ρ(p∗, ϕR).

To solve the Riemann problem, we have first to solve numerically for p∗

(29)
u∗ = uL + H(ρL, ρ(p∗, ϕL))

= uR − H(ρR, ρ(p∗, ϕR)).

It can be proved that equation (29) admits a unique solution

(30) p∗ > pmin = max (p(0, ϕL), p(0, ϕR)) .

The proof is the same as for a isothermal one-fluid Riemann problem (and can be
found in [24], [10]). It relies on the monotony properties of the function

(31) p∗ → uR − uL − H(ρR, ρ(p∗, ϕR)) − H(ρL, ρ(p∗, ϕL)).

Once p∗ is known, the rest of the solution can be computed.

1.3.2. Energy model. In the case of the model (4), we introduce the functions

ha(p⋆) =
1

ρa

(γa + 1)(pa + πa) + (γa − 1)(p⋆ + πa)

(γa + 1)(p⋆ + πa) + (γa − 1)(pa + πa)
, a = L or R,

Φa(p⋆) =

√
(p⋆ − pa)(

1

ρa
− ha(p⋆)),

ga(p⋆) =
1

ρa

(
pa + πa

p⋆ + πa

)1/γa

,

Ψa(p⋆) =
2

γa − 1
(

1

ρa
γa(pa + πa))1/2

(
(
p⋆ + πa

pa + πa
)

γa−1

2γa − 1

)
,

Xa(p⋆) =

{
Φa(p⋆) if p⋆ > pa,
Ψa(p⋆) if p⋆ < pa,

Ha(p⋆) =

{
ha(p⋆) if p⋆ > pa,
ga(p⋆) if p⋆ < pa.

We then get
uI = uL − XL(p⋆),
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uII = uR + XR(p⋆),

1

ρI
= HL(p⋆),

1

ρII
= HR(p⋆),

and the Riemann problem is solved when p⋆ is known.
If no vacuum region appears, we have to solve

(32) u∗ = uI = uII = uL − XL(p∗) = uR + XR(p∗).

The following theorem holds

Theorem 1. Let pmin = −min(π(ϕL), π(ϕR)). If

(33) uR − uL ≤ − (XL(pmin) + XR(pmin)) ,

then the Riemann problem has a unique solution. The pressure p⋆ ≥ pmin is the
unique solution of

uL − XL(p⋆) = uR + XR(p⋆).

This result is quite similar to the case of the Riemann problem for a single fluid.
For the proof we refer (for example) to [11], [10], [20]. When inequality (33) is not
true, a vacuum has to be introduced. More details and proofs are given in [3]. In
practice, for the wave breaking simulations, we did not have to introduce a vac-
uum to solve the Riemann problem in the finite volume solver for the energy model.

As usual, the equation (29) or (32) on p⋆ is solved by an iterative Newton method.
Typically, we have to numerically solve an equation of the form

(34) f(p∗) = 0,

where the function f is strictly monotone, concave and satisfy

(35)

lim
p→pmin

f(p) = −∞,

lim
p→+∞

f(p) = +∞.

Depending on the initialization, it may happen that a Newton iterate p is smaller
than pmin. In this case, it is necessary to restart the algorithm with a new p such
that

(36) pmin < p 6 p∗.

2. Low precision of the conservative approach

2.1. Failure of the conservative Godunov scheme. This section is devoted to
a short and simple presentation of the pressure oscillations phenomenon in the con-
servative Godunov schemes. It appears that for very simple one-dimensional test
cases, the classical first order conservative Godunov scheme gives very bad results
on every conservative form of the equations. We first exhibit one of these test cases,
which is a simple Riemann problem.
Then, we present a fix proposed by Abgrall and Saurel [1], [2] that permits to avoid
the pressure oscillations at the interface. The construction principle is to require
that the scheme preserves the moving contact discontinuities. This condition leads
to a non-conservative discretization of the transport equation for the air fraction ϕ.
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Let us recall that the conservative 1D Godunov scheme also preserves moving con-
tact discontinuities in the case of a one-fluid flow. The non-conservative correction
is only useful for multifluid flows. We shall then show that this approach, initially
designed for the energy model, can be applied to the isothermal model. Extensions
to higher dimensions and higher orders present no difficulty.

In this section, we restrict ourselves to a Riemann problem initial condition. For
the numerical experiments, we choose the following values

(37) W(x, 0) =

{
WL if x < 1/2,
WR if x > 1/2,

with

(38)

γW = 1.1, γA = 1.4, πW = πA = 0,

ρL = 10, uL = 50, vL = wL = 0, pL = 1.1 × 105, ϕL = 1,

ρR = 1, uR = 50, vR = wR = 0, pR = 105, ϕR = 0.

We present numerical results obtained by a classical Godunov scheme. The approx-
imated system is (4) in one dimension written in a conservative form.

Consider a space step h and a time step τ . The discretization points are xi =
ih, i ∈ Z. The cells Ci are centered on xi, Ci =]xi−1/2, xi+1/2[. We look for an
approximation of W in the cell Ci at time tn = nτ

Wn
i ≃ W(tn, x), x ∈ Ci.

A general conservative finite volumes scheme reads

Wn+1
i = Wn

i − τ

h
(Fn

i+1/2 − Fn
i−1/2).

In the case of the Godunov scheme, the numerical flux is given by the resolution of
a Riemann problem at each cell interface xi+1/2 and takes the form

Fn
i+1/2 = F(R(0,Wn

i ,Wn
i+1)).

The time step has to satisfy a CFL condition for stability. The CFL number at
time n is defined by

β =
λmaxτ

h
,

λmax = max
i

max(|un
i − cn

i | , |un
i + cn

i |),

where cn
i is the sound speed computed by (10) in the cell i at time n. We must

ensure

β < 1.

The initial conditions are (38). We plot only the pressure at time t = 1 ms. The
study interval is ]0, L[ with L = 1 m. The number of cells is fixed at N = 400
and the CFL number is β = 0.7. We observe pressure oscillations at the contact
discontinuity (which is also the material interface between the two fluids). The
results are in Figure 2.
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Figure 2. Godunov scheme, pressure (line: exact; dots: nu-
meric). The contact is located at x = 0.55.

Remark 5. Numerical experiments performed on very fine meshes indicate that
the numerical solutions of the classical Godunov scheme indeed converge toward
the good solutions when the mesh step h → 0 (see [9]). The convergence occurs
in the L1-norm and very seldom in the L∞-norm: overshoots and undershoots are
often observed on ρ, u, p. Surprisingly, the ϕ variable is often more precise. The
numerical rate of convergence is the same as for one-fluid flow computations. An
analysis, in the BV space, of these phenomena is given in [4]. Thus it is more
rigorous to say that the Godunov conservative scheme suffers from a bad precision
instead of ”oscillations”.

2.2. A non-conservative Godunov scheme.

2.2.1. Energy case. The conservative scheme gives very bad results and cannot be
used for higher dimensional simulations. This bad behavior is also observed when
an approximate Riemann solver is employed. This subject has been studied in
many papers: [1], [18], [22], [3], [26], etc. A second order MUSCL extension would
slightly improve the results but it is not sufficient.

In order to improve the precision of the Godunov scheme it is possible, as pro-
posed by Saurel and Abgrall in [22], to replace the conservative equation on the
fraction

(39) (ρϕ)t + (ρϕu)x = 0,

by its non-conservative equivalent

(40) ϕt + u · ϕx = 0.

Although these two equations are equivalent, their approximations may be different.
We now show that a special non-conservative approximation give better results. For
this, let us consider a general Godunov scheme, associated to an exact or approx-
imate Riemann solver (the VFRoe scheme [8] falls in this category). We suppose
that the scheme is conservative for the mass, momentum and energy equations and
only give up the conservation of the mass fraction. We index by i + 1/2 the solu-
tion of the Riemann problem at the interface beetwen the cell i and the cell i + 1.



12 FRÉDÉRIC GOLAY AND PHILIPPE HELLUY

Suppose that we want to approximate a general moving contact discontinuity of
constant velocity v and pressure p. To compute the conserved quantities in the cell
i at time n + 1, the scheme reads

(41)

ρn+1
i = ρn

i − τ

h

(
(ρu)n

i+1/2 − (ρu)n
i−1/2

)
,

(ρu)n+1
i = (ρu)n

i − τ

h

(
(ρu2 + p)n

i+1/2 − (ρu2 + p)n
i−1/2

)
,

(ρε + ρ
u2

2
)n+1
i = (ρε + ρ

u2

2
)n
i − τ

h

(
(ρεu + ρu

u2

2
+ pu)n

i+1/2

−(ρεu + ρu
u2

2
+ pu)n

i−1/2

)
.

We now impose that the scheme preserves the moving contact discontinuities,
i.e. that un+1

i = un
i = v and pn+1

i = pn
i = p. We obtain

(42)
ρn+1

i = ρn
i − τ

h
v
(
ρn

i+1/2 − ρn
i−1/2

)
,

(ρε)n+1
i = (ρε)n

i − τ

h
v
(
(ρε)n

i+1/2 − (ρε)n
i−1/2

)
.

But we have

(43) ρε = p

(
ϕ

1

γA − 1
+ (1 − ϕ)

1

γW − 1

)
+

(
ϕ

γAπA

γA − 1
+ (1 − ϕ)

γW πW

γW − 1

)

We deduce that necessarily, we must have

(44) ϕn+1
i = ϕn

i − τ

h
v
(
ϕn

i+1/2 − ϕn
i−1/2

)
.

This is an upwind approximation of the transport equation (40).

Theorem 2. Any scheme that reduces to (44) for constant velocity and pressure
will then preserve moving contact discontinuities.

We can also consider a more general pressure law of the form p = p0(ρε, ρ, ϕ).
By inverting this relation, it is possible to express the product ρε as a function of
p, ϕ and ρ

ρε = g0(p, ϕ, ρ).

Theorem 2 is still true if the function g0 is linear with respect to ϕ and ρ, for p
fixed. This kind of problematic is studied in [9].

We propose now a scheme satisfying Theorem 2. First, we define the interface
values by the resolution of Riemann problems at the points xi+1/2:

Wn
i+1/2 = R(0,Wn

i ,Wn
i+1).

For density, momentum and energy, the classical conservative approach is employed:

ρn+1
i = ρn

i − τ

h
((ρu)n

i+1/2 − (ρu)n
i−1/2),

(ρu)n+1
i = (ρu)n

i − τ

h
((ρu2 + p)n

i+1/2 − (ρu2 + p)n
i−1/2),(45)

(ρE)n+1
i = (ρE)n

i − τ

h

(
((ρE + p)u)n

i+1/2 − ((ρE + p)u)n
i−1/2

)
.

On the other hand, an upwind non-conservative scheme is used for the fraction.
This non-conservative scheme is based on the contact discontinuity velocity of the
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Figure 3. Saurel-Abgrall scheme, pressure (line: exact; dots: numeric)

Riemann problems solved at the points (xi+1/2). It reads

(46) ϕn+1
i = ϕn

i − τ

h
(min(un

i+1/2, 0)(ϕn
i+1 − ϕn

i ) + max(un
i−1/2, 0)(ϕn

i − ϕn
i−1)),

It is easy to check that the scheme (46) reduces to (44) for constant velocity and
pressure states.

We can also check that our scheme satisfies a maximum principle. Indeed (46)
can be rewritten

(47)

ϕn+1
i = aϕn

i + bϕn
i−1 + cϕn

i+1,

a = 1 − b − c,

b =
τ

h
max(un

i−1/2, 0),

c = − τ

h
min(un

i+1/2, 0).

The fraction ϕn+1
i is a convex linear combination of ϕn

i , ϕn
i−1 and ϕn

i+1 under the
CFL condition

(48)
τ

h

(
max(un

i−1/2, 0) − min(un
i+1/2, 0)

)
6 1.

Our choice is slightly different from the one of Saurel and Abgrall in [22], which
is based on the approximate Riemann solver of Rusanov. The Riemann solver of
Rusanov is known to be very diffusive. An exact Riemann solver allows us to obtain
more precise numerical results, especially in the contact waves.

With the scheme (45), (46), the results on the same test case as above are given
in Figure 3. There is an evident improvement.

2.2.2. Isothermal case. Now, we show that this approach can be extended to the
isothermal model.

First, we define the interface values by the resolution of Riemann problems at
the points xi+1/2:

Wn
i+1/2 = R(0,Wn

i ,Wn
i+1).
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For density and momentum, the classical conservative approach is employed:

ρn+1
i = ρn

i − τ

h
((ρu)n

i+1/2 − (ρu)n
i−1/2),

(ρu)n+1
i = (ρu)n

i − τ

h
((ρu2 + p)n

i+1/2 − (ρu2 + p)n
i−1/2).(49)

On the other hand, an upwind non-conservative scheme is used for the fraction.
This non-conservative scheme is based on the contact discontinuity velocity of the
Riemann problems solved at the points (xi+1/2). It reads

(50) ϕn+1
i = ϕn

i − τ

h
(min(un

i+1/2, 0)(ϕn
i+1 − ϕn

i ) + max(un
i−1/2, 0)(ϕn

i − ϕn
i−1)),

The scheme preserves constant pressure and velocity states because the density
is linear with respect to ϕ when the pressure is fixed.

3. Finite volume in higher dimensions

3.1. First order scheme. In order to compute the solutions to (4) or (3) we have
to detail the finite volume method in higher dimensions. First, the computational
domain Ω is split in several open sets Ci, i ∈ I = {1, · · · , N} called cells or finite
volumes such that

(1)
⋃
i∈I

Ci = Ω,

(2) ∀(i, j) ∈ I × I, i 6= j ⇒ Ci ∩ Cj = ∅.

The time domain is also split in a sequence of intervals ]tn, tn+1[ such that t0 = 0,
tP = T , tn < tn+1. The time step is denoted by τn = tn+1 − tn. The solutions W

are approximated in each cell Ci and for each time tn by a constant vector

(51) Wn
i ≃ W(x, tn), x ∈ Ci.

The unknowns satisfy

(52)

∫

Ci

Wn+1
i =

∫

Ci

Wn
i − τn

∫

∂Ci

F(Wn
i ,Wn

j ,nij) + τn

∫

Ci

S(Wn
i ).

In the right hand side of (52), F(U,V,n) is the numerical flux. Index j is for the
cells Cj that are neighbors of the cell Ci along the boundary ∂Ci (Figure 4). It
means that along ∂Ci the index j is a piecewise constant function. If the boundary
∂Ci has an intersection with ∂Ω, the mirror boundary condition (12) is used in
order to extrapolate the outside state Wn

j .
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Figure 4. Finite Volume mesh.

An initial condition W(x, 0) = W0(x) is used to start the computation

(53)

∫

Ci

W0
i =

∫

Ci

W0.

The vector nij is the normal unit vector on ∂Ci that points from Ci towards Cj .
The flux F(WL,WR,n) is based on an exact resolution of the Riemann problem

by neglecting the variations of the solution in the directions orthogonal to n. Using
notation (8), the Riemann problem in the direction n consists in finding a vector
valued function (ξ, t) → V(ξ, t) solution of

(54)

Vt +
∂

∂ξ
F(V,n) = 0, ξ ∈ R, t > 0,

V(ξ, 0) =

{
WL if ξ < 0,
WR if ξ > 0.

Thanks to the rotational invariance of the Euler equations, it is equivalent, up to
a change of referential, to solve the problem (24). Let us note the unique entropy
solution

(55) R(ξ/t,WL,WR) = V(ξ, t),

and the solution of the Riemann problem at the interface between (L) and (R) is
noted

(56) W∗ = W(WL,WR) = R(0,WL,WR).

The classical Godunov flux would be

(57) F(WL,WR,n) = F(W∗,n).

But here, we have to take into account the non-conservative correction. This is

done in the following way. We introduce a new vector W̃ that is made of the usual
conservative variables, except for the last component ρϕ, which is replaced by the
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non-conservative variable ϕ

(58)
W̃ = (ρ, ρu, ρv, ρw, ρE, ϕ)

T
(energy model),

W̃ = (ρ, ρu, ρv, ρw, ϕ)
T

(isothermal model).

The components of the numerical flux F̃ are now equal to those of the conservative
Godunov flux F, except for the last component, which is now

(59) f̃(W̃L, W̃R, ν)5 or 6 = min(u∗ · ν, 0)(ϕR − ϕL).

And the scheme (52) is replaced by

(60)

∫

Ci

W̃n+1
i =

∫

Ci

W̃n
i − τn

∫

∂Ci

F̃(W̃n
i ,W̃n

j ,nij) + τn

∫

Ci

S(Wn
i ).

Remark 6. For the time integration of the source terms, we have used a very
simple scheme. It is known that more sophisticated approaches are required when
one needs to capture precisely the rest states. We refer for example to the pioneering
work by Leroux [13]. Here we are interested in unsteady computations and the rough
classical method is sufficient.

3.2. Second order extensions. It is well known that the first order version of the
Godunov scheme has a low precision. It is thus necessary to improve the precision.
We shall here use the slope reconstruction technique together with a limitation
procedure in order to improve the space accuracy. For the time accuracy, we shall
test two methods:

• a second order Runge-Kutta scheme (midpoint Euler);
• the so-called MUSCL Hancock time integration.

Remark 7. In the formula (60), it is clear that the integration of the source term
is already second order accurate in space (because the midpoint integration rule is
second order accurate).

It is not possible to choose any variable for the slope reconstruction in order to
preserve the constant velocity-pressure states. It appears that the reconstruction
has good properties in the

(61) Y = (ρ, u, p, ϕ)

variables for the energy model and in the variables

(62) Y = (ρ, u, p)

for the isothermal model. We suppose that we have obtained second order approx-
imation of the mean values Wn

i of the approximation at time n in the cells i. This
also gives a second order approximation of the primitive variables Yn

i = Y(Wn
i )

in the centroids of the cells. By a classical slope reconstruction technique, space
slopes sn

i and time derivatives rn
i are computed and the primitive variables Y are

now approximated by

(63) Yn+1/2(x) = Yn
i + sn

i (x − xi) + rn
i

τn

2
, x ∈ Ci.
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(64)

s =




ρx ρy ρz

ux uy uz

px py py

ϕx ϕy ϕz


 (energy model),

s =




ρx ρy ρz

ux uy uz

px py py


 (isothermal model).

We can compute the extrapolated values on the cell edges

(65) Y
n+1/2
ij = Yn

i + sn
i (xij − xi) + rn

i

τn

2
,

where xij is the center of the edge between Ci and Cj . Note that, in general,

(66) Yij 6= Yji.

We can also compute the values in the cells at time n + 1/2

Y
n+1/2
i = Yn

i + rn
i

τn

2
.

It is then possible to go back to the variables W or W̃ and compute by an inverse
change of variables

(67) W
n+1/2
ij , W̃

n+1/2
ij , W

n+1/2
i and W̃

n+1/2
ij .

Then, we define the interface values by the resolution of Riemann problems at the
points xij in the direction nij

(68) W∗ = R(0,W
n+1/2
ij ,W

n+1/2
ji ).

The second order scheme now reads

(69)

∫

Ci

W̃n+1
i =

∫

Ci

W̃n
i − τn

∫

∂Ci

F̃(W̃
n+1/2
ij ,W̃

n+1/2
ji ,nij)

−τn

∫

Ci

(0 · · · 0,un
i · ∇ϕn

i )T

+τn

∫

Ci

S(W
n+1/2
i ).

Remark 8. The corrective term

(70) − τn

∫

Ci

(0 · · · 0,un
i · ∇ϕn

i )T

is required to achieve second order because the last equation is now non-conservative.
Indeed, in contrast with the conservative case, we cannot apply the Stokes formula
to transform the volume integral into a surface integral. For the first order scheme,
the term (70) cancels because the gradient of the approximate ϕ cancels in each cell.
It is no more the case when ϕ is linear in each cell. The second order extension of
non-conservative finite volume scheme is studied for example in [21].

In the energy model, the approximated gradient ∇ϕn
i of ϕ in the cell Ci is simply

the last line of the tensor sn
i (see (64)).

In the isothermal model, the approximated gradient ∇ϕn
i is computed from the

differentiation of the pressure law (17)

(71) ∇ϕ =
∇p − c2

0∇ρ

c2
0(ρW − ρA)

.
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As before, ∇p and ∇ρ are extracted from sn
i in (64).

Using the special forms of the pressure laws (18) and (17), it is easy to check
that the second order extension of the scheme still preserves the constant velocity-
pressure states. Let us remark that it would not be true with other choices of the
reconstructed variables than (61) or (62).

Classically, in the MUSCL Hancock reconstruction technique, the space slope is
first constructed and limited (two limiters will be given below). It is then easy to
give a time slope from the evolution equations on Y. Indeed, Y is solution of a
first order system of the form

(72) Yt +

3∑

d=1

Bd(Y)Yxd
= 0.

We thus set

(73) rn
i = −

3∑

d=1

Bd(Yi)Yxd
,

where the partial derivatives Yxd
are obtained from sn

i in (64).
It is also possible to consider a time first order scheme by setting

(74) rn
i = 0.

In this case, the MUSCL scheme present instabilities that develop slowly. In the
sequel, if only space slopes are computed, we shall use a second order midpoint
Euler integration in time in order to improve the stability. It is easy to check that
the midpoint Euler integration does not alter the preservation of constant velocity-
pressure states.

We now address the several envisaged possibilities for the space slope reconstruc-
tion. The first method is due to Barth.

Consider a primitive variable q (any component of Y) that has to be recon-
structed from the cell values qi. First, the gradient is estimated thanks to a discrete
version of the Green formula

(75) vol(Ci)∇̃qi =

∫

∂Ci

qi + qj

2
nij .

This gradient has to be limited in order to avoid oscillations. The limiter α is
the largest number that satisfies

(76)
0 6 α 6 1,

∀j, α
∣∣∣∇̃qi · (xij − xi)

∣∣∣ 6 |qj − qi| .
The limited gradient is then

(77) ∇qi = α∇̃qi.

The second method is more recent and less diffusive. This is the WLSQR recon-
struction technique. The reconstruction in the cell i is a priori sought under the
form

(78) qi(x) = qi + ∇qi · (x − xi).

Ideally, on the neighbors cell we would like to have

(79) ∀j, vol(Cj) qj =

∫

Cj

qi(x).
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The system (79) is an overdetermined system of linear equations. We thus decide
to solve it in the least square sense. But then, it is known that the resulting scheme
will be unstable. Indeed, the whole scheme would be linear and thus cannot be
TVD (Total Variation Diminishing) as proven by Goodman and LeVeque in [12].

Instead, we introduce weights noted ωij and solve the problem

(80) ∇qi = arg min
S

∑

j

ωij

(∫

Cj

qi − qj + S · (x − xi)dx

)2

.

The weights are chosen in order to diminish the influence of the qj for which the
jump |qi − qj | is big (shock detection). As suggested by Fürst [7], we choose

(81) ωij =
1√

|qi − qj | + ηq0

,

where η > 0 is a small parameter and q0 is an order of magnitude of the primitive
variable q.

4. Application to wave breaking

4.1. Programming. For the implementation, we have chosen a regular mesh made
of hexahedra.

In order to avoid too long computations, we have also implemented a parallel
version of the finite volume scheme, using the library MPI (Message Passing Inter-
face). The SGI parallel computer is made of 12 CPUs Itanium II at 1.5 GHz. The
operating system is Linux RedHat.

The domain is split into N equivalent sub-domains, along the x-axis. For the
1D experiments we take N = 1 and for the 2D validations we take always N = 8
to speed up the computations.

Because we have in mind an extension to 3D computations, we decided to avoid
the storage of the gradients at the centers of the cells. It implies that it is necessary,
at the beginning of each time step, to exchange two layers of cells on the left and
right faces of the sub-domains.

The implementation is completely 3D but in this paper we present only 2D results
(only one layer of cells in the y direction).

4.2. 1D validations. In the previous sections, we have proposed two mathematical
models for low Mach two-fluid flows. We decided to simulate them by a Godunov
scheme. We have now to compare different options in order to select the better
compromise in term of CPU time and precision:

• energy or isothermal model;
• Barth or WLSQR limiter;
• midpoint Euler or Hancock time integration.

The comparison is made on 1D academic Riemann problems (shock tubes problem),
in all these simple tests, the y and z components of the velocity vector v = w = 0.

First, we verify that all the schemes preserve the constant velocity-pressure
states, which is true for all the options.

The second test consists in a two-fluid Riemann problem. The initial condition
is made of two constant states defined as follows:

uL = 0, pL = 1.5 105, ϕL = 0 if x < 0,
uR = 0, pR = 1.0 105, ϕR = 1 if x > 0.
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The density is computed by (28) in the isothermal case and we take ρL = 1125, ρR =
1 for the energy case. The left and right states are discontinuous at x = 0. The
computational domain is (x ∈ [−10, 10], y ∈ [−0.1, 0.1], z ∈ [−0.1, 0.1]), and as
already mentioned, we consider a 3D finite volume grid: 100 cells in the x-direction
and 1 cell in the y or z-direction. A mirror condition is imposed on lateral sides.
The CFL number is fixed to 0.9.

The WLSQR scheme is known to be very accurate and robust in the case of single
fluid problems [7], though it is CPU time expensive. But in the case of two-fluid
problems we have observed that it is often necessary to perform an additional slope
limitation at the interface between the two fluids. For these reasons we decided to
use only the Barth limiter, which is much faster.

In this computation, we notice a perfect agreement between the energy and the
isothermal computations. Thus, in Figure 5 we plot the density along the x-axis
only for the isothermal model. Except naturally for the first order scheme, all the
other results are very similar. In Figure 6, we observe that the left rarefaction wave
is best resolved with a first order in time and second order in space approximation.

Figure 5. Density of the isothermal model at t=0.25s:(a) exact,
(b) first order scheme, (c) Euler Barth scheme
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Figure 6. Density of the isothermal model at t=0.25s:(a) exact,
(b) first order scheme, (c) Barth scheme, (d) Euler Barth scheme

The accuracy is similar for the other variables (p and ϕ), except for the velocity
as shown in Figure 7. We notice many oscillations, especially in the case of the
first order in time and second order in space scheme, as shown in Figure 8. This
behavior is classical because the MUSCL first order in time and second order in
space scheme is linearly unstable.

Figure 7. Velocity of the isothermal model at t=0.25s:(a) exact,
(b) first order scheme, (c) Barth scheme, (d) Euler Barth scheme
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Figure 8. Velocity at t=0.25s:(a) exact, (b) Isothermal first or-
der, (c) Isothermal Barth , (c’) Energy Barth, (d) Isothermal Euler
Barth , (d’) Energy Euler Barth, (e) Isothermal Hancock Barth ,
(e’) Energy Hancock Barth

We observe in Figure 9 that the oscillations vanish with an appropriate mesh
refinement.

Figure 9. Isothermal, Barth. Velocity at t=0.25s:(a) exact, (b)
20 cells, (c) 100 cells, (d) 500 cells

The CPU times are compared on Table 1. As expected, the isothermal model
corresponds to the shortest computations.

Isothermal model Energy model
first order 0.3 s 1.1 s

Barth 0.5 s 1.3 s
Euler and Barth 1.0 s 2.5 s

Hancock and Barth 0.5 s 1.3 s
Table 1. Cpu time
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4.3. Solitary wave propagation. In this test case we propagate a solitary wave
on a flat bottom. The precise boundary and initial conditions are depicted in Figure
10. The initial condition is a stable solitary wave computed thanks to the method
of Tanaka [23]: this is an incompressible potential solution of the Euler equations.

The crest of the solitary wave is at H1 = 0.6 m over the still water level. It
propagates at a phase velocity w = 1.18

√
gh1 = 3.92 m/s. The domain (x ∈

[−5., 22.], y ∈ [−0.1, 0.1], z ∈ [−1., 2.]) is approximated by a coarse structured 3D
finite volume grid: 600 cells in the x-direction, 1 cell in the y-direction and 90 cells
in the z-direction. A mirror condition is imposed on the lateral sides. The CFL
number is fixed to 0.9. We propagate this solitary wave during 4 seconds (15.68
m).

Figure 10. Propagation of a solitary wave with flat bottom

In this case, we notice again that the WLSQR scheme cannot be used without a
supplementary slope limiter, and the CPU time is prohibitive.

We also notice that the Hancock’s time integration leads to local velocity oscil-
lations in the air near the air-water interface. These instabilities generate negative
density values. We were able to finish the computation only by disconnecting the
time gradient computation when necessary. That’s why we prefer the midpoint
Euler time integration, which is confirmed to be more robust.

We verify that the energy model and the isothermal model are in excellent agree-
ment. Therefore, results are presented only with the isothermal model. As demon-
strated on Table 2, the saving of CPU time is important. This gain is due to several
factors:

• there are less unknowns because we don’t consider the energy equation;
• the Riemann solver is simpler and requires generally less Newton’s itera-

tions;
• in the energy model, the sound speed is not constant. In practice, we

observe a more constraining CFL condition in the air. Thus, the time step
is bigger with the isothermal model than with the energy model.

Isothermal model Energy model
first order 0h 24min 0h 51min

Barth 0h 49min 2h 44min
Euler and Barth 1h 34min 5h 51min

Table 2. CPU time

As shown in Figure 11, where we plot the profile of the water surface, the solitary
wave is well propagated. As the first order approximation is dissipative, the ampli-
tude of the wave diminishes. But with a second order approximation in space, the
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profile is improved. We again notice that the Barth scheme gives quite good results
with competitive computing time, in spite of a small distortion of the interface.

Figure 11. Wave profile (isoline ϕ = 0.5) for the isothermal
model at t=4.s: (a) exact, (b) first order, (c) Barth, (d) Euler
Barth

To improve the amplitude of the numerical wave, it is enough to increase the
number of cells. It is demonstrated in Figure 12, where we compare the water
surface computed with the isothermal model (first order in time and Barth) on a
coarse grid (600 × 90) and on a finer grid (1200 × 180).
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Figure 12. Wave profile (isoline ϕ = 0.5) for the isothermal
model at t=4.s: (a) exact, (b) 1200×180 cells, (c) 600×90 cells.
Second order Barth limiter in space. First order in time.

Figure 13. Wave breaking: solitary wave and reef

4.4. Two-dimensional wave breaking over a slope. Now, we intend to break
the wave over a reef (Figure 13). The initial conditions are exactly the same as in
the previous case except for the bottom. We consider at the right of x = 5.225 a
non-flat bottom equation b(x, y) = (x − 5.225)/15. (see 1), in order to break the
solitary wave. The structured finite volume mesh is naturally distorted after this
point.

We found a perfect agreement between the isothermal and energy model. But
the isothermal model is faster (Table 3) so the investigation of 3D cases becomes
more tractable.

Isothermal model Energy model
first order 0h 39min 1h 28min

Barth 1h 20min 3h 17min
Euler and Barth 2h 30min 6h 14min

Table 3. CPU time

As for the solitary wave propagation, the first order scheme is dissipative. The
breaking of the wave seems to be realistic (Figure 14).
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Figure 14. Water fraction: (a) initial data, (b) t = 2.0s first
order, (c) t = 2.0s second order, (d) t = 4.0s first order, (e)
t = 4.0s second order , (f) t = 4.5s first order, (g) t = 4.5s second
order, (h) t = 5.0s first order, (i) t = 4.0s second order

Figure 15. Isoline ϕ = 1/2 and velocity vectors at time t = 4.0 s

Conclusion

In this paper, we have presented a simple finite volume method to simulate two-
fluid incompressible flows. An artificial compressibility is introduced in order to use
classical explicit schemes for compressible flows. A special tuning of the pressure
law coefficients is necessary to avoid CFL restrictions and bad precision (physical
preconditioning). A non-conservative treatment of the air fraction is also necessary.

We have compared several options in order to select a relevant scheme that will
be now applied to 3D cases. According to our experiments we observe that:
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• the isothermal model permits to divide by 3 the CPU time compared with
the energy model;

• the Barth limiter is more robust and sufficiently precise compared to the
more sophisticated WLSQR limiter;

• the MUSCL-Hancock time integration is fast and precise for 1D cases. But
for 2D computations the second order midpoint Euler time integration is
more stable and thus preferable;

• the parallel version of the method is very easy to implement and lead to
interesting CPU gains.

We now plan to perform 3D wave breaking computations as initiated by Bi-
ausser in [5]. We also investigate possible improvements of the precision by mesh
refinement and/or higher order interpolations.
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