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Abstract. This work is devoted to the numerical modelling of a reactive gas-
particle flow that arises in internal ballistic. The model, proposed by Gough [2],
takes into account complex physical phenomena such as mass transfer, drag force or
intra granular stress. A non-conservative finite volume approach adapted from [11]
is applied in order to simulate the model. After an academic validation test case of
the scheme, the combustion propagation ignited by a cylindrical perforated primer
is then simulated and compared with experiments.

Keywords: finite volume, non-conservative scheme, two-phase flow, solid propel-
lant, ignition, internal ballistic

1. Internal ballistic problem

The two-phase flows in guns are very difficult to model. Many inter
phase interaction and complex phenomena occur while the powder
burns and the bullet moves in the gun tube.

In order to simplify the physical geometry of a gun, we consider a
cylindrical combustion chamber linked to a tube of the same constant
cross section. At the initial time, the mixture of gas-powder grains is
contained in the combustion chamber, limited by the breech at one
end, and by the shot base at the other end. The initial geometry is
illustrated on Figure 1.

c© 2006 Kluwer Academic Publishers. Printed in the Netherlands.

nuss_hell.tex; 10/02/2006; 11:02; p.1



2

Propellant is ignited by a hot gas stream from an igniter. The igniter
is a cylinder filled with black powder, perforated by several holes. Hot
combustion gases escape through the holes. The addition of energy
increases the propellant grain surface temperature. The combustion
occurs when the ignition temperature is reached.

Figure 1. Initial geometry in a gun

After ignition, the solid propellant burns and gases are produced.
We assume that the combustion products are similar to the initial gas
species. The pressure increases in the combustion chamber, while the
front flame propagates in the powder bed according to the following
mechanism: ignition of some grains produces a hot gas stream (as
igniter does) that locally increases the temperature and pressure. The
gases propagate in the domain, and by local heat transfer from the
gas phase to the solid phase, the other grains are ignited. The bullet
begins to move when the pressure at the shot base is greater than the
start pressure, and goes into the tube until the muzzle. Internal ballistic
studies stop when the bullet exits from the tube.

Experimental studies exist but are limited: pressure measurements
are only possible at the breech or at the shot base and the only available
velocity is the bullet’s velocity at the muzzle. The temperature and
pressure gradients, the high velocities of the flow and the particles
volume fractions are still difficult to measure.

2. The mathematical model

One can find many two-phase flow models in the scientific literature,
focusing on different approaches, with different advantages and draw-
backs. We refer for example to the book of Gidaspow [1] for a survey
of such models. We will concentrate here on the Gough’s model [2]
that is very popular in the ballistic community. Our work is devoted to
find a numerical method in order to replace a Mac-Cormack integrator
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Gas-particle flows with combustion 3

that is not able to simulate non-classical weapons because of numerical
instabilities. For details on the evolution of ballistic models, see [3].

The system is made of the mass and momentum conservation laws
for both phases, energy conservation for the gas phase and two convec-
tion equations for the enthalpy of the grains and the thickness of burnt
powder. The flow is supposed to be one-dimensional in the direction of
the symmetry axis of the gun tube with constant section.

In a first stage after ignition, the shot base does not move. In this
case, the governing set of equations takes the form

∂ W

∂ t
+

∂ F (W )

∂ x
+ C (W )

∂ W

∂ x
= S (W ) , (1)

The vector W = W (x, t) ∈ Ω ⊂ R
7 is the unknown vector. The time

variable is noted t ∈]0, T [ and the space variable x ∈]0, L[, where L is
the length of the tube. The flux vector F and the sources vector S are
functions from ]0, L[×]0, T [ to R

7 and C is a function from ]0, L[×]0, T [
to R

7×7. We define

W =




α2

α1ρ1

α1ρ1u1

α2ρ2u2

α1E1

Hts

d




, F (W ) =




α2u2

α1ρ1u1

α1
(
ρ1u

2
1 + p1

)

α2
(
ρ2u

2
2 + p2

)

α1u1 (E1 + p1)
0
0




,

C (W ) ∂W
∂x =




0
0

−p1∂xα1

p1∂xα1

p1∂x (α2u2)
u2∂xHts

u2∂xd




(2)

where αk is the volume fraction, ρk the density, uk the velocity, pk

the pressure and Ek the total energy of phase k. The index k = 1
corresponds to the gas phase and k = 2 corresponds to the solid phase.
The solid phase is supposed to be incompressible. The specific enthalpy
of the grains is noted Hts and the thickness of the burnt powder of each
grain is noted d.

REMARK 1. In the sequel, we will give a relation between p2 and p1

(see formula (8)). It will then be possible to eliminate the pressure p2

in the system (1)-(2). Thus, the Gough’s system falls into the category
of the so-called two-velocity one-pressure models for two-phase flows.
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REMARK 2. In our application, the pressure p1 in the solutions of (1)-
(2) appears to be smooth: the apparition of shock waves would indicate
a bad functioning of the gun. Thus, it is not necessary to give a more
precise definition of the non-conservative products in (2).

Let us define the source terms by

S (W ) =




−Γc

ρ2

Γc + Γign

Γc u2 − D + Γign uign

−Γc u2 + D

Γc

(
Qex + p1

ρ2
+

u2
2

2

)
− u2 D − As qt + Qign Γign

κ qt

ṙ




.

In this source term:

− Γc is the mass transfer rate, due to combustion, from the solid
phase to the gas phase;

− Γign is the mass addition rate from the igniter;

− uign is the gas velocity from the igniter;

− D is the interphase drag force;

− Qex is the exothermic energy released by the solid phase during
the combustion;

− Qign is the energy released by the igniter;

− ṙ is the combustion rate;

− qt is the heat flux per specific surface unit between the two phases;

− As = α2
Sp

Vp
is the specific surface of the solid phase;

− Sp and Vp are respectively the instantaneous surface and volume
of a propellant grain;

− κ corresponds to the thermal diffusivity of the solid phase.

REMARK 3. The thermal diffusion and radiation are taken into ac-
count only at the local level: in one grain, and between one grain and
the surrounding gas. It means that our model will not be able to predict
accurately combustion fronts that are driven by thermal diffusion or
radiation. The combustion front will propagate because of the convection
of hot gases. Pressure waves can also trigger the combustion by a local
increase of the temperature.
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Gas-particle flows with combustion 5

In a second stage, when the pressure in the combustion chamber is
greater than the resistive pressure of the bullet, the shot base begins
to move.

With a moving boundary, the mesh must be adapted to the ex-
pansion of the computing domain. We use a rezoning technique that
consists in a change of variables in order to obtain a virtual static
computation domain. We introduce the change of variable

ξ =
x

xp
,

where x is the real position and xp is the position of the shot base.
Thus, 0 ≤ ξ ≤ 1, and we obtain a new expression of the system (1)-(2)

∂

∂ t
(xp W ) +

∂

∂ ξ
(F (W ) − vp ξ W ) + C (W )

∂ W

∂ ξ
= xp S (W ) (3)

In order to compute the position of the shot base xp, we apply the
fundamental principle of dynamics

mp
dvp

dt
= A (pm − pr) , (4)

where vp =
dxp

dt is the bullet speed, mp its mass, A the tube section, pm

the pressure at the shot base and pr the resistive pressure (induced by
the bullet/tube friction, and depending on the geometry of the system).
The resistive pressure is supposed to be constant.

We consider the following wall boundary conditions:

− at the breech u1 = u2 = 0;

− at the shot base u1 = u2 = vp.

At the initial time, the two phases are supposed to occupy homoge-
neously the initial volume (the combustion chamber).

3. Constitutive laws

The definition of αk as volume fraction (also called porosity) for each
phase gives

α1 + α2 = 1 . (5)

The perfect gas equation of state is inappropriate in internal ballis-
tic problems. High temperatures and pressures require using real gas
equation of state, such as Noble and Abel law that reads

p1 (ρ1, e1) =
(γ − 1) ρ1 e1

1 − η ρ1
, (6)
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where γ is the specific heat ratio and η is the gas covolume. The internal
specific energy e1 of the gas is given by

E1 = ρ1

(
e1 +

u2
1

2

)
. (7)

p2 is defined by

p2 (α1, ρ1, e1) = p1 (ρ1, e1) + Rp (α1, ρ2) , (8)

Rp is the intra granular stress, given in [4],

Rp =

{
0 if α1 > αc

ρ2 c2p αc (αc−α1)

α1(1−α1) if α1 ≤ αc
(9)

The critical porosity αc is usually taken equal to the initial porosity.
The velocity cp is a measured sound speed in a particle bed far from
compaction. For our configuration, it is sufficient to suppose that it is
constant.

From the intra granular stress expression (9), it is possible to com-
pute the speed of propagation of infinitesimal granular disturbances.
It is noted a and in the sequel we shall call it the sound speed of the
powder. Of course, when the porosity α1 is far from 0, it is much smaller
than the real sound speed of the incompressible compacted powder. We
have

a2 =
Rp

ρ2
−

α2Rp,α1

ρ2
. (10)

In our configuration, the velocity a is given by

a =

{
0 if α1 > αc

αc

α1
cp if α1 ≤ αc

. (11)

We observe that the intra granular stress is zero when the porosity
(the volume fraction of gas) is sufficiently high. On the other hand,
it tends to infinity when the porosity tends to zero. This latter case
corresponds to the compaction of the powder. It is clear that the
compaction will produce a very high sound speed in the powder. In nu-
merical simulations this can lead to a very constraining CFL condition.
Fortunately, in our application, it appears that the combustion of the
powder tends to increase the porosity during the computation and that
the dominant sound speed is the sound speed of the gas. Hyperbolicity
of the system (1)-(2) depends directly on the intra granular stress. A
sufficient strength implies hyperbolicity of the system. The eigenvalues
of the Gough’s model are computed in Appendix B. For more details,
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Gas-particle flows with combustion 7

we refer to [5], [10].

Theoretical expressions have been developed to model the drag force of
a single particle in a gas flow, but the more complex case of a particle
bed has been modelled only from correlations. We use a limit of Ergun’s
correlation given in [6]

D = fr
ϕ (α2)

6
ρ2 (1 − α2)

Sp

Vp
(u1 − u2) |u1 − u2| , (12)

with fr the resistive factor. The function ϕ depends on the shape of
the grains. Here we use

ϕ (α2) =





0.3 α2 > 0.9 ,

1.75
(

1−α2

α2

αc

1−αc

)0.45
αc < α2 < 0.9 ,

1.75 α2 < αc .

(13)

At last, we use the combustion law of Vieille [7]

ṙ = ar Pn + b , (14)

where ar, b and n are experimentally determined constants.
We describe the mass transfer rate by

Γc = As ρ2 ṙ

= (1 − α1)
Sp

Vp
ρ2 ṙ ,

(15)

where Sp and Vp are respectively the instantaneous surface and volume
of a grain powder, computed by geometric formulas depending on the
shape of the grains. Possible expressions for Sp and Vp are given below.

The heat flux qt per unit of surface depends on the gas temperature
T and particle surface temperature Tps and is defined as follows

qt = ht (T − Tps) , (16)

with ht the total thermal transfer coefficient, sum of convective and
radiative coefficients

ht = hc + hr . (17)

The radiative coefficient is computed by

hr = εp σ (T + Tps)
(
T 2 + T 2

ps

)
, (18)

with the hypothesis that the gas emissivity is equal to unity. εp cor-
responds to the particles emissivity and σ to the Stephan-Boltzmann
constant.
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The convective coefficient is obtained from the Nusselt number de-
duced from correlations (see [8] for example). It reads

Nu = 6
hc

k

Vp

Sp
, (19)

where the Eucken approximation [9] for polyatomic gas gives the ther-
mal conductivity of the gas k using the viscosity coefficient µ, the
universal gas constant R and the specific heat at constant volume cv

k =
15

4
R µ

(
4

15

cv

R
+

3

5

)
. (20)

We follow Porterie [4] in order to find another expression of the Nusselt
number

Nu = 2 + 0.4Re2/3
p Pr1/3 , (21)

where Pr is the Prandlt number defined by Pr = µ cp/k with cp the
specific heat of the fluid at constant pressure. From (20), we deduce
the expression of the Prandlt number for polyatomic gas

Pr =
4 γ

9 γ − 5
, (22)

γ corresponding to the specific heat ratio.
The expression of the surface temperature Tps is given after the

integration of Fourier’s law and by supposing a parabolic temperature
profile in a spherical grain. See the Appendix in [4] for more details.
We compute Tps from

Tps = Tps0
− 3

2
ht Hts

k2
p

+
[(

Tps0
− 3

2
ht Hts

k2
p

)2
+ 3ht Hts T

k2
p

− T 2
ps0

]1/2 (23)

where kp is the thermal conductivity of particles and Tps0
is the initial

surface temperature.

4. Numerical method

We use a version of the Rusanov scheme, a Godunov scheme based on
an approximate Riemann solver. In general, Finite Volume Schemes are
used for conservation laws. In our case, non-conservative terms induce
an adaptation of the scheme. We follow the idea presented in [11] for a
two-fluid two-pressure model.
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Gas-particle flows with combustion 9

In order to approximate the solution, consider a space step h, a time
step τ , the points ξi = xi/xp = ih/xp and the instants tn = nτ . The
computations cells are Ci =]ξi−1/2, ξi+1/2[.

The solution W̃ = xpW of (3) is approximated in each cell Ci and
at each time tn by a constant vector

W̃n
i = xn

p Wn
i ≃ W̃ (ξ, tn) , ξ ∈ Ci . (24)

The non-conservative finite volume scheme reads

h
(
W̃n+1

i − W̃n
i

)
+ τ

(
Fn

i+1/2 −Fn
i−1/2

)

+ τ
(
Gn

i+1/2,− − Gn
i−1/2,+

)
= τ S̃n

i ,
(25)

where S̃n
i = xn

p Sn
i . We define the numerical conservative flux by the

classical Rusanov flux

Fn
i+1/2 =

1

2

(
F̃n

i+1 + F̃n
i

)
−

sn
i+1/2

2

(
W̃n

i+1 − W̃n
i

)
, (26)

with
F̃n

i = Fn
i − vn

p ξi W
n
i , (27)

and the numerical non-conservative fluxes by

Gn
i+1/2,− = C(Wn

i )
W̃ n

i+1
+W̃ n

i

2 ,

Gn
i−1/2,+ = C(Wn

i )
W̃ n

i
+W̃ n

i−1

2 ,
(28)

The velocity si+1/2 is the maximal wave speed at the interface i + 1/2.
It is defined by

sn
i+1/2 = max

(
sn
i , sn

i+1

)
,

sn
i = max (|(u1)

n
i | + cn

i , |(u2)
n
i | + an

i ) .
(29)

In practice, we only have to consider the wave speed in the gas phase:
in our configuration cn

i is always greater than the granular wave speed
an

i and |u2 − u1| ≪ c.
In order to satisfy the CFL stability condition we take the time step

as

τ = δ
h

max
i,n

sn
i

(30)

The CFL number δ has to be < 1. In practice, we observe a stability of
the scheme when this condition is satisfied. It indicates that the source
terms are not stiff compared with the convective terms.

Let us notice that the chosen non-conservative numerical flux (28)
is arbitrary. Other choices are possible. They will give the same result
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when the solution pressure is smooth. On the other hand, to compute
discontinuous pressure solutions, it is important to define precisely the
non-conservative products and the associated numerical approxima-
tions. For more details on these topics we refer for example to the
work of Sainsaulieu [14] and the cited references. Recently, relaxation
two-velocity two-pressure models have been designed where the non-
conservative products are associated to linearly degenerated waves and
are thus naturally defined [11]. It may be an elegant way to circumvent
this difficulty.

The Rusanov scheme is known to be very robust but also very
dissipative. This robustness is interesting here because a part of the
computation occurs in a non-hyperbolic regime. The hyperbolicity of
the model is discussed in Appendix B. For more precise computations
it is necessary to use a higher order scheme and to modify the model
in such a way that it is always hyperbolic.

REMARK 4. Recently, relaxation models for two-velocity two-pressure
flows have been designed that are always hyperbolic [11], [16]. It is
possible, for some one-pressure models, to provide an approximation
by a two-pressure model. In this approach it is necessary to fix a time
scale τr at which the two pressures equilibrate. When τr → 0 we recover
the one-pressure model. It would be interesting to construct such a two-
pressure model for approximating the Gough’s system (but it is not an
immediate application of [11] or [16]).

However, numerical experiments have shown that this approach, with
τr = 0, does not permit to eliminate the non-hyperbolic instability on
fine meshes [12]. To our knowledge, the construction of a general one-
pressure hyperbolic model for gas-particle flows is still not achieved.

5. Numerical results

5.1. Academic validation

In order to validate our code, we first simulate a flow with constant pres-
sure and constant velocity. It is a numerical test (no physical meaning)
where we consider that no interaction occurs between the two phases
and we set the intra granular stress Rp = 0.

The initial condition is made of two different constant states (Rie-
mann problem) in a 1 meter length computation domain.

The solution can be computed explicitly (with a source S(W ) = 0).
The velocity and pressure remain constant, and the other quantities
are simply convected at the constant velocity. The proposed numerical
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Gas-particle flows with combustion 11

Table I. Initial conditions, constant velocity, constant pressure.

α1 ρ1 (kg.m−3) ρ2 (kg.m−3) u1 (m.s−1) u2 (m.s−1) p1 (Pa) p2 (Pa)

Left 0.5 0.870 1587 100 100 105 105

Right 0.8 0.512 1587 100 100 105 105

scheme (26), (28) has the important property that it preserves exactly
the constant pressure and velocity fields. Despite its simplicity, this
property is not satisfied by all the classical finite volume schemes.
The choice of the pressure law (6) is also important (see [13]). This
property also appears to be important to compute more complicated
configurations.

Figure 2 displays the results obtained with a 1000 cells mesh at
a final time t = 3 ms (the constant velocity and pressure are not
represented).

We notice the high diffusion of the density and porosity by the
Rusanov scheme on Figure 2. The method is only first order in time
and space. It remains interesting for 1D computations, because it is
always possible to refine the mesh.

5.2. Virtual 132 mm gun

Secondary, the simulation of a ballistic cycle in a virtual 132 mm gun
(see [15] and Appendix A) is computed. Only the expected bullet veloc-
ity at the muzzle, the maximal pressure at the breech and shot base and
shot exit time are available. We use a 100 cells mesh, with the empirical
values γ = 1.27, η = 1.0838 · 10−3 and αc = 0.4225. The powder used
is a 7-holes type and the corresponding geometrical functions are

Sp = π (L0 − 2d) [D0 − 2d + 7 (d0 + 2d)]+
π

2

[
(D0 − 2d)2 − 7 (d0 + 2d)2

]
,

Vp =
π

4
(L0 − 2d)

[
(D0 − 2d)2 − 7 (d0 + 2d)2

]
,

where L0, D0 and d0 are respectively the length, the external diameter
and the perforation diameter before the combustion.

The evolutions of the breech and shot base pressures on time are
displayed on Figure 3. Different simulations with other internal ballistic
codes have given realistic ranges for the computed values. Table II
summarizes the results and shows that our results are in agreement
with the expected ones.
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Figure 2. Porosity and density

Figure 3. Evolution of pressures
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Gas-particle flows with combustion 13

Table II. Result of simulations

Computed value Acceptable range Algorithm result

Maximal shot base pressure (MPa) 325 − 360 344

Maximal breech pressure (MPa) 355 − 400 377

Muzzle velocity (m.s−1) 660 − 705 694

Shot exit time (ms) 14.66 − 16.58 15.75

5.3. Real 60 mm gun

At last, simulations on a 60 mm gun are compared to experimental
measurements given in [17]. We compare the maximal breech pressure
and the muzzle velocity coming from the experiments and the simula-
tions, by using three different initial powder masses: 1.17 kg, 1.365 kg
and 1.4625 kg. In Table III and IV the data are compared.

Table III. Muzzle velocity datas

Initial powder mass Experimental result Simulation result

1.17 kg 1000 m.s−1 1001 m.s−1

1.365 kg 1119 m.s−1 1116 m.s−1

1.4625 kg 1194 m.s−1 1172 m.s−1

Table IV. Breech pressure datas

Initial powder mass Experimental result Simulation result

1.17 kg 367 MPa 363 MPa

1.365 kg 534 MPa 521 MPa

1.4625 kg 665 MPa 626 MPa
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14

We observe a good agreement between the simulations and the ex-
periments even if the precision of the model decreases with the mass of
powder.

6. Conclusion

In this paper, we have adapted the Gough’s model to describe the
two-phase flow with combustion in a gun. This is a non-conservative,
two-velocity, one-pressure model that involves complicated source terms
and lacks of hyperbolicity. We have proposed a numerical method,
based on the Rusanov scheme, to simulate this kind of flow. We have
been able to obtain satisfactorily results on academic and real configu-
rations.

We have now to improve the model in several directions:

− It is important, for practical configurations, to take into account
combustion chambers with variable section;

− It would be interesting to find a relaxation two-velocity two pres-
sure model to approximate the Gough’s model. In this way we
could avoid the lack of hyperbolicity and then envisage higher
order numerical schemes. With an appropriate two-velocity two
pressure model we also hope to be able to give a simple definition
of the non-conservative products (even if it is not crucial for interior
ballistics);

− Finally, a huge work has still to be done on the modelling of the
combustion process: chemical model, combustion of grains with
special shapes, dependence of combustion front velocity with the
convection and the diffusion, etc.
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Appendix

A. Data set for AGARD 132 mm

We used a 7-holes powder. Igniter’s holes are placed at 5 points

x = 0 mm,
x = 31.75 mm,
x = 63.5 mm,
x = 95.24 mm,
x = 127 mm.

The computations data are given in Table V.
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Table V. Data set for AGARD 132 mm

45.359d0 mp, projectile weight (kg)

0.132d0 A, calibre (tube section) (m)

762.d-3 xt=0
p , chamber length (m)

5.08d0 xp,max, tube length (m)

1.d5 p0, initial pressure (Pa)

294.d0 T0, initial temperature (K)

294.d0 Tps0
, initial surface temperature (K)

137.9d5 pr, resistive pressure (Pa)

21.3d0 M , molecular mass of powder (kg/kmol)

1.0838d-3 η, covolume (m3/kg)

1.27d0 γ, specific heat ratio (-)

9.5255d0 mc, powder charge (kg)

1578.d0 ρ2, density of powder (kg/m3)

892.9d0 Qex, explosive heat of powder (kcal/kg)

1445.565d0 cv, specific heat at constant volume of powder (m2/(s2.K))

0.d0 b, in the Vieille’s law expression (m/s)

3.12d-9 ar, in the Vieille’s law expression (m/s/Pab)

0.9d0 n, in the Vieille’s law expression (SI)

11.43d-3 D0, external diameter of grains (m)

1.143d-3 d0, internal diameter of grains (m)

25.4d-3 L0, length of a grain (m)

0.5d0 fr, resistance factor of powder (-)

0.4225d0 αc, critical porosity (-)

254.d0 cp, sound speed in the powder bed (m/s)

0.d0 ǫp, radiative emission factor (-)

8.677d-8 κ, thermal conductivity of powder (m2/s)

0.2218d0 κp, temperature coefficient of powder (-)

1.5702d6 Qign, energy released by igniter (J/kg)

444.d0 Tign, ignition temperature (K)

13132d0 Qign, emission rate (kg/m3/s)

10.d-3 igniter running time (s)

B. Hyperbolicity domain of the model

We observe first that the hyperbolicity of the model is not affected by
the rezoning: it is sufficient to study the eigenvalues of (1)-(2). The
last two equations in (1)-(2) are convection equations associated to the
eigenvalue λ = u2. Thus, we concentrate on the first five equations. We
rewrite the system in a new set of variables Y = (α2, ρ1, u1, u2, e1). In
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this way, without the source terms, the system becomes

Yt + B(Y )Yx = 0 , (31)

with

B(Y ) =




u2 0 0 α2 0
ρ1

α1
(u2 − u1) u1 ρ1

ρ1

α1
α2 0

0
p1,ρ1

ρ1
u1 0

p1,e1

ρ1

Rp

α2ρ2
−

Rp,α1

ρ2

p1,ρ1

ρ2
0 u2

p1,e1

ρ2

p1(u2−u1)
α1ρ1

0 p1

ρ1

p1

ρ1

α2

α1
u1




. (32)

In order to simplify it further, we consider the gas entropy s(ρ1, e1)
satisfying

T1ds = de1 + p1d

(
1

ρ1

)
, (33)

where T1 is the gas temperature. The entropy also satisfies

ρ1sρ1
= −

p1

ρ1
se1

. (34)

Multiplying the last equation in (31) by se1
and the second by sρ1

and
adding the two we find a new system

U = (α2, ρ1, u1, u2, s),
Ut + C(U)Ux = 0,

C(U) =




u2 0 0 α2 0
ρ1

α1
(u2 − u1) u1 ρ1

ρ1

α1
α2 0

0
p1,ρ1

ρ1
u1 0

p1,s

ρ1

Rp

α2ρ2
−

Rp,α1

ρ2

p1,ρ1

ρ2
0 u2

p1,s

ρ2

0 0 0 0 u1




.
(35)

The sound speed in the gas is noted c. It is given by

c2 =
∂

∂ρ1
p1(ρ1, s). (36)

The sound speed a in the powder bed is given by (11).
In this way, we have

C(U) =




u2 0 0 α2 0
ρ1

α1
(u2 − u1) u1 ρ1

ρ1

α1
α2 0

0 c2

ρ1
u1 0

p1,s

ρ1

a2

α2

c2

ρ2
0 u2

p1,s

ρ2

0 0 0 0 u1



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The characteristic polynomial is then

(u1 − λ)

[(
(u2 − λ)2 − a2

) (
(u1 − λ)2 − c2

)
− c2 α2

α1

ρ1

ρ2
(u1 − λ)2

]

We define y = λ−u1

c that has to be a root of

Q4(y) = Q2(y)

Q4(y) :=
(
y2 − 1

) (
(y − u2−u1

c )2 − a2

c2

)

Q2(y) := 1−α1

α1

ρ1

ρ2
y2

It is easy to check that Q2 and Q4 have at least two real intersec-
tions. For the two other roots, general analytic conditions cannot be
obtained but we can indicate sufficient conditions for hyperbolicity (or
ellipticity)

1. a = 0, u1 = u2: the system is hyperbolic.

2. a = 0, u1 6= u2, −1 ≤ u2−u1

c ≤ 1: the system is not hyperbolic.

3. a < c, |u2 − u1| ≤ max(a, c − a): the system is hyperbolic. This
sufficient condition is simply obtained by requiring that Q4(0) >
Q2(0) when all the roots of Q4 are in [−1, 1].

Let us observe that in our computations we are generally in the cases 2
or 3. During the ballistic process, the combustion of the powder tends
to increase the porosity. Thus, case 3 is observed only at the beginning
of the computation, when α1 ≃ αc (see (11)). The intra granular stress
plays here an important role to stabilize the computation.

Although the rest of the computation occurs in a non-hyperbolic
regime we did not observe instabilities. This is certainly due to several
dissipative mechanisms:

− the numerical viscosity of the Rusanov scheme is known to be high,
compared to other schemes. Typically, if the drag force is set to 0,
instabilities begin to appear for 10 000 cells in 1D computations
(see [12]);

− the drag force plays an important role to damp the oscillations as
demonstrated by Hérard in [12]. The scheme can remain stable up
to 500 000 cells computations;

− our case corresponds to small velocity differences u2 − u1 and the
size of the imaginary part of the complex eigenvalues tends to 0
with u2 − u1.
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With finer meshes, or higher order schemes, it will be necessary to
improve the stability of the initial model. A simple way to do that is
to modify the intra granular stress expression (9) in such a way that a
is always > 0, as in [10] or [5].
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