N
N

N

HAL

open science

Some exact controllability results for the linear KdV
equation and uniform controllability in the

zero-dispersion limit

Olivier Glass, Sergio Guerrero

» To cite this version:

Olivier Glass, Sergio Guerrero. Some exact controllability results for the linear KdV equation and
uniform controllability in the zero-dispersion limit. Asymptotic Analysis, 2008, 60, pp.61-100. hal-

00139614

HAL Id: hal-00139614
https://hal.science/hal-00139614
Submitted on 2 Apr 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00139614
https://hal.archives-ouvertes.fr

Some exact controllability results for the linear KdV equation
and uniform controllability in the zero-dispersion limit

0. Glass* & S. Guerrero*
February 19, 2007

Abstract

In this paper, we deal with controllability properties of linear and nonlinear Korteweg-de Vries
equations in a bounded interval. First, we establish the null controllability of the linear equation
via the left Dirichlet boundary condition, and its exact controllability via both Dirichlet boundary
conditions. As a consequence, we obtain local exact controllability results for the nonlinear KdV
equation. Finally, we prove a result of uniform controllability of the linear KdV equation in the limit
of zero-dispersion.

1 Introduction

In this paper, we are interested in two types of controllability results concerning a linearized Korteweg-de
Vries equation. These two types are the following.

e First, we consider the problem of exact controllability for this equation, when the dispersion coef-
ficient is fixed (Theorems 1 and 2). Such results yield results of local exact controllability for the
usual (nonlinear) Korteweg-de Vries (KdV) equation (Theorems 3 and 4). The controllability of
the KdV equation has already been studied in several papers, see in particular [10, 11, 12], but the
control which we use here is of different nature.

e Next, we are interested in how the cost of this controllability evolves as the dispersive term is
brought to 0 (Theorem 5). In the case of the vanishing viscosity limit (that is when a dissipative
term is considered rather than a dispersive one), this problem has been studied in [3] and [6].

Let us be more specific on the problem under view. Let T' > 0 be a given final time. Our system is the
following one:

Yt + VYgax + (My)w =0 in (O,T) X (0, 1)7
Ylz=0 = V1, y‘;l;:l = V2, yfc|a;:1 = U3 in (OvT)v (1)
Yjt=0 = Yo in (0,1).

Here, v is a positive dispersion coefficient, M = M (¢, z) is a transport coeflicient (constant most of the
time), v; (i = 1,2,3) are time-dependent functions which constitute the controls of our system. Observe
that the classical KAV equation corresponds to M(t,z) = 1+ y(¢, ).

First, we consider the problem of controllability of (1) for fixed v. We obtain the following two results
in that case. The first one (Theorem 1 below) is a result of zero-controllability for equation (1) with
M constant. Equivalently, this establishes the controllability on the trajectories of equation (1). This is
done by using only the Dirichlet condition on the left of the domain (the other conditions are kept null).
Our second result (Theorem 2 below) is an exact controllability result for equation (1) with M constant.
Here this is done by using two controls, namely both Dirichlet conditions on the left and on the right of
the domain (the Neumann condition on the right is kept null).
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Theorem 1. Let M be a constant and v > 0 be fived. Then, for any yo € H~1(0,1), there exists
v1 € L%(0,T) such that the solution y € L*((0,T) x (0,1))NC°([0,T); H=1(0,1)) of (1) with vy = v3 =0
satisfies yjp—r = 0 in (0,1).

Theorem 2. Let M be a constant and v > 0 be fived Then, for any vo, y1 € L?(0,1), there erist vy
and vy in L2(0,T) such that the solution y € L?((0,T) x (0,1)) NC°([0,T); H=1(0,1)) of (1) with v3 =0
satisfies yj—p = y1 in (0,1).

Remark 1. These results are independent of the length of the interval. This is to be compared to [10],
where L. Rosier considers the case v1 = vo = 0 (that is, a control acting via the right Neumann boundary
condition). In that case, the equation for M = 1 is controllable if and only if the length of the interval
does not belong to a countable critical set.

Remark 2. These results could also be established when M is a function depending on (t,x), belonging
to L?(0,T; H(0,1))nC°([0,T]; L?(0,1)), or even L?(0,T; L>(0,1)) N L>°(0,T; L?(0,1)) (see Paragraph
2.2.2, Equations (48)-(49) and Proposition 5).

As a natural consequence of an exact controllability result for the linearized system, one can usually
prove a local exact controllability result for the nonlinear system. Here, as corollaries of Theorems 1
and 2, we get the following results for the Korteweg-de Vries equation. The first one (Theorem 3) is a
result of local exact controllability on trajectories where the control acts upon the left Dirichlet boundary
condition, while the second one (Theorem 4) is a result of local exact controllability via both Dirichlet
conditions.

Theorem 3. Letv > 0 be fized. For7j, € L?(0,1), we considery € L°(0,T; L?(0,1))NL?(0,T; H}(0,1))
the solution of

yt +?w +wg: +Vywwa: :O ZTL (07 ) (07 1)7
y\x:O =0, y\x:l =0, yx\x:l =0 in (07 ) (2)
Yjt=0 = Yo in (0,1).

Then, there exists § > 0 such that for any yo € L?(0,1) satisfying ||yo — Yollz2(0,1) < 6, there emists
vy € HY275(0,T) for any e > 0, such that the solution y € L*(0,T; H™/4(0,1))NL>(0,T; H**(0,1)) of

yt+yl+yy$+yyzwz =0 m (OvT) X (071)a
Yz=0 = V1, Yjz=1 = 0, Yzjz=1 = 0 in (07T)a (3>
Yjt=0 = Yo in (0,1),

satisfies yi=r = Y7 n (0,1).

Theorem 4. Let v > 0 be fized. There exists pi > 0 such that for any yo,y1 € L?(0,1) satisfying
lvollz2c0,1) + [lyallz2(0,1) < #s (4)

there exists v, vy € L*(0,T) such that the solution y € L*((0,T) x (0,1)) N C°([0,T]; H~1(0,1)) of

Yt + Yz + YYz + VYzze =0 in (0,T) x (0,1),
Yjz=0 = V1, Yjz=1 = V2, Yz|z=1 = 0 in (07T)a (5)
Y|t=0 = Yo in (07 1)7

satisfies yjp—p = y1 in (0,1).

The second type of result which we consider in this paper is the problem of uniform controllability of
equation (1) (where M is a constant) as the dispersion parameter tends to 07. Of course, one can hope
to reach such a property only when the limit system (obtained by setting v = 0 in (1)) is controllable.
In this situation, this means M # 0 and the time of controllability T" is greater than 1/|M|. Due to
the effect of the dispersive term (which is strongly asymmetric), we are able to obtain a result only in
the case M < 0. Moreover, we consider a time of controllability which is of the form Ky/|M|, but our
proof does not apply for any Ky > 1 (such a limitation appears also in the case of vanishing viscosity,
see [3, 6]). Our result is the following.



Theorem 5. There exist two constants Ky and K1 such that for any negative constant M, there exists
vp > 0 such that for any T > Ko/|M]|, any yo € W>°(0,1) and any v € (0,vy), there exist v¥, v, vy €
L?(0,T) such that the solution y € L*((0,T) x (0,1)) N C°([0,T]; H(0,1)) of (1) satisfies yjp—r = 0 in
(0,1) and moreover the controls are uniform in v in the sense that

1 llz20,7) + V5 llz20,7) + 105 | 2200,7) < K1 llyollwre=(0,1),
independently of v.

Remark 3. As far as we know, the question of uniform (local exact) controllability of the KdV equation
(3) in the limit v — 0T, is an open problem. In the case of a vanishing viscosity limit for Burgers
equation, such a result was established in [5].

This paper is organized as follows. In Section 2, we study the Cauchy problem (1). In Section 3, we
establish Theorems 1 and 2, via some observability inequalities (following the classical HUM method,
see [9]). In Section 4 we establish the nonlinear results, Theorems 3 and 4. Section 5 is devoted to the
proof of Theorem 5. Finally, we have put the proofs of some technical properties in Section 6.

2 Cauchy problem

In this section, we explain what we mean by a solution of (1) and we prove regularity results for such a
solution.

2.1 Statement of the results

Definition 1. Given T > 0, yo € H~1(0,1) and (vi,v2,v3) € [L?(0,T))> x H=Y/3(0,T), we call y a
solution (by transposition) of (1), a function y € L*((0,T) x (0,1)) satisfying

/OT/Ol y fdrdt = (yo, u|t=0>H*1(0,1)><Hé(0,1) + V/OT V1 Ugz|2=0 dt — V/OT V2 Uz |z=1 dt
+ v (3, Uz o1 g-1/3 0,1y x50y, VS € L2((0,T) x (0,1)),  (6)
where u is the solution of
—Up — VUgyye — Mug = f in (0,T7) x (0,1),
Ujp—0 = Ujg=1 = Ug|g—0 = 0 in (0,T), (7)
U= =0 in (0,1).

Now our results concerning the existence, uniqueness and regularity of the solutions of the Cauchy
problem for equation (1) according to this definition, are given in the following three propositions.

Proposition 1. Assume that M is constant. Letyo € H=(0,1), vy, vy € L*(0,T) and vs € H=/3(0,T).
Then there exists a unique solution y € L*((0,T) x (0,1)) of (1) such that

Iyl z20.1y%0,1)) < (C/v)[yollzr-1¢0,1) + llv1llz20,7) + lv2llzz0,1) + 103l m-1/5(0,1))s
for some constant C > 0 independent of yg, v1, v2, vs and v.

Proposition 2. Assume that M is constant. Let yo € H=(0,1), v1, vo € L?(0,T) andvs € H=/3(0,T)
as in Proposition 1. Then the solution y € L*((0,T) x (0,1)) of (1) belongs to C([0,T); H=1(0,1)), and
moreover it satisfies the following estimate:

Yl oo 0,751 (0,1)) < (C/v)(lyollz-1(0,1) + lvillz2(0,m) + [lvallz2co,7) + vl =173 (0,1))5
for some constant C > 0 independent of yg, v1, v2, vs and v.

Remark 4. Observe that Proposition 2 does not follow straightforwardly from Proposition 1. In fact,
from Proposition 1 and equation (1) we have that y € C([0,T]; H=3/2(0,1)) with a suitable estimate. But
in order to prove the continuity in time with values in H=1(0,1), we need a further analysis.



Remark 5. Concerning the general inhomogeneous Cauchy boundary problem for KdV, let us cite the
result by Holmer [7] (see also [2]), where conditions

vy, v € HIT93(0,T) and vy € H3(0,T), s> —3/4,
are required in order to define a solution of (1).

Propositions 1 and 2 can be extended to the case where M is variable as follows.

Proposition 3. Consider M € Yy, := L*(0,T; H'(0,1)) N C°([0,T]; L?(0,1)). Let yo € H'(0,1),
v, vo € L*(0,T) and v3 € H~Y/3(0,T). Then there exists a unique solution y € Yy := L?*((0,T) x
(0,1))NC([0,T]; H=1(0,1)) of (1) such that

lylly, < C(HZJO||H—1(0,1) + ||U1HL2(0,T) + ||U2||L2(0,T) + ||v3||H*1/3(0,T))a
for some constant C > 0 depending on v and ||[M||y,,, but independent of yo, v1, va and vs.
The notations Yy and Y74 will be justified at the beginning of Paragraph 2.3.

Remark 6. Let us underline that in Proposition 3 we did not specify the dependence of C' with respect
to v, since it is not necessary for our purpose. In the case of Propositions 1 and 2, this dependence is of
polynomial type in 1/v; in the case of Proposition 3, looking at the proof more closely, one can see that
this constant is (at most) of exponential type.

The proofs of Propositions 1, 2 and 3 are done simultaneously. They rely on estimates for the adjoint
system (7), which are of two different types. The first one is a standard energy estimate. The second one
is an improved regularity result for system (7) with M = 0. Using these two estimates and interpolation
arguments, we prove that, whether f is taken in L?((0,7) x (0,1)) or in L*(0,T; H}(0,1)), the solution
of (7) satisfies

Ult=0 € H(%(Oa 1)7 Uz |z=1 € Hl/B(OaT) and Uzz|z=05 Uzz|z=1 € L2(07T)7 (8)

with appropriate estimates.
We develop these two kinds of estimates in separate paragraphs. Finally in a last step we combine
the two kinds of estimates to conclude.

2.2 Energy estimate

In this paragraph we prove that for f € L2(0,7; H*(0,1))UL'(0,T; L?(0,1)), the solution of (7) belongs
to the space
Yi/4 := L*(0,T; H'(0,1)) N C°([0, T]; L*(0, 1)), (9)

together with some hidden regularity and suitable estimates. These estimates are slightly different in
the case where M is constant and in the case where M depends on (¢, ).

2.2.1 The case where M is constant

Here we prove that there exists a positive constant C' (independent of v) such that

[ull oo (0,7 02(0,1y) + V2 ull 207581 0.1)) + VY P [tpemr | 20,1y < (C/VY D f 220101y (10)

and

lull oo 0,7:22(0.1)) + ¥l L2 0,731 (0,1)) + V2 [uafa=1llz20.1) < CllFllLr0,7:22(0.1))- (11)
In order to prove (10) and (11), we will suppose that f belongs to C§°((0,7") x (0,1)). By an argument
of density, this immediately establishes (10) (resp. (11)) for general f € L?(0,7; H*(0,1)) (resp. for
general f € LY(0,7; L%(0,1))). Unless otherwise stated, we will denote by C various positive constants
which depend only on M and T (and in particular not on v).



e First case: f € L*(0,T; H=1(0,1)). Here, we show estimate (10).
Let us multiply equation (7) by (1 — z)u and integrate in z. We get

1d (! ! M [
_ = (1—x)|u|2dx+V/ (1 — 2)upligy — Ulyy) dz — ?/ lu|? da
0 0 0

2 dt
=(f,(1- x)u>H*1((),1)><Hé((),1)' (12)
We integrate by parts again:

1d [* 3 ! M !
BEYT (1—$)|U|2d$+§l// |ug|* d = */ ul? da + (f, (1 = 2)u) g1 (0,1 x 113 (0,1)
0 0

<0 [lars [ Pt @O0y 03
The estimate in the C°([0,T]; L?(0, 1))-norm is obtained by multiplying equation (7) by u:
1
—§$ |U|2dfﬂ4‘”/0 Uz gy AT = (f, W) 10,1 x HE (0,1)-
This yields:

—5%/ |u® dz + - |Uw\z 12 ={fru)n H=1(0,1)x H} (0,1)" (14)

Combining (13) and (14), we get the existence of a positive constant C' such that

G /01<2—x>|u|2dm) / P

Finally, integrating between ¢ and T', we obtain estimate (10).

< (Ce IO F-1 0.y (15)

e Second case: f € L*(0,T;L?(0,1)). Now, we prove estimate (11). The proof is the same as in the
first case except for the right-hand side term which is treated as follows:

1
/0 F(t,2) ult, @) dz < Jult, Y zzo.n 1 (6 M 2oy

When integrating between ¢t and 7', we have

T 41
/ / fudrds <|ul[re 0,720, |.fll L1 0,7;22(0,1))-
¢ Jo

Using Young’s inequality ab < ea®+¢~1b? and taking into account that the term H“||2Loo(0,T;L2(o,1))
is produced by the left hand side of (15), we obtain estimate (11).
2.2.2 The case where M is variable
Here we prove that there exists a positive constant C' such that
||U||L°°(0,T;L2(0,1)) + ||U||L2(0,T-.,H1(0.,1)) + ||Ux|x:1||L2(0,T) < G(HM||Y1/47 V)||f||L2(0,T;H—1(0,1))7 (16)
and
l[ull oo 0,7502(0,1)) + 1ull 220,711 (0,1)) + Wtaomt 20,7y < CUIM vy, V) Fll L2 0,7522(0,1)) - (17)

The analysis is the same in both situations f € L2(0,7; H='(0,1)) and f € L'(0,T; L?(0,1)), so we will
only sketch the proof of the first one. When we multiply equation (7) by (1 — z)u, we estimate the term
concerning M in the following way:

1
/ (1 - &) Muuy dz < 2 / a2 da + (/) M) 1) / Jul? de. (18)

0



When we multiply the equation of u by u, we also have estimate (18) for the term concerning M. From
the corresponding inequalities (13) and (14), we obtain

1d [! ! v
S [ e—oPde v [ fuel?de+ Ll
2dt J, 0 2
(19)

SC(1+(1/V)||M(t)||ioo(o,1>)/0 [ul* dz + (C/v) | F Ol F-10.1)-

Using Gronwall’s lemma and thanks to the assumption M € L%(0,T; H'(0,1)), we obtain (16) and (17).

2.3 Additional regularity estimate for M =0

Here we prove an additional regularity result for the following system:

—Up — Vlgpe = g in (0,7) x (0,1),
Ujp—0 = Ujg=1 = Ug|z—0 = 0 in (0,7T), (20)
'U/|t:T =0 in (O, 1)

Let us introduce some functional spaces which will be useful in the sequel:
Xo = L*(0,T; H %(0,1)), X;:=L*(0,T;H§(0,1)),

Xo:=L'0,T; H-1(0,1)), X, :=LY0,T;(H*n H2)(0,1)),
Yo := L*((0,7) x (0,1)) n C°([0, T); H1(0,1)), (21)
and
Vi == L*(0,T; H*(0,1)) n C°([0,T]; H3(0,1)). (22)
The spaces Xg and X are equipped with their natural norms, while Yy and Y7 are equipped with

wlly, :== V1/2||w||L2((0,T)x(0,1)) + Hw”LOO(O,T;H*l(O,l))a

and
lwlly, = V1/2”wHL2(O,T;H4(0,1)) + ||w||L°°(O,T;H3(O,1))~

respectively.

Now, for each 6 € [0, 1] we define the (complex) interpolation spaces

Xo = (Xo, X1){0], Xp:=(Xo,X1)jg, and Yy:=(Yo,V1)q.

Observe that this notation is consistent with the notations of Proposition 3 and (9).

The regularity result is obtained in two steps:

e First in Paragraph 2.3.1, we prove a regularity result in the space Y7,

e Next, in Paragraph 2.3.2, we interpolate this result with the one of Paragraph 2.2.1.

2.3.1 Regularity result in Y}

In this paragraph we prove that for g € L*(0,T; H3(0,1)) U L*(0,T; (H3 N HZ)(0,1)), u belongs to Y;
and there exists a positive constant C' (independent of v) such that

Jully, + v 2 lwe et 0,y < (C/0Y ) lgll L2 0,7 m2(0,1)) (23)

and

—1/2

llully, +v |wWa|z=1lz1 0,7y < CllgllLr 0, 1:83(0,1))- (24)

We will suppose that g is in C*°([0,T] x [0,1]) with gju=0 = gjo=1 = Gz|s=0 = Jz|s=1 = 0. Again,
the conclusion in the cases g € L?(0,T; H3(0,1)) and g € L'(0,T;(H? N HZ)(0,1)) follows from an
approximation argument.



Let us apply the operator P; = 0., to equation (20):
(Piu)¢ + vPiu= Pyg in (0,T) x (0,1). (25)
We multiply this equation by —(1 — ) Pyu and we integrate in (0, 1):

1d 1 1
—— [ (1-2)|Pu*dz - l// (1 —z)PiuPiude = 7/ (1 —z)PyuPrgdz. (26)

We compute the second term in the left hand side:
1 1
7V/ (1—2)PfuPude = V/ (Opz)(Pru)((1 — z) Pyug — Pyu) dx
0 0
3 1
_ W / \Prug |2 da. (27)
2 Jo

Here, we used Piuj;—,1 = Pitg|y—¢ = 0, which comes from (20) and the conditions on the traces of g
on the boundaries 0 and 1.
Let us now multiply equation (25) by —Pju and integrate in (0, 1):

1d

1 1 1
—f—/ |P1u\2dac—1// Piu Piudr = —/ PyuPigde. (28)

The second term gives now:

1 1
1
—V/ Plu Piudr = K/ O | Prug|® do = —|ugr|—|*- (29)

The boundary conditions which we just used are Piuj,—o;1 = 0, Prugz|,—0 = 0 and vP1ugz|p—1 = —Ugt|p—1-
As previously, the latter equalities follow from (20) and the conditions on the traces of g.
Putting together (26)-(29), we obtain

Ld 1(2 )| Prul?d +3 /lp |2d+1| > = /1(2 YPiu Pygd (30)
2 d ; x)|u X 2u ; 1 U X 2VU1t|a;:1 = ; x)u g ax.

Integrating between t and T', we get

1t 3 Tt 1 /T
5/0 (2—56)\P1u|2(t)dx+§u/ /0 |P1ul.‘2da:ds+$/ |th|z:1\2d3
t t

T 1
= —/ / (2 —x)PiuPrgdzds, (31)
t Jo

for a. e. t € (0,T). Now, to estimate the last term in (31), we distinguish the two functional frameworks
for g:

e First case: g € L?(0,T; HZ(0,1)). Using Piujy—o,1 = 0 and integrating by parts we get:

T p1 T 1
—/ / (2—z)PiuPrgdzds = / / 9z ((2 — ) Pruy — Pru) da ds.
0 Jo 0o Jo

Hence we deduce

T 1
—/ / (2 —z)PiuPrgdxds
0 Jo

IA

CllPrullLz(0,7;m1 (0,1)) |92z | L2 (0,722 (0,1))

IN

v C
§||PIUH%2(0,T;H1(O,1)) + ;||9m||2L2((o,T)x(o,1))- (32)



e Second case: g € L'(0,T; (H3 N HZ)(0,1)). In that case the estimate is more direct:

T 1
*/ / (2—2)PiuPigdrds < ||Prul|pe ;220,10 1P19] L1 (0,7502(0,1))
o Jo

1
ZHPlU'”QL‘X’(O,T;L?(O,l)) + leg”%l(O,T;L?(O,l))' (33)

IN

Now we inject (32) and (33) in (31) and take the supremum in ¢ € (0,7"). Finally, we use the following
Poincaré’s inequalities: Vv € H*(0,1) such that v(0) = v(1) = v’(0) = 0, one has

vl 30,1y < CllPrvllz2(0,1) and [|[v]|g20,1) < CllProll (0,1 (34)

Consequently we deduce the desired inequalities (23) and (24).

2.3.2 Interpolation arguments

From Paragraphs 2.2.1 and 2.3.1, we can define a linear mapping A : g +— u, where u is the solution of
(20). This mapping continuously maps X; /4 and X4 to Y74, and X; and X, to Y;. Moreover in these
various situations, the norm of the operator A can be estimated by (see (10), (11), (23) and (24))

<C.

lAecx v < O/ 1ALz, v < O IAllecam) < C/vY? and Al gz, v, <

From classical interpolation arguments (see e.g. [1]), we have that A continuously maps Xy and Xy to
Yy, for any 6 € [1/4, 1]. Moreover the corresponding operator norms satisfy

JAll2(xgrma) < C/vM2 and AL 5, v < C- (35)

In the same manner, we can define a linear operator B : g + t,|,—1, which continuously maps X, /4 and
X4 to L?(0,T) and X; and X; to H'(0,T). The same interpolation argument yields for 6 € [1/4, 1]:

) < 31 and |B]] 3 < Cy3-3), (36)

HB”/:(XQ;H%(B*I/‘*)(O,T) L(Xg;H3 OV (0,1

Taking 6 = 1/2, we obtain that:
e If g € Xy/5 = L*((0,T) x (0,1)) then the solution of (20) satisfies u € Y/ and wu,,—, € HY3(0,T),

with
ullvy)s + O lta e s 0.y < (C/0M?)Igllx, - (37)

olfgc )?1/2 = L'(0,T; Hj(0,1)) then the solution of (20) also satisfies u € Y /o and ;=1 € H'Y3(0,T),
with

lully o + v e ot ll s,y < Clglg, - (38)
Observe that, in this case, we have
Y19 = L*(0,T; H*(0,1)) N C°([0, T]; H'(0,1)). (39)

This already yields u—o € H*(0,1) and u,,—, € H/3(0,T) with

(C/)Iglx, 2
lwe=ollm1(0,1) < (40)
Clolz, ..

and
(C/v*3)lgllx, 2

(C/vV9)Nllz, ,-

It only remains to prove the property in (8) which concerns the terms u;;|;—¢ and Uzz|y—1. Let us
prove, for instance, an estimate for u,,,—o (the same can be done for Um\z:ﬂ- For this, we introduce
p € C3(]0,1]) satisfying

v)o=1ll s o,y < (41)

plo,/2) =1 and  py3/4,1) = 0.



Let us consider the function @ = p(z)u, which fulfills the equation
Multiplying this equation by —,, and integrating in (0, 1), we obtain:

1d

1 1
~ v -~
a 1. / ‘ux|2 diC + 7|Uzz|x:O|2 = _/ (V(3qum + 3pxmuz + pzzxu) + PQ)Um d{E
2dt 0 2 0

Integrating now in the ¢ variable and estimating the right hand side terms, we deduce

T 1
/ / P G Uy da dt
0o Jo

Let us distinguish both situations in order to bound the last integral in the right hand side of (42):

14

T
5/0 |tz o—ol® dt < C(W|ull7zo. 1,52 (0,1)) + Null7o 0,701 (0,17)) + . (42)

o If g € Xy, we simply use Cauchy-Schwarz inequality:

T 1
/ / P g Uy, da dt
0 Jo

o Ifge X, /2 we integrate by parts once more in the x variable:

T 1 T 1
/ / PGUs dx di / / Uz (prg + pgs)dx dt
0 Jo 0 Jo

Then, from (42), we deduce in both situations that

<2 MgllZ2 0.1y x 0.1)) T VIullZe 0,182 (0,1y))-

< C(||g||2L1(O,T;H1(O,1)) + ”uH%W(O,T;Hl(O,l)))'

—2 2
v gl z2 0,1 % (0,1))
[z ia=ollZ2 0,y S IellZe(o im0,y + ¥ 1““”%”@’““0*1’”{ gl "
v ||9||L1(0,T,H1(0,1))'

Thanks to (37) and (38), we finally deduce that

(C/v?)lg]2 ,

vl , + tsepemol 22 0.0) < FOARE (44)
& ’ /) gll .
L1(0,T,H1(0,1))

Combining (39) and (40)-(44), we obtain

=0l (0,1) + V1/6||u$|w:1||H1/3(O,T)

(/) gl L2(0.1)% (0,1)
+ V2t ool 207y + V2 [ Uzajom || L20.7) < { (45)

C||9||L1 (0,T,H(0,1))-

2.4 Conclusion

We begin by noticing that the solution u of (7) also solves (20) when g := f — M(t,x)u,. When
f € L?((0,T) x (0,1)) we directly apply the first inequality in (45), whereas when f € L'(0,T; H}(0,1))
we decompose u = uy + ug where u; satisfies (20) with g = f and uy satisfies (20) with g = —M (¢, x)u.
Thus, we get

||U|t:0||H1(o,1) =+ V1/6||U:c|a:=1 HH1/3(O,T) + Vl/z”“wc\x:O”LQ(&T)

C V1/2 f - Muw 2 s
+V1/2Huww|z:1HL2(O,T) S{ (c/ i Iz ((0,7)x(0,1)) (46)
ClFllzro.r,m0,1)) + (C/vY?) [ Mug| p2((0.7)x (0,1))-

Now we distinguish the cases where M is constant and where M is variable:



e M is constant: in order to estimate the Mu, term, we use (11):

=0l 0,1) + V1/6||Um|x=1||H1/3(o,T) + Vl/zHum\x:on(o,T)
(C/INf N 20,1y % (0,1))5

+ V1/2||Um| =1llz201) < { (47)
’ C/F o om0 (0.1)-

o M is variable: we estimate the right hand side with
[Muzrz0.myx00) < [Mllz=miz200) 14l 20,702 0,1))
< ClIM||poo,7;r20,0) Ul 20, 7;1774(0,1)) -

Then we use that for any ¢ > 0, there exists Cs > 0 such that

lwll 20,1774 (0,1)) < Ollullzz(0,1m2(0,1)) + Csllull L2 (0.7:81(0,1))- (48)

Finally, using the energy estimates (16) and (17), we get:

lwi=ollm0,1) + l[waie=1l 130,
Cw, M|y, I fllL2(0,7)%(0,1))5

+ luzzje=oll20,7) + Uszje=1ll20m) < ~ (49)
Cw, 1My, I fllLr o7, 11 0.1))-

Now, the conclusions of Proposition 1, 2 and 3 are consequences of Riesz Theorem and Definition 1 (see
identity (6)). Observe that the continuity in time can be obtained from the L regularity and a classical
density argument since for smooth data we actually have the continuity in time.

3 Proofs of Theorems 1 and 2

3.1 Carleman inequality

We recall that here M is a constant. Let us consider the following backwards (in time) problem, which
is usually called the adjoint system associated to (1):

— Py — VPpge — My, =0 in (0,7) x (0,1),
@(t,0) = o(t, 1) = ¢z (t,0) =0 in (0,T), (50)
(P(T’ T) = 300(55) in (07 1)'

The objective of this paragraph is to prove a Carleman inequality for the solutions of this system. After
a simple change of time variable in (50), we have

—pt — Qaza — (M), =0 in (0,7p) x (0,1) := Qo,
@(t,0) = p(t, 1) = ,(t,0) =0 in (0,Tp), (51)
o(To,z) = po(z) in (0,1),

where Ty := vT. We will rather work with this equation for which obtaining a Carleman inequality will
be clearer. In order to state this estimate, let us set

100 + 4z — 22

(52)

for (t,z) € Qo. Weight functions of this kind were first introduced by A. V. Fursikov and O. Yu. Imanuvilov;
see [4] for a systematic use of them. We denote

&(t) == min ot,z) = a(t,0) and &(t) == max a(t,z) = aft,1). (53)
16[0:1] 16[071]
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Observe that the function « satisfies

C <Tha, Coa<a, <Cia, Coa < —au, <Cia in (0,7p) x [0,1], (54)
la| + |we] + |ozat| < CTya?, || < C’(Tgaf’ + a3) < CT02a5 in (0,7p) x [0,1], (55)
and
. . 14
646 — 624 = —— >0, (56)

(t(To —t))1/2

where C, Cy and C are positive constants independent of Tj.
We have:

Proposition 4. There exists a positive constant C' independent of Ty, v and M such that, for any
o € L?(0,1), we have

To
// 0¢e*25°‘(|g0%:,3|2 + szcu2|<pm|2 + s4a4|cp|2) dx dt < C/ a|x=03*25‘1\m:0|@m‘m:0|2 dt, (57)
0

0
for any s > C(Tp + Tol/2 + To|M|'/2 /v1/?), where ¢ is the solution of (51).
Since the proof of Proposition 4 is very technical, we postpone it to an appendix, at the end of the

paper.

3.2 Proof of Theorem 1

For the proof of Theorem 1 it will not be important to keep track of the dependence of the constants
upon v, T and M. Therefore, in this paragraph we will not specify this dependence on the constants C
(but these constants will be independent of ).

Let us first deduce an observability inequality from the Carleman inequality (57). We consider ¢ the
solution of (50). By the change of variable t — vt, we can associate a solution of (51), on which one can
apply (57). Thanks to the definition of the weight « (see (52)), we obtain that

T
// (oo da dt < c/ rnool* dt. (58)
(T/3,2T/3)x(0,1) 0

Let us now establish that
1 1
/ |pa(tr, 2)* da < C/ palto, 2)Pde 0 <ty <ty <T, (59)
0 0

for some C > 0. We prove (59) by showing the following two estimates:

1 1
/ oty 2)?dz < C / (p(tz, 2)? do, (60)
0 0
and
1 1
/ (Para(ty, 2) P di < C / (P (2, 2)? e, (61)
0 0

for some C > 0. Then, a classical interpolation argument gives the desired estimate (59).
First, (60) follows from (15) with f = 0 which, as can be easily seen, is valid regardless of the initial

state ¢g, and by integrating in time. Next, we turn to (61). We define the operator Py := vd3,, + M0,,
we multiply the equation (50) by —Pa¢; and integrate with respect to a:
1 1
1d
ztPrx doe — -— P 2d = 07
V/080t<ﬂ t T 2dt/0|2s0‘ x
where we used the boundary condition ¢,—g; = 0. It follows that:
1 1
|Pap(ty, )| de < [ |Pap(ts, )| da. (62)
0 0

11



Using
1 1 1
/|mp$m(t1,x)|2dx§2/ |P2<p(t1,x)|2dx+2/ |Mp,(t1,2)|* dr,
0 0 0

and
1 L2 1 1
[ e oPdr <% [ ool de o [pta)P s
0 0 0

we deduce with (62) that

1 1
[ ottt < 0(/ Pagttaa)da+ [ |so<t1,x>|2dx)

1
0
1 1
c ( [ otz o+ [ Iw(thw)lzdff)
0 0

Using (60) and the first Poincaré’s inequality in (34), we deduce (61) and hence (59).
In particular, (59) allows us to deduce the following observability inequality from (58):

IN

1 T
/ |0a(0,2) 2 der < C* / (e oo dt, (63)
0 0

for some C* > 0.

Now, from this observability inequality for the solutions of (50), it is classical to prove that for any
yo € H71(0,1), there exists a control v; € L?(0,T) such that the solution y € Yy of (1) with vy = v3 =0
satisfies y(T,x) = 0 for = € (0,1) with v, estimated by

il 22,2y < (C* /) Iy0ll3-1.0,1)- (64)
(We recall that the space Yy was defined in (21). ) In the case of internal controllability, an explicit
construction of this control is made in Section 4. This concludes the proof of Theorem 1.

3.3 Proof of Theorem 2

Let y; € L%(0,1). We must find two controls v; and vy in L?(0,7T) such that the solution y € Yy =
L2((0,T) x (0,1)) N C°([0,T]; H~1(0,1)) of the system:

Yt + VYzae + Myz =0 in (0,T) x (0,1),
Yje=0 = V1, Yla=1 = V2, Ygle=1 =0 in (0,7), (65)
Yjt=0 = Yo in (0,1)
satisfies
Yp=r = y1 in (0,1). (66)

We divide the proof in two steps:

e First, we prove that there exists yp € L?(0,1) and controls ©; and v, in L?(0,T) such that the
solution § € Y7,4 = L*(0,T; H'(0,1)) N C°([0,T]; L*(0,1)) of

Yt + Vzaz + MYz =0 in (0,7) x (0,1),

Ylz=0 = U1, Ylz=1 = V2, Yg|z=1 =0 in (0,7), (67)

Yjt=0 = Yo in (0,1)
satisfies

Yje=r = y1 in (0,1). (68)

Indeed, let h € Yy be the solution of

hi + Vhage + Mhy =0 in (0,T) x (0,1),

hjz—o =0, hjg—1 =0, hgjz—o =0 in (0,7, (69)

hit=r = Y12 in (0,1)

12



4

in the sense described in Definition 1 (observe that y; , € H~1(0,1)). The existence and regularity
of h are provided by Propositions 1 and 2. Let us now introduce

ot x) = /h(t,g) dé € Via, (70)
which is of course determined up to a constant. We define:
€= 2 + Vigge + Mz, in D'((0,T) x (0,1)),
{ d:=y1 — 2p=r in L2(0,1).
It is a direct consequence of (69) and (70) that
¢, =0and d, =0,

that is, ¢ is a distribution of time and d is a constant. But from (69), we know that h¢, hyzs €
L?(0,T; H3(0,1)), hence 2, z4ze € L2(0,T; H=2(0,1)), so we have ¢ € L?(0,T). Let us now
introduce

g(t) =d+ /T c(r)dr.
t
Then, the function y(t,z) = 2(t, ) + g(t) € Yy,4 satisfies
Yt + Vzzz + My, =0 in (0,7) x (0, 1),
Yalz=1 =0 in (0,7), (72)
Yjt=0 = Yo in (0,1)

with Jo := 2,0 + g(0) € L?*(0,1). Note that from § € Y74, we deduce that 07 := gj,—o and
Uy := J|z=1 belong to L?(0,T). With these controls, ¥ satisfies (67) and (68).

Then, we apply Theorem 1 for the initial condition yo — 7o € L?(0,1). This yields that there exists
a control 1 € L?(0,T) such that the solution 7 € Yy of

Yt + Vpze + My, =0 in (0,7) x (0,1),
,’/y\|z:O = 617 @\\zzl =0, gx\z:l =0 in (O7T)a (73)
Ylt=0 = Yo = Yo — Yo in (0,1)

satisfies y—r = 0 in (0,1).
Finally, defining y := § — ¥y, we realize that y € Y; fulfills (65) and satisfies (66).

Controllability of the nonlinear system

4.1 Proof of Theorem 3
4.1.1 Modified Carleman inequality

Let us briefly explain why Proposition 4 is still valid when M is replaced by a function M = M (¢, x)
with L{°(L2) regularity, that is, when (51) is replaced by

=t — Paza — (M(t,2)/v)p; =0 in (0,Tp) x (0,1),
(p(t,O) = (P(tv 1) = (Px(ta 0) =0 in (OvTO)a (74)
o(To, x) = ¢o(x) in (0,1).

We recall that Ty := vT.
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Proposition 5. There exist two positive constants C and K(To, v, ||M| 10 1;12(0,1))) such that, for
any o € L*(0,1), we have

To
// e (|pgp|? + 5202 |0.|* + stat|p]?) dr dt < C/ a|w:06_2so‘\w=0|¢lw‘w=0|2 dt, (75)
Qo 0

for any s > K, where ¢ is the solution of (74).

The proof of this proposition will be given at the end of the paper, in Paragraph 6.2.

4.1.2 Linear controllability with more regular controls

Let 2z € Y7,4. We consider the following linear control system:

we+ (1474 2/2)w)y + Vwepe =0 in (0,7) x (0,1),
Wig—0 = V1, Wig=1 = 0, Wg|p—; =0  in (0,7), (76)

Wig=0 = Wo in (0,1),
where wy is some state in H'(0,1) with wg(1) = 0.

e Boundary observability inequality. From the Carleman inequality (75) with M(t,z) = 1+ g(t,x) +
z(t,x)/2 and taking into account the same analysis developed in Paragraph 3.2, we deduce the existence
of a positive constant C* such that

1 T
/0 10(0, )2 dz < C*(To, || M] 2) / (Prepool? d. (77)

From the observability inequality (77), it is classical to deduce that equation (76) is null controllable
with a control v; € L?(0,7T). But in the sequel, it will be convenient to have a control which is more
regular than L?(0,7) (in order to perform a fixed point argument (see paragraph 4.1.3) below).

e An interior control problem. For that purpose, we will consider an internal controllability problem. Let
us introduce a linear extension operator IT;, which maps functions on [0, 1] to functions on [—1,1] with
support in [—1/2,1], and which is continuous from L?(0,1) to L*(—1,1) and from H'(0,1) to H'(—1,1).
We define

wo = M (wp) in H'(—1,1) (78)

and
7:=I,(7) and 7 := Iy (2) in L?(0,T; H*(—1,1)) N L>=(0,T; L*(—1,1)). (79)

Let w be some interval (—1,—1 + a) for some 0 < a < 1. The controllability problem under view is the
following: B
W+ (1+7942/2)W)y + VWape = v(t,2)1,(z) in (0,T) x (—1,1),

’&}/\1:71 = 07 ﬂj|a::1 = 07 ﬂjz|x:1 =0 in (07T)a (80)
is—o = o in (—1,1).

Let us prove that there exists v € L2((0,7) x w) such that the solution of (80) satisfies

Ber = 0 in (—1,1).

o Interior observability inequality. For this, we consider the adjoint system associated to (80) with
To =vT: _
=t — e — (L +Y+2/2)/v)d =0 in (0,Tp) x (—1,1),

(b\:v:fl = (b\z:l = ¢Z|;1;:—1 =0 in (0, TO), (81)
o(To, z) = ¢o(z) in (—1,1).
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Of course, by performing the change of variable z — 2x — 1, one can transform (75) into:

142, _ogn Ltz 14z 14
/] ot L5 e (6,0 4 alt, L PI0ul? + shalt, 1oL o) de di

(0,To) x(=1,1)

To
< Cz/ Qg€ 2= G [P dt (82)
0
for some Cz > 0. It is straightforward from (82) that
~ TD -
// ae” 2% (e |? + 5202 |pu|* + s* @t @|?) da dt < 02/ ae" > pugpe [P dt. (83)
(0,To)x(=1,1) 0

Recall that & and & are given by (53).
To reach the interior observability result which we seek, we transform this inequality in two steps:
first we modify the right-hand side, and next we modify the left-hand side.

— Right-hand side. We have

To .
/ ae ™ G ey | dt
0

IN

TO .
c / e (g1
0

To B
< 0 [ ae oL oL

where we have successively used: a trace inequality (observe that 5/2 < 31/12) and the interpolation
inequality corresponding to H3!/1? interpolated between H®/3 and L?. Now we use Young’s inequality
to get

To 28 2
/ G258 Pt
0

< C/ —(31/16) saV7279/32”¢( )H:;S//l;}(w) 725646(31/16)564@311/32||¢( )HlL/zl(i)

TO R
< 6/ 6—25(1 < —9||¢(7f7 ) ||%[3/3(w)dt =+ CE / 65(—64d+62a)d311 ||¢(t, ) H%z(w)dt, (84)
0 0
where ¢ is to be fixed later.

— Left hand side. We introduce
o1t ) = 01()o(t, x),

with
01(t) = exp(—sa)a— /2.

Now, ¢, satisfies the following system
—P1p — Plyze = 91,
Plle=—1 = Pljz=1 = P1zjp=—1 = 0, (85)
¢l (TOa .T) = 07

where _
g1 =((L+7+2/2)/v)01¢. — 01,6

Now we estimate ¢; in terms of the L2((0,Tp) x (—1,1))-norm of the right hand side of (85). By
employing estimate (37) and recalling (39), we have in particular ¢, € L*(0, To; (H3/2 N H)(—1,1)) and

D11l 40,70 53/2(=1,1)) < Cllgallzz(0.70)x (~1,1)) (86)
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for some C' > 0. As 5, Z € L>(0,Ty; L?(—1,1)) and 01| < Ca®/? exp(—sa), we have

”91”%2((0,T0)><(—1,1)) < O//(o S e 2% (| s |® + sat|p)?) d dt. (87)
o)X (=1,

Now we define

¢2(t7 QL') = 92(t)¢(t7 .’IJ),
with

05(t) = exp(—sa)a—>/2.

It follows that ¢ satisfies (85), with g1 replaced by
g2:= (L+ 7 +7/2)/v)0207 b1, — 02,07 1. (88)
Interpolating (16) and (23), we have ¢ € L?(0,To; H'/3(—1,1)) N L>=(0,Tp; H*/3(—1,1)) and
P21l 220,10 1773 (=1,1)) L (0,70; 1473 (—1,1)) < Cllg2llL2(0,70;51/3(=1,1))- (89)

Observing that 6,07 and 65,67 are bounded and 7, Z € L*(0,Tp; H/?(—1,1)) (as easily seen by
interpolation), we find that

921l L2 (0,0 m1/3(=1,1)) < Cllo1llLaco,m0;m372(1,1))- (90)

Here, we have also used that the product of two H'/?(—1,1) functions belongs to H'/3(—1,1).
Finally, we define ¢3 := 03(t)¢(t, x) with

05(t) = exp(—s@)a/2.
We have again that ¢3 satisfies (85) with, in place of g:
g3 = (L+ 7 +2/2)/v)0305 b2, — 03,05 2. (91)

Using the same arguments as previously and the fact that 7 and Z are bounded in L3(0,T; H*/3(—1,1)),
we arrive at

H¢3HLZ(O,TU;HS/3(—1,1))HL°°(O,TO;H5/3(—1,1)) < CHQS||L2(O,T0;H2/3(—1,1))7 (92)
and
N9l 20, 70; 1273 (—1,1)) < CllP2ll 160,115/ (—1,1))- (93)
Finally, putting together (86)-(87), (89)-(90) and (92)-(93), we obtain

19511720 7y;125/5(~1,17) < Cs / / e (|ggo|” + '@’ |¢f?) da dt, (94)
(0,To)x(—1,1)
for some C5 > 0. We now express (94) in terms of ¢:
T h A
| e e ot B andt <0 [ G20 (g, ? + %64 |6[2) dzdt.  (95)
0 (0,To)x (—1,1)
Lastly, we fix e = (2C2C3) ™! in (84) and using (83), it results:
// G20 (| gy 2 + 526%|bul? + s*6% |0 2) da dt
(0,To)x(—1,1)
To o
<C [ e () [t (96)
Recalling (56) and using again Paragraph 3.2, we reach the following interior observability inequality:

1 T
[ oaRde < e, [ ol (o7

-1
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e Design of the control. From (97), we can deduce the existence of v(t) € L*((0,T) X w) answering the
null controllability problem by using the following method, which will help us to single out a particular
control; this will be useful when handling the nonlinear problem. On L?(—1,1) we introduce the following
norm: ||¢o||r := ||9ll £2((0,7)xw), Where ¢ is the solution of (81) associated to ¢o. The fact that this is a
norm comes from the unique continuation property for system (81) which follows for instance from (97).

Let F be the space obtained by completing L?(—1,1) with the above norm. We define J as the
following functional on F:

1, o ! _
To) = g0t + [ 000,00 (@) o

The fact that the second term is well-defined on F' and that it is continuous as a function of ¢¢ is
a consequence of (97). Since J is moreover strictly convex and coercive (as follows again from (97)),
the functional J admits a unique minimum ¢g, which furthermore is characterized by the following
Euler-Lagrange equation:

1
Vxo € F, // X ¢*dx dt —|—/ x(0, 2)wWo(z) dz = 0, (98)
(0,T)xw

-1

where again x and ¢* are the solutions of (81) associated to xo and ¢f, respectively. Now, we define
v € L?((0,T) x w) by
v:i=1,0". (99)

Hence for any ¢o € L?(—1,1) we have

1 1
/_1 w(T, x)podx = //(OI)X(_M) vodz dt + /_1 (0, x)wo(x)dz = 0,

where w is the solution of (80) associated to v defined in (99). Hence v is a control which steers wy to
0. Its norm can be estimated by setting x = ¢* in (98); with (97) this yields

Cllwol|£2(=1,1) (100)

vl 20,y xw) <
< C'wollr2(0,1)-

Thanks to estimate (37), we deduce that w € Y3/, and

l@lly;,, < CUlvllL2(0,7)xw) + W0l (~1,1)), (101)

for some C' > 0. Observe that estimate (37) was established for u solution of (7), which has a null initial
condition but the general situation follows directly from our proof.

e Back to the boundary control problem. Let

w = wl(O,T)X[071]. (102)

Then, w solves system (76) for
V1 = @jaro. (103)

We clearly have that w(T,-) = 0in (0,1). Furthermore, from (100), (101), equation (76) and interpolation
arguments we get that v; € H(1/2=¢(0,T) for every ¢ > 0 and

lvill garz-<0,m) < Cllwoll 0,1, (104)

for some C' > 0.
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4.1.3 Fixed point argument

Let us recall that y and 7 fulfill systems (3) and (2), respectively. Then, p = y — 7 satisfies:
Pt + Pu + PPz + (YP)z + VPrza =0 in (0,7) x (0,1),
Pla=0 = V1, Pla=1 =0, pyz=1 =0 in (0,7), (105)
Plt=0 = Po = Yo — Yo in (0,1).

Our objective is to find v; such that the solution of (105) satisfies p(T,-) = 0.

Remark 7. In the sequel, we will suppose that pg € H*(0,1) and that Ipoll 1 (0,1) 48 sufficiently small.
Observe that this can always be assumed by taking vi = 0 during some time, taking into account the
reqularizing effect of (105) and using the fact that ||po||L2(0,1) s sufficiently small.

Then, let us introduce the following fixed point mapping. First we introduce the space
Eq := C"([0,T]; L*(0,1)) N L*(0,T; H'(0,1)) N H*(0,T; H2(0,1)).

We consider in L2((0,7) x (0,1)) the following compact subset:

B = {z c By /HZHEO < 1}.

To any z € B, we will associate a set of solutions w of (76) with initial condition wy = py given in the
previous paragraph. More precisely, let us first define the set of controls:

A(z) := {v € L?((0,T) x w) /@ solution of (80) satisfies w);—y = 0 and v satisfies (100)}.
We define
Ao(2) == {w = {17|(0,T)><[O,1]/ w fulfills system (80) for some control v € A(z)}

Of course, in the above definition, the function @ satisfies (80) in the sense of Definition 1, with the
functions @o, 7 and Z appearing in (80) defined by (78)-(79).

We will use the following Banach space version of Kakutani’s fixed point theorem (see, for instance,
[13, Theorem 9.2.3]):

Theorem 6. Let Z be a Banach space and let Ag : B — 2B be a set-valued mapping satisfying the
following assumptions:

1. Ao(2) is a nonempty closed convex set of Z for every z € Z,
2. Ao maps B to a compact subset of B,

3. the graph of Ag
G(ho) = {(w.9) € Bx B [y € M)},

is closed in Z2.

Then Ao possesses a fized point in the set B, i.e. there exists z € B such that z € Ay(z).

Let us check that Theorem 6 can be applied to Ay and
Z = L((0,T) x (0,1)).

e The fact that Ag(z) is a nonempty closed convex set of Z for every z € Z is very easy to verify, so
we leave it to the reader.

e That B is a compact subset of Z is easily seen by Rellich’s theorem and interpolation arguments.
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e Let us observe that provided that po is small enough, Ay maps B into 28. Thanks to (100) and
(101) we have that for each z € B C Z the solution w of (80) belongs to Ey and there exists a constant
C > 0 such that

lwlle, < Cllpollai(o,) < 1.
The last inequality is obtained by taking ||po||z1(0,1) sufficiently small.

e It remains to check that the graph of Ag is closed. Consider (z,,yn) a sequence converging in
[L2((0,T) x (0,1))])? to (z,y), with y,, € Ag(z,). We have to prove that y € Ag(z). It is sufficient to be
able to pass to the limit in each term of

Yt + (LT +20/2)0n)a + Vinaes = va(t, 2)Lu(2) in (0,T) x (~1,1).

Note that v,, is bounded in L?, and hence converges weakly to v, up to a subsequence. The only non-trivial
convergence is the one of the nonlinear term z,y,,. But, up to a subsequence, using the compactness of
B, y,, converges to y weakly in L?(0,T; H*(—1,1)). As z, converges strongly in L*((0,7) x (—1,1)), it
follows that z,y,, weakly converges to zy,.

This shows that y € Ag(z) and, therefore, the graph of Ay is closed.

Consequently, Theorem 6 applies and this implies that there exists p € Ag(p), that is to say, we
have found a control v; € HY27¢(0,T) for all £ > 0, such that the solution solution of (105) satisfies
p(T,) =01in (0,1). The proof of Theorem 3 is finished.

4.2 Proof of Theorem 4

This part is close to [10]. First, we introduce the operator Lg : L?(0,1) — L?(0,1) which associates to
any y; € L?(0,1) the function g5 € L?(0,1) constructed in Paragraph 3.3 in order to fulfill (67)-(68) with
M =1.

Next, we introduce the operator L; : L?(0,1) — L?(0,T) which associates to any 7o € L?(0,1) the
control v; € H'Y?7¢(0,T) constructed in Paragraph 4.1.2 in the case z = § = 0: see (103). We call
Ly : L2(0,1) — L2(0,T; H'(0,1)) N C°([0,T); L2(0,1)) the operator which associates to §o € L*(0,1) the
corresponding solution w given by (102). We underline that L; and El are linear operators. Indeed, for
what concerns the (uniquely defined) control v, this follows from the characteristic property (98) and
the linearity of IT;. Remark that the continuity of L; and El comes from (104).

Finally, we define the operator Ly : L(0,T; L%(0,1)) — L?(0,T; Hg(0,1))NCY([0, T]; L?(0,1)) which
associates to f the (unique) solution u of

Up + VUgge + Uy = f in (0,7) x (0,1),
Ujp=0 = Ujg=1 = Ug|z=1 = 0 in (0,T), (106)
Ujp—o = 0 in (0,1).

Observe that this application is well-defined thanks to (11).
With all this, we are ready to define our fixed-point mapping Ay : B(0; R) C L?(0,T; H'(0,1)) —
L2(0,T; H(0,1)), where R > 0 is to be determined; it is defined as:
A1 (u) = Ly[yo — Lo{yr + La(uuy)(T)}]- (107)
Note that of course, uu, = (u?/2), belongs to L'(0,T; L*(0,1)) when u € L?(0,T; H(0,1)), hence Ay
is well-defined. Let us prove that it maps B(0; R) into itself and that it is contractive.

e Ay is contractive. Let u,v € B(0; R). We call Cy, Cy, C3 various constants depending only on the
operator norms of the above L1, etc. We have

HE1 oLgo [L2(Uua: - UUz)KT)||L2(0,T;H1(0,1))

C1llLo o [La(uu, — v0)(Dllz2 o)

Col| Lo (uuy — vvg)]l|co(o,m;22(0,1))

[A1(u) - Al(“)HL?(mT;Hl(o,l))

Callu® = 02| 10,751 0,1))

VAN VAN VAN VAN VAN

2RCs|u — UHLZ(O,T;Hl(OJ))-
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Hence A; is contractive for R small enough, typically

1
— 1
R<4€3 (108)

e Ay maps B(0; R) into itself. Now consider u € B(0; R), and observe in the same way as previously
that

AL (W)l 20,500 00)) < Callyollzzo,1) + Collynllrzo,1) + CsR>.

Hence with the choice (108) and if ||yo||z2(0,1) and [[y1]|z2(0,1) are small enough, the operator A;
maps B(0; R) into itself.

In that case, the operator A; admits a fixed point, by the Banach-Picard Theorem. Then it is straight-
forward to see that such a fixed point answers to the requirements of Theorem 4.

5 Proof of Theorem 5

We start the proof of Theorem 5 by showing that one can suppose that the initial condition has null
traces at x =0 and = = 1.

This is done as follows. For any n > 0, we introduce a linear continuous extension operator Il; from
W10 (0,1) to Wy >°(—n,1 4 n). Consider the problem

Yt + VYpae + My, =0 in (0,7) x (—n,1+1n),
Yz=—n = V1, Yjz=14n = V2, yz\aczl—i-n = U3 in (O’T)v (109)
Yje—o = Ha(yo) in (—=n,1+7).

Recall that M is a negative constant in this section. Clearly, by rescaling, this problem is equivalent to

M
3 Yzaa + =Y = 0 in (OvT) X (03 1)

14
+7
T an) (1+2n)”

Hence, raising Ky, diminishing vq if necessary and taking n sufficiently small, we see that solving the
problem with W, > initial data is sufficient. From now on, we suppose yo € Wy >°(0,1).

Now the proof of Theorem 5 is performed in two times. First we drive the state to a small one, and
next we drive it to 0 exactly.

5.1 Driving the initial state to a “small” one

In this paragraph we drive the initial state yg € WO1 "°°(0,1) to some “small” state. This is only possible
as long as the transport term “helps”, that is to say, when M < 0.
Introduce the following initial state associated to yg, but defined in the whole real line:

wo(z) = { yo(z) z€(0,1),

(110)
0 elsewhere.

The idea we follow here is to consider the solution u of our system associated to ug in R. Then, we prove
that w is “small” in the interval x € (0,1) as long as a time ¢ > 1/|M| has gone by. Finally, it suffices to
take the controls as the corresponding traces of u in order to prove the desired result.

Proposition 6. Consider ug € W (R) given by (110). Let M < 0 and let u be the solution of

Up + VU + Muy =0  in RT x R,
(111)

Ujg=0 = U0 in R.
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Then the following holds independently of v: for t > 1/|M]|, the function u satisfies:

g bl 2<Mt1>3/2>.
3 V3vt

[lu(t, ')||L°°(071) ~ (wt)1/3 x

Moreover one has
g (5 Dl Lo v+) S lJtollwr .o ).
Proof. By performing the change of variable
v(t,x) = u(t,x + Mt),

we arrive at the following equation
Vt + VUgge = 07

which has as a fundamental solution

1 . T
Glt.o) = m Al <(31/t)1/3> !

where Ai is the Airy function

o1 ‘ &
Ai(x) := o /Im(g)n>o exp |:Z(I§ + 3)] d€.

It follows that for ¢ > 0,

ult,r) = /Ruo(z) (3;)1/3/” <x(_33t4)t1/_32) dz

1 x— Mt —z
p— A. d .
/(071) yo(2) (3ut)L/3 Z( (But)1/3 ) z

We will use the following lemma;:

Lemma 1. The Airy function satisfies the following estimate: for x > 0:

0 < Ai(x) < Ai(0) exp <§x3/2) .

(112)

(113)

(114)

(115)

(116)

Proof. Tt is classical (see for instance [8, p. 214]) that the Airy function is a solution of the following

equation:
Ai" —zAi =0,

(117)

with Ai(0) > 0 and Ai'(0) < 0. It is then clear that in order to establish (116), it is sufficient to prove

that the function g :  — exp (—§x3/2) satisfies
g —xg>0 forx>0.

This is immediate since g — zg = (1/(2/x))g.

Now going back to the estimate on u(t, ), we get for x > 0 and ¢t > 1/M,
Ai(0)lyoll o 2 [z—Mt—17°7
tx)| < A0 e Sl P
|u( ,Jj)| — (31/t>1/3 eXp 3 (3l/t)1/3 ?
which yields (112).

To get (113), we first differentiate (115) with respect to z, and obtain,

dyult,z) = [ (3Vt1)1 A ( ('3;t§‘f/t3) ; (uo)z} (2)

21




and then for x > 1, using Supp ug C [0, 1] (recall that M < 0), we have that

duult,z) = [W(Ailw) <(3;£§‘ff3) ) (uo)w} (@),

Denote Ait := Ailg+(> 0). One has
[Opu(t, I < [ 3vt) 1/3 ( 3vt 1/3> |(u0)z |] (1)
z
_ / (3Vt>1/3,4 o+ <(3yt)1/3> (uo)a (1 — Mt — 2)|dz.

Noting that Ai* € L'(R) and that

) .
H(3Vt)1/3 GBut) )l ey o

we conclude by Young’s inequality that

[Oau(t, )] < [(u0)all o 0,0 147 21 (2

independently of v. O

5.2 Conclusion

In this paragraph, we combine the previous paragraph and Section 3 in order to prove the uniform null
controllability of (1) (Theorem 5).
Let us consider yo € Wy>*°(0,1) and M < 0.

e Let 71 € (1/|M]|,T) to be chosen later. In the time interval (0,77), we consider u the solution of
(111) with ug given by (110). Then, it is clear that the solution y of the problem

yt+”yxrx+Myz:O in (07T1) X(Ovl)a
Ylz=0 = Ujz=0s Yjz=1 = Ujz=1, Ya|z=1 = Uzje=1 in (0,T1), (119)
Yjt=0 = Yo in (0,1)

also satisfies (112), that is to say,

Mooy <
ly(T1, ) zoe (0,1 3 (3vTy)Y/?

2(—MTy —1)3/2
< (”?')33 exp ( —( L ) ) . (120)
viy

e Now, between t = T} and ¢t = T, we apply the null controllability result proved in Paragraph 3.2
for the initial condition y(T1,-) (instead of yg). Doing so we obtain

y(T,-)=0 1in (0,1).

Furthermore, we can require that the control satisfies

C*
lollZacry ry < = I9(T1 )20,
14

where C* is the constant in the observability inequality (63).

In order to estimate C* in terms of v, we will take a careful look at the Carleman estimate (57).
In fact, let Ty = v(T —T1) and @0 := (0, fo) x (0,1). After a translation in the ¢ variable, one can
consider that our solution evolves from ¢t = 0 to ¢t =T — T} instead of from ¢t =T} to t = T. Then,
analogously to (51), we regard ¢ the solution of

—Pt — Prax — (M/V)<px =0 in (O,To) X (O, 1) = 6207

o(t,0) = @(t,1) = v, (t,0) =0 in (0,Tp), (121)

o(To, x) = po(x) in (0,1).
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Applying (57) to ¢, we have

To
st //~ a5e_25a|<p|2dxdt§04/ a(t,0)6_250‘(75’0)|g0m(t,0)|2dt,
Qo 0

for some Cy > 0 independent of Ty, v and M. From the definition of o (see (52)), this yields

gt ~ Cs Tt To
767058/710 // |90‘2d$ dt < 767065/7’0 / |<le-(t, 0)|2dta
Tg’ Qo To 0

for some C5, Cs > 0. Using the energy inequality (60), we get the existence of C7 > 0 such that

1 T4 T
T ~ 0
/ |0(0, ) Pda dt < —C;O eC”/TO/ |0 (t, 0)|dt.
0 0

With the definition of Tp and setting s = Cs(Tp +Tv01/2+f0|M\1/2/u1/2) (provided by Proposition 4),
we obtain an observability constant of the following kind (for v <1 for instance):

Co|M|'/? ) 1
exp v1/2 + (T—T1)1/2|M\1/2 :

It follows that the control satisfies

1 Co|M|'/? 1
2 9 2
||””LQ(TuT) < VeXp{Vl/z (IM|(T — T))Y/2 Hy(Tla')”L?(O,l)

Cio|M|1/? 1 2
Sexp{ ar Mg —zyye) § 0 lieen

for v € (0,19) and some constant C1g > 0. From (120), we get

C 1 1 4

2 11 1/2 3/2 2

lollZ2 (2, 1) < WQXP {1/1/2 <C11M| / <1 + (M7 = T1))1/2> - 3\/§T1/2(_MT1 o )} 1%0ll%
1 1

for v € (0,1p).
Thus, taking 77 > K/|M| with K sufficiently large, the previous constant is bounded by

exp{—C|M|*?/u}/?}  for some C > 0,
when v € (0, 1p).
e Hence to finish the proof of Theorem 5, it remains only to prove that the norms
Hy\z:OHL2(O,T1), ||ZU\z:1||L2(o,T1)7 ||yw\ac:1||L2((),T1)7

are bounded independently of v > 0. This is a direct consequence of (113) for what concerns the
control vs. For controls v and v, this is for instance a consequence of the following group estimate
for the linear KdV operator:

sup ut, M e < Clluollmw)

(recall that u fulfills (111)).

6 Appendix: Proof of Carleman inequality

6.1 Proof of Proposition 4
Let ¢ := e **p, where « is given by (52) and ¢ fulfills system (51). We deduce that

L1¢ + L2¢ = L3’¢7
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with

L) = —thape — P — 352300, — (M /v)ths, (122)
Lot = —s*a34) — 350,hne — 5040 — 35000ty — s(M/v)agy) (123)
and
L3t) = 80upath + 352 0ptpz1). (124)
Then, we have
HLle%Z(QO) + ||L2¢H%2(Q0) + 2//620 Ly Loy du dt = ||L37/’||2L2(Q0)- (125)

In the following lines, we will compute the double product term. For the sake of simplicity, let us
denote by (L;); (1 <i<2,1<j<5) the j-th term in the expression of L;1.

e First, integrating by parts with respect to x, we have

83
((L1)1, (L)1) £2(qy) ——2//62 30,1, |? da dt + 353 //Q 2y |the|? da dt
0 0

3s3
+ - // (205950413C + aiamx)ﬁwh//\Q dz dt
0]

953 g3 [To
=5 // 5 || d dit — 3/0 3 ey [V o |
0

23 (126)
_ % // (203 + 60000tz Qe + 02 agy ) [0|? da dt
0
943 3 rTo
R A U
Qo 0
— OT§s® // o®||? d dt.
0
Here, we have used that ¢j,—0,1 = ¥z |,—0 = 0 and (54).
For the second term, integrating by parts again with respect to x, we obtain
3s 3s [To
((lej)la (LZw)2)L2(Qo) = _5 /A azz|"/}mz|2 dx dt + ?/ am|m:1‘wmx|m:1‘2 dt
0 0
3s [To
Y az\m:0|¢x9¢\x=0|2 dt
0 (127)
3s 9 3s [To 9
2 *E // O‘TT|¢£$| dxdt+ ?/0 arlx:lemﬂz:l‘ dt
0
To
—CS/ a\z:O"‘pajw‘w:O'th-
0
We consider now the third term of Lot and we get
S S
((L1)1, (L2v)3) 12 (o) = ) // 10y | |* dax dt + 3 // Oz [V dax dt
0 Qo
+ f// Qot|to|? da dt = s// Qat |00 |? daz dit
2 Qo Qo
(128)

To
S S
- 7/ at\x=1|wm|x:1‘2dt — // aT’I"Et|’l/)|2d‘T dt
2 Jo 2 Qo

To
Z *OSTO <// OLSM/}Q?F dl’dt+/ a3x=1|w$|z_12dt> 1)
Qo 0
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thanks to a;., = 0 and (54)-(55).

Furthermore, since oz =0 and ¢Yjz—0 = ¥z |y—¢ = 0, we have

3
((Llw)h (L21/))4)L2(Q0) = —3s // amzlwwaj|2 dz dt — ES // ama:xa$|ww|2d-r dt
Qo Qo

To
+35/ azz|m 1,¢)Iﬂ3\z 1w1\m 1dt

// O‘a:xl¢aca:| dxdt+*// Oé4x|1/)x| dz dt

3s

- azza:|m:1‘wz|g;:1| dt + 35/ azw|x:1¢mw\w:1ww\1:1 dt
2 0 0

2 1 o 2
> —3s // Oéml%ﬂ dr dt — 55/ aw\w:l'd)mw\gg:ﬂ dt.
Qo 0

2 To 3 2
—OsTE / 0 ayos | .

(129)

Observe that in the last term we have used Cauchy-Schwarz inequality.

For the last term of Lo, we have
(L)1, (L2v)s) 12(qe) = —s(M/(2v)) // a13m|wm\2dx dt — s(M/v) // Qg dx dt
To
_ 2 2
01/(@0) [ a4 501 /20) [ /Q ol de
—s1) [[ anstrbdzar
Using that oy, < 0, this yields
To
(B0, (E20)5)s2(an) 2 ~CsIMITE /) ( | abatape Pt [ alfunf? o dt)
0 Qo

+s// Q| V| dxdt—CsM2(T6L/l/2)// P Y| da dt.
0 Qo

All these computations ((126)-(130)) show that

(130)

(L)1, L) 2 gy f// 020 dxdt——// o [t der

—C// (sTS‘MQ/Iﬂ+33T02)a5|w|2dwdt—05// (To + TE|M|/v)a® || da dt
0 Qo

o 2 L 2 (131)
—5/0 g1 [V o= dt+§/0 Oglg=1|Voz|p=1 | dt

To To
_Cs / (To + T2 + T2|M|/)0%, _y[e oy [ dt — Cs / rotbrapool? d.
0 0

e As long as the second term of Ly is concerned, we first integrate by parts with respect to ¢:

3
(L1v)2, (L2¥)1) 12 (Q0) :—3%// Qag |V dedt > —Cs3T, // o®|1p|? da dt. (132)
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For the second one we use that ¢ ,_g = ¥z =7 = 0 and (55) and we get

(L1th)a, (La)2) 2200 // orp Ot |? da dt — 3s // Cnathathy da dt

0 0
> —CsTy // a3‘¢z|2d‘ dt — 3s // azﬂﬂ/}zwt dx dt.
Qo Qo

Again using ¥,—¢ = ¥j;—r = 0 and (55), we deduce
(L1v)2, (L2¥)3) 12 (Qy) = —$ // a|? de dt > —CsTy // a®|Y)? dx dt.
Qo 0

Furthermore,

((L1v)2, (L2v)a) L2 (Qy) = 38 // Qg pthy da dt.

Finally, the last product of the second term of Lq1) provides

(La)an (Lath)s) 20 = —sM)(20) / /Q o l? d dt > Cs|M|(TS /) / /Q o®lp[? da dt.

(133)

(134)

(135)

(136)

Putting together all the computations concerning the second term of Lyt ((132)-(136)), we obtain

((L19)2, Low) 12(qy) = —CsTo(s* + Ty + Tg | M| /v) // ®|ep|? da dt
Qo

— OsTy // ®|1h,|? da dt.

e We consider now the products concerning the third term of L. First, we have

((L1v)3, (L2¥)1) 12 (Qo) 155 // arag|? dedt > Cs® // P |Y|? dx dt.

Secondly,

L L _ 2 2 2 gedr 1+ 05 [ o8 2 gt
((L19)3, ( 2¢)2)L2(Qo) = 2 o QO |” d dt + 2/, %|x=1\¢x|x:1| .
0

Using (55), we obtain the following for the third term:

((Llw)g, (ng) )LQ Qo) = — 5 //Q 2alamat + « a$t)|w|2 dx dt

> —Cs’Ty // o® | du dt.
0

(Lat)s, (Lath)s) £2(gq) = 95° / / 020ra a2 da dt.

0

Furthermore,

Finally,
9
L19)3, (La¥)s) r2(0) = —=8° (M 2 g || da dt
(L19)3, (L2)5) L2(Qo) 28(/V)//Qoaa||$

> —Cs*(TZ|M|/v) // o’ p|* dx dt.
Qo
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(140)
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Consequently, we get the following for the third term of Lyt ((138)-(142)):
5 50,12 9s° 2 2
((L19)3, Lov) 12(q,) = Cos a’ || dx dt — — O Qg |1 |~ d di
Qo 2 Qo
3 50,12 9s% 10 3 2
—os Ty 1+ Tol M) | /Q ol dedt+ %5 [ auf g P
(0]
e As long as the fourth and last term of L1 is concerned, we have:
3
(Lo (La))saan = =55 M) [[ adasalof? dode
Qo
> _CsSM|(T2/v) // o8| da dt.
Qo
Now, we compute the second one:

To
(s, L)z = =53 7) [[ ol dedie S/0) [ ouoalburocal?

To
> —Cs|M|(T¢/v) (//Q oy |2 dxdt+/ O‘?r:1|wx|m:1\2 dx> .
0 0

Additionally, integrating by parts again with respect to z, we have

(s (Eavo)ssian = ~5300/0) [ oo drar = ~Csp@i ) [ o*pol dvar

Furthermore,

(L), (Lath)a) 20 = 35(M /) //Q a2 d dt > —C's| M]|(T2/v) //Q o |2 dvd.

Finally,

(143)

(144)

(145)

(146)

(147)

1
((L19)as (L2v)5) 12(Qo) = —is(MQ/VQ) //QO Qe |[V|? dx dt > —C's(Ty M?/v?) //QO o®|ap|? da dt.

All these computations for (Li1)4 ((144)-(148)) show that

(L19h)s, L) 20y > —CIM|(ST2 /(s + To + T2\ M| /v) / /Q P2 de dt

To
—CsTO2|M|/1/// a3|wx\2dxdt—CsT02|M|/u/ ey [ |7 dt.
Qo 0

(148)

(149)

Let us now gather all the product (L1, L2t)12(q,) coming from (131), (137), (143) and (149).

e As long as the zero order terms are concerned, we will get profit of the term obtained in (138) (or

(143)):

s° // o®p|? da dt.
Qo

All terms concerning |1/|? can be bounded by

(T8 + (TN ) 7o 4 T3 + M) [ Pl o
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(see (131), (137), (143) and (149)). Then, taking s > C(Tp +T,'> + (To|M|"/2/v'/2)), all these integrals
can be absorbed by (150).

e On the other hand, from (131) we have that the term involving |, |? in Qo is

7
—fs// Qg |[Vue|? dx dt > C's // a|tpe|? da dt. (151)
2 Qo Qo
The presence of (150) and (151) provides that the term
Cs® // P, |? da dt (152)
0

is also produced from (L1, Lyt))12(q,)- This justifies that the terms on [¢;|* bounded by
sTo(1 + (TO\M|/V))// P, |* dx dt
0

(see (131), (137) and (149)) are absorbed as long as we take s > C’(Tol/2 + (To|M|Y/2 /M%),

e Concerning the traces, from (131) and (143) we have the terms

3 To 3 2
4s A af\x:leﬂz:l' dt
and
To 9
S/ O‘I\x:lw)mc\z:ﬂ dt.
0

The first one serves to eliminate
To
~Os(T+ T3+ THMU) [ ol s

(see (131) and (149)) by taking s > C(Ty + Ty'? + To| M|/2 /1/2).

With all this, we get

To
] el 4 520l sty drdtts [ s (ol + 0o )
0

) (153)
o
<C (5/0 a|x:0|'¢)wm\ax:0|2 dt + ||L3w”%2(Q0)> ’

for a choose of s like s > C(Tp + Tol/2 + (To|M|Y/? /u'/2)). Now, from the expression of Lzt (see (124))
and (125), we see that

ILs¢0172(0,) §0(52ﬂ§+s4T0)// o®|wp|? da dt
0

which can also be absorbed by (150) with s > CTj.
Finally, we come back to ¢ by using the definition of ¢ = e7**p and the properties on the weight
function « given in (54). As a consequence, we deduce estimate (57).

6.2 Proof of Proposition 5
Let us redefine the expressions of Ly, Lot and L3t given in (122), (123) and (124):

L1 = —tupe — Pr — 35% 20y,

Loy = —Sgaiw — 350 Yae — SO — 35Qgq 1)y
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and
L3tp = 507027 + 3520‘x0¢x;&¢ + (M/V)¢x + S(M/V)axw

The double products of L1t and Lot are exactly the same as in the previous paragraph. This leads
to the following estimate (similarly to (153)):

s// [ua? + 5202 a2 + s34 |[2) dar dt
O To (154)
§O<s | ol + [ /Q <|M2/v2><¢$|2+52a2|w|2>dzdt>7

for s > C(To,v).
Therefore, we only need to estimate the last two terms in the right hand side of (154) as long as
M € L>=(0,T; L*(0,1)). Let us estimate, for instance, the first term:

T T
S P < [ < IV o100 | IOy
0
Now, we take into account that there exists a positive constant C' such that

192 ()2~ 0,1) < Clltbea()llL20,1) @ e t € (0,T)

and that a > 2/T. Consequently, we obtain

T
||M||2Loo(0,T;L2(o,1))/0 92 (D7 = 0,1y 4t < CIIM[F o 0,7:120,1) //Q altpey|* de dt.
0

Analogously, one can obtain the following estimate for the last integral in the right hand side of (154):

52 //Q |M|2a2|w|2dxdt < C”MH%PO(O,T;LZ(OJ)) //Q O‘3|¢z|2 dx dt.
0 0

Then, taking s > C(To, v, || M || (r2)), we readily deduce (75) from (154).
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