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Abstract. In this short paper, we recall some well-known results on hyperbolic
systems of conservation laws. We introduce the Godunov finite volume scheme for
their approximations. We then present two recent applications to multiphase flows:
the computation of a wave breaking and the construction of entropic schemes for
phase transition.
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1. Hyperbolic systems of conservation laws

Hyperbolic Systems of Conservations Laws (HSCL) provide useful ma-
thematical models in many domains. It is thus important to understand
theirs properties and construct efficient numerical approximations.

1.1. Characteristic curves

We consider the simplest HSCL that is the transport equation

wt + u · wx = 0, (1)

the unknown is a function w(x, t), x is the space variable and t the time
variable. The velocity u is a constant.

A characteristic curve, is a curve in the (x, t) plane along which
a solution to (1) is constant. If that curve is parameterized by time
(x(t), t), we must have

d
dtw(x(t), t) = 0,
wt + x′(t)wx = 0.

(2)

It is thus natural to take x′(t) = u. The general equation of characte-
ristics is then x− ut = Cst. We deduce that the general solution of (1)
is an arbitrary function of x − ut.

A more complicated example of HSCL is the Burgers equations

wt + (w2/2)x = 0. (3)
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2

A regular solution w(x, t) of that equation also satisfies

wt + wwx = 0. (4)

The characteristic equation reads here

x′(t) = w(x(t), t) = Cst. (5)

A general characteristic admits the parameterization

x(t) = x0 + w(x0, 0)t. (6)

If we consider now an initial condition of the type

w(x, 0) =







1 if x < 0,
1 − x if 0 6 x 6 1,

0 if x > 1,
(7)

we observe that two characteristics coming respectively from x0 < 0
and x0 > 1 transport the two different values 1 and 0 and necessarily
intersect. The notion of classical solution is thus not sufficient and has
to be extended.

1.2. Shock waves, entropy conditions

Using the distribution theory [18], it is possible to define discontinuous
solutions to (3). The curve along which the solution is discontinuous is
called a shock1. Let us consider a parametrization of the shock by time
(x(t), t). Defining the shock velocity by s = x′(t), the normal vector to
the shock in the (x, t) plane, oriented from the left (L) to the right (R),
is n = (nx, nt) = (1,−s). We denote by wL the values of w on the left
of the shock and by wR the values of w on the right of the shock. We
also denote by brackets the jump of a quantity in the shock

[w] = wR − wL. (8)

A weak solution of (3) is then a function w(x, t) that satisfies the Burg-
ers equation in the usual sense where it is regular. In a discontinuity,
the solution has to satisfy the Rankine-Hugoniot jump condition

nt [w] + nx
[

w2/2
]

= 0, equivalent to
s = wL+wR

2 .
(9)

1 The shock wave terminology is employed for non linear conservation laws and
the Burgers equation (3) is indeed non linear. For the linear convection equation (1)
the discontinuous solutions are rather called contact discontinuity waves
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Finite volumes for complex flows 3

On the other hand, when the solution can be computed by the cha-
racteristic method, it is useless to introduce discontinuous solution. A
shock wave has to emerge from an intersection of characteristics. In
other words, an admissible shock wave has to move slower than the
characteristics coming from the left and faster than the characteristics
coming from the right. This leads to the Lax admissibility condition
[14]

wL > s > wR. (10)

The Lax characteristic criterion is a purely geometric criterion. It is of-
ten useful to use a criterion based on conservation laws. When the solu-
tion is regular, we can deduce from the Burgers equation supplementary
conservation laws of the form

U(w)t + F (w)x = 0. (11)

If w → U(w) is convex, U is then called a Lax entropy for the Burger
equation. The function w → F (w) is called the entropy flux. In a shock,
the Lax entropy condition requires that

nt[U(w)] + nx[F (w)] ≤ 0. (12)

It is easy to verify that the Lax entropy condition (12) is equivalent
to the Lax characteristic condition (10) in the case of the Burgers
equation.

For a more detailed presentation, we refer to the original paper of
Lax [14], but also to the books of Toro [20] and Godlewski and Raviart
[6].

1.3. Riemann problem

The Riemann problem consists in finding a weak solution to (3) when
the initial condition is made of two constant states. It reads

wt + (w2/2)x = 0,

w(x, 0) =

{

wL if x < 0,
wR if x > 0.

(13)

The entropy solution can be computed explicitly. Two cases are possible

− If the initial condition satisfies wL < wR then the solution is a
rarefaction wave defined by

w(x, t) =







wL if x/t < wL

x/t if wL < x/t < wR

wR if wR < x/t
(14)
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− On the other hand, if wL > wR, then the solution is an admissible
shock wave

w(x, t) =

{

wL if x/t < s = wL+wR
2

wR if x/t > s
(15)

We observe that the solution of the Riemann problem is self-similar, it
is thus noted

w(x, t) = R(x/t, wL, wR). (16)

1.4. Generalizations

All the previous notions (characteristics, shock waves, Lax conditions,
Riemann problem, etc.) can be extended to a general system of conser-
vation laws, w ∈ Rm, m > 1,

wt + f(w)x = 0, (17)

under a condition of hyperbolicity: the jacobian matrix f ′(w) of the
flux vector f(w) is diagonalizable with real eigenvalues for all vectors
w. The solution of the general Riemann problem is then made of m+1
constant states separated by shock, contact discontinuity or rarefaction
waves.

The previous notions can also be extended to multidimensional con-
servation laws. In two space dimensions (x, y) for example, the unknown
w(x, y, t) ∈ Rm satisfies

wt + f(w)x + g(w)y = 0. (18)

The flux depends on the direction ν = (νx, νy)

F (w, ν) = f(w)νx + g(w)νy. (19)

The system is hyperbolic here if DF/Dw is diagonalizable with real
eigenvalues for all vectors w and all directions ν. The solution of the
Riemann problem becomes much more complicated.

1.5. Godunov scheme

The Godunov scheme is a numerical method to compute the solutions
of (3). It can be generalized, with some adaptations, to (17) and (18).
Let τ be a time step and h a space step. Let tn = nτ and xi = ih. The
cells (or finite volumes) centered on the points xi are defined by

Ci =]xi−1/2, xi+1/2[. (20)
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Finite volumes for complex flows 5

We look for an approximation wn
i of w(xi, tn) in the cell Ci at the time

tn. The approximation is given by the formula

wn+1
i − wn

i

τ
+

fn
i+1/2 − fn

i−1/2

h
= 0. (21)

The numerical flux fn
i+1/2 is obtained after a resolution of a Riemann

problem between the cells Ci and Ci+1

fn
i+1/2 = f(R(0, wn

i , wn
i+1)). (22)

The scheme is stable under a CFL condition τ < h/smax, where smax
is the maximal wave speed at time tn.

The Godunov scheme is very easy to implement. An example in
FORTRAN is given at

http://helluy.univ-tln.fr/PHYP/burgers.f

It is only first order, but many extensions exist: second order, systems,
multidimensional systems, etc. When the Riemann problem is difficult
to solve, one can use an approximate Riemann solver. A huge literature
has been written on this subject: [7], [21], [9], [5], etc.

2. Application to two-phase flows

Before studying the hydrodynamics of a two-phase flow that can be
described by a HSCL with source terms, we recall some basic facts on
thermodynamics.

2.1. Entropy of a two-phase mixture

2.1.1. Thermodynamics of a single fluid

Consider a single fluid of mass M ≥ 0, internal energy E ≥ 0, occupying
a volume V ≥ 0. If the fluid is homogeneous and at rest, its behavior
is entirely defined by its entropy function

S : (M,V,E) → S(M, V,E). (23)

In the sequel, we note W = (M, V,E). The vector W belongs to a
closed convex cone of R3,

C = {(M,V, E), M ≥ 0, V ≥ 0, E ≥ 0} .

According to thermodynamics the entropy function must satisfy

• The entropy S is positively homogeneous of degree 1 (in short: ”S
is PH1”)

∀λ > 0, S(λW ) = λS(W ). (24)
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• The entropy S(W ) is concave with respect to W .

The chosen axiomatic is justified in [13], [3], [4].
The inverse of the temperature is defined by

θ =
1

T
=

∂S

∂E
, (25)

the pressure is

p = T
∂S

∂V
, (26)

and the chemical potential (or the Gibbs specific energy) is

µ = −T
∂S

∂M
. (27)

In this way, we recover the classical relation

TdS = dE + pdV − µdM. (28)

Euler’s relation for PH1 functions lead to S(W ) = ∇S(W ) · W , and
this is nothing else than the Gibbs relation

µM = E + pV − TS. (29)

The quantity G = µM is called the Gibbs free energy. Usually, the
PH1 functions of W are said extensive. The PH0 functions are said
intensive. The gradient of a PH1 function being PH0, the temperature,
the pressure and the chemical potential are necessarily intensive. It is
also usual to define the specific entropy s by

Ms = S(M,V, E). (30)

Because S is PH1, we see that s is PH0 (intensive) and that

s = S(1,
V

M
,

E

M
), (31)

so, it is natural to consider the specific entropy as a function of the
specific volume τ = V/M and of the specific energy ε = E/M . The
density is the inverse of the specific volume, ρ = 1/τ . Setting M = 1
in the previous formula, we see that we also have

Tds = dε + pdτ. (32)

Gibbs relation (29) can also be written

µ = ε + pτ − Ts. (33)
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2.1.2. Mixtures

We consider now two phases, for example a gas (1) and a liquid (2).
Each phase is characterized by its own entropy function Si, i = 1, 2.

According to thermodynamics, the mixture entropy Σ is the sum
of the two entropies. Then, out of equilibrium, it depends on W1 =
(M1, V1, E1) and W2 = (M2, V2, E2) in the cone C

Σ(W1,W2) = S1(W1) + S2(W2). (34)

Let us now fix the mass, the volume and the energy of the mixture
W = (M, V, E). The conservation of mass, volume and energy imply
W = W1 + W2. The entropy is maximal at equilibrium

S(W ) = max
06W16W

S1(W1) + S2(W − W1). (35)

The operation (S1, S2) → S defined in (35) is classical in convex analy-
sis, it is called the sup-convolution. It is deeply linked to the Legendre
transformation [11].

At equilibrium of the two phases, using (25), (26), (27), we recover
that T1 = T2, p1 = p2 and µ1 = µ2.

It is more practical to work with intensive variables. We define the
volume fraction α = V1/V , the mass fraction ϕ = M1/M and the
energy fraction z = E1/E. The fraction vector is defined by

Y = (α, ϕ, z). (36)

The specific entropy out of equilibrium is given by (31), or

s(τ, ε, Y ) = ϕs1(
α

ϕ
τ,

z

ϕ
ε) + (1 − ϕ)s2(

1 − α

1 − ϕ
τ,

1 − z

1 − ϕ
ε) (37)

It permits us to define a pressure and a temperature out of equilibrium

1
T = ∂

∂εs(τ, ε, Y ),
p
T = ∂

∂τ s(τ, ε, Y ).
(38)

The equilibrium specific entropy is obtained after a maximization of
the out-of-equilibrium specific entropy with respect to the fractions

s(τ, ε, Yeq(τ, ε)) = max
06Y 61

s(τ, ε, Y ),

s(τ, ε) = s(τ, ε, Yeq(τ, ε)).
(39)
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2.2. Model

We propose now the following general model for a 2D two-phase flow

wt + f(w)x + g(w)y = σ(w),
w = (ρ, ρu, ρv, ρε + ρ(u2 + v2)/2, ρY ),
f(w) = (ρu, ρu2 + p, ρuv,

(

ρε + ρ(u2 + v2)/2 + p
)

u, ρY u),
g(w) = (ρv, ρuv, ρv2 + p,

(

ρε + ρ(u2 + v2)/2 + p
)

v, ρY v),
σ(w) = (0, 0,−ρg0,−ρg0v,−λ(Y − Yeq)).

(40)

In this model, the unknowns are the density ρ, the velocity vector (u, v),
the energy ε and the fraction vector Y of the two-phase mixture, all
depending on the space variables (x, y) and the time t. The gravity
g0 = 9.81 m.s−2 is constant. The pressure p is defined by (38).

The relaxation parameter λ is a positive matrix. The positivity of λ
implies that the second principle of thermodynamics is satisfied by the
model (see [1])

st + usx > 0. (41)

The eigenvalues of the jacobian of the flux D
Dw (f(w)nx + g(w)ny)

are unx+vny−c, unx+vny and unx+vny+c, where c is the sound speed
of the mixture. The sound speed depends on the pressure p = p(τ, ε, Y )

c2/τ2 = ppε − pτ . (42)

The sound speed is also expressed with the specific entropy s(τ, ε, Y )
by

ρ2c2 = −T (p2sεε − 2psτε + sττ ). (43)

Thanks to the concavity of (τ, ε) → s(τ, ε, Y ) the Hessian of s defines
a negative quadratic form. We deduce from (43) that the system (40)
is indeed a HSCL if the temperature T in the thermodynamic model is
> 0.

3. Numerical applications

3.1. Wave breaking

Our first application is devoted to the numerical simulation of wave
breaking over a submerged reef. The geometry is sketched on Figure 1.

The initial condition is a stable incompressible solitary wave com-
puted thanks to the method of Tanaka [19]. The programs that compute
the free surface profile and the initial velocity field can be downloaded
at
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http://helluy.univ-tln.fr/soliton.htm.

3.1.1. Model

In this example, the two-phase mixture is made of air and water. We
suppose instantaneous relaxation of pressure and temperature and we
suppose that there is no mass transfer between the two phases. The
relaxation matrix λ in (40) is thus

λ =





+∞ 0 0
0 0 0
0 0 +∞



 . (44)

In practice, we do not compute the volume fraction α and the energy
fraction z. Only the mass fraction ϕ is convected. The pressure Equa-
tion Of State (EOS) is then of the form p = p(ρ, ε, ϕ). A very simple
but realistic choice of EOS is the so-called stiffened gas EOS that reads

p = (γ(ϕ) − 1)ρε − γ(ϕ)π(ϕ),
1

γ(ϕ)−1 = ϕ 1
γ2−1 + (ϕ − 1) 1

γ1−1 ,
γ(ϕ)π(ϕ)
γ(ϕ)−1 = ϕ γ2π2

γ2−1 + (ϕ − 1) γ1π1

γ1−1 .

(45)

This EOS is very similar to the perfect gas EOS. It has been used by
several authors for multi-fluid flows computations [17], [2], etc.

The sound speed for this EOS is given by

c =

√

γ(p + π)

ρ
. (46)

It is usually admitted in physics that a flow is incompressible if the

Mach number M =
√

u2+v2

c is lower than 1/10. Here, the real (physical)
Mach number is much smaller, of the order of 1/400 ∼ 1/1600. The
natural CFL condition for an incompressible flow would lead to the
ideal time step

τi =
h√

u2 + v2
. (47)

Because we use a compressible solver our time step will rather be

τc =
h√

u2 + v2 + c
. (48)

We observe that

τc = τi
M

1 + M
. (49)

It becomes more and more constraining when M → 0.
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Furthermore, it is known that numerical imprecisions also arise due
to the low Mach number of the flow (see for example [8]). For those
two reasons we have been led to choose an artificial pressure law where
the sound speed is approximately fixed to 20 m.s−1.

We choose γ1 = γ2 = 1.1 for the air (1) and water (2). Other choices
are possible but we observed a faster convergence of the Newton method
in the Riemann solver when γ1 = γ2. If the sound speed is fixed to
20 m.s−1 for a pressure of p = 105 Pa, we find the other pressure law
coefficients

π1 = −0.99636 × 105 Pa,
π2 = 2.63636 × 105 Pa.

(50)

3.1.2. Approximation and results

The numerical method is a simple second order explicit MUSCL fi-
nite volumes method applied to the system (40) and (45). We used
an exact Riemann solver because we experimented instabilities with
several approximate solvers. It is known that the transport equation on
ϕ in (40) has to be approximated with care in order to avoid pressure
oscillations. Indeed, the transport equation in (40) and the EOS (45)
can be written under many different forms on the continuous side. On
the discrete side, these forms are not equivalent, and the one that is
presented in (40), (45) plays a special role. We used the trick of Abgrall
and Saurel described in [17] and [2] in order to get a numerical scheme
that preserves the constant velocity and pressure states.

It is then possible to compute the wave evolution. The numerical
profiles at times t = 1.2s, t = 1.4s, t = 1.6s and t = 1.8s are given on
Figures 2, 3, 4 and 5. A more detailed validation is given in [10].

3.2. Phase transition

In this section, we give some comments on the computation of phase
transition. We suppose that it is instantaneous, in such a way that the
matrix λ is now

λ =





+∞ 0 0
0 +∞ 0
0 0 +∞



 . (51)

For simplicity, we consider a 1D version of the model (40) ( ∂
∂y = 0

and v = 0), without gravity. Because of the instantaneous relaxation,
we indeed study the limit when λ → ∞ of the system (40):

wt + f(w)x = 0,
w = (ρ, ρu, ρ(ε + u2/2)),
f(w) = (ρu, ρu2 + p, (ρ(ε + u2/2) + p)u),
p = p(ρ, ε, Yeq(ρ, ε)).

(52)
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Figure 1. Boundary and initial conditions.

Figure 2. Free surface profile at t = 1.2s.

Figure 3. Free surface profiles at t = 1.4s.
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It appears that the Euler system (52) with the limit pressure law gener-
ally possesses several entropy solutions [16]. It is physically reasonable
to select the solution that corresponds to the maximal entropy produc-
tion, also called the Liu’s solution [15]. But some classical scheme can
converge to wrong entropy solutions [12].

It is interesting to keep the original system (40) in order to design
efficient schemes. We have proposed in [1] a simple relaxation scheme.
Each time-step is made up of two stages. In the first stage, we solve the
system (40) without the source term σ

w
n+1/2

i −wn
i

∆t +
fn

i+1/2
−fn

i−1/2

∆x = 0,
fn

i+1/2 = f(R(0, wn
i , wn

i+1)).
(53)

In order to construct the exact Riemann solver R, we consider the
system (40) in 1D ( ∂

∂y = 0 and v = 0) with the source term σ = 0. See

[2] for details.
In the second stage, the density, velocity and energy are kept

ρn+1
i = ρ

n+1/2
i , un+1

i = u
n+1/2
i , εn+1

i = ε
n+1/2
i , (54)

and the entropy s is optimized with respect to the fractions Y in order
to compute Y n+1

i .

s(ρn+1
i , εn+1

i , Y n+1
i ) = max

06Y 61
s(ρn+1

i , εn+1
i , Y ). (55)

This scheme gives good results. In Figures 6, 7 and 8, we give the result
of an academic Riemann problem test case described in [1]. In this case,
the two phases satisfy a perfect gas law. The phase entropies are, for
i = 1, 2,

Si = Mi

(

ln
Ei

Mi
+ (γi − 1) ln

Vi

Mi

)

. (56)

The constants γi are > 1, for i = 1, 2. The equilibrium pressure law in
(52) can be computed. When γ1 > γ2, it is given by

p(τ, ε) =







(γ2 − 1)ε/τ if τ 6 τ2,
ε/κ if τ2 6 τ 6 τ1,

(γ1 − 1)ε/τ if τ1 6 τ,
τi = (γi − 1)κ.

(57)

κ = exp

(

1 − (γ1 − 1) ln(γ1 − 1) − (γ2 − 1) ln(γ2 − 1)

γ1 − γ2

)

. (58)
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Conclusion

In this short review paper, we have given some basic notions on hy-
perbolic systems of conservations laws. This kind of systems has many
applications in physics. It is thus important to design good numerical
schemes in order to compute the relevant solutions.

We illustrate the variety of applications by two examples:

− An application to the numerical simulation of wave breaking;

− A simple model for phase transition in order to point out the im-
portance of the notion of entropy and the possibility that standard
numerical schemes give wrong solutions.

Of course, there is not enough places here to present the topics in detail.
We refer the interested reader to the bibliography...
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Figure 4. Free surface profiles at t = 1.6s.

Figure 5. Free surface profiles at t = 1.8s.

Figure 6. Density.
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Figure 7. Velocity.

Figure 8. Pressure.
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